
Software, Data and Modelling News

OOF3: A Python engine for automating regional and coastal ocean forecastsq

Martinho Marta-Almeida a,*, Manuel Ruiz-Villarreal b, Pablo Otero b, Marcos Cobas b, Alvaro Peliz c,
Rita Nolasco a, Mauro Cirano d, Janini Pereira d

aCentro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
b Instituto Español de Oceanografía, IEO, Centro Oceanográfico A Coruña, Muelle de Animas s/n, 15001 A Coruña, Galicia, Spain
c Instituto de Oceanografia, Universidade de Lisboa, 1749-016 Lisboa, Portugal
dDepartamento de Física da Terra e do Meio Ambiente, Universidade Federal da Bahia, 40170-280 Salvador, Bahia, Brazil

a r t i c l e i n f o

Article history:
Received 17 May 2010
Received in revised form
21 October 2010
Accepted 27 November 2010
Available online 31 December 2010

Keywords:
Operational modelling
Ocean forecast
Python
ROMS

a b s t r a c t

Coastal and regional ocean forecasts can be currently performed on a daily basis due to the advances in
numerical techniques and in computational resources. Maintenance of routine forecasts is a demanding
task from the point of view of software engineering since it involves a number of new additional tasks
difficult to code efficiently in the compiled languages in which ocean models are written. In this
contribution, we present a set of free, open-source, portable and fast modules named OOF3 e Operational
Ocean Forecast Python Engine that provide a way to cope with the demanding requirements of routine
execution of a regional ocean model written in a compiled language (namely the Regional Ocean
Modelling System, ROMS, developed in Fortran) and that make the forecast process possible and fully
automatic and robust.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Advances in numerical modelling in coastal oceanography and
the availability of computing power at an affordable cost are
boosting the area of coastal and regional ocean prediction. State-of-
the art numerical models with realistic forcing and detailed physics
can be executed on a daily basis, and the scientific community is
now able to investigate processes at spatial and temporal scales
that could not be routinely tackled so far. However, despite
affordable, the daily execution of a regional model is a demanding
task from the point of view of software engineering, involving
complex operations with large data files. A great number of auto-
mated tasks have to be coded for launching model simulation,
gathering forcing data, storing results, plotting and visualising and
afterwards for disseminating numerical output and controlling the
quality of the forecast against available real-time data.

Additionally, the fact that oceanmodels arewritten in a compiled
language (usually Fortran) has limitations for controlling execution
and maintaining robustness and efficiency. Modern software engi-
neering is recognising that the combination of different program
languages in “mixed language”modelling packages has advantages

in terms of robustness and efficiency in code development, and
additionally makes it possible to address complex demanding
problems in environmental modelling hard to tackle with the exi-
sting software in compiled languages (e.g. Lin, 2008; Roberts et al.,
2010)

2. Why Python?

Python is an interpreted language that can be run in interactive
mode, which facilitates coding for scientific applications that
require use of large datasets and complex computational programs
(e.g. Oliphant, 2007). Additionally, Python includes a very extensive
sort of built-in modules, and consequently it can be used to run all
kind of daily tasks which usually require more than one language.
The base toolbox for scientific computing in Python, NumPy-SciPy,
introduces numerical arrays in Python providing math libraries
for data manipulation and makes possible the creation of C/For-
tranextensions in an easy straightforward way. Many Python co-
mmunity modules of application in environmental sciences and
computer science are available. We can highlight the following for
their relevance in ocean modelling: i) tools to manipulate the
standard data formats in ocean and atmospheric sciences (GRIB and
NetCDF); ii) support for OPeNDAP; iii) tidal harmonic analysis
software; iv) tools for scientific visualisation (in particular mat-
plotlib). In this manner, the Python language allows to create and

q Code and documentation available at http://code.google.com/p/oofe.
* Corresponding author.

E-mail address: mma@ua.pt (M. Marta-Almeida).

Contents lists available at ScienceDirect

Environmental Modelling & Software

journal homepage: www.elsevier .com/locate/envsoft

1364-8152/$ e see front matter � 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.envsoft.2010.11.015

Environmental Modelling & Software 26 (2011) 680e682



operate themodel input/output and to control all the required tasks
for the operationality of the ocean model.

3. The ocean model

The operational engine is directed to the ocean model ROMS
(Shchepetkin andMcWilliams, 2005; Haidvogel et al., 2008) and its
nesting enabled version ROMS-AGRIF (Penven et al., 2006). ROMS is
a state-of-the-art free-surface terrain-following primitive equation
hydrostatic model, configurable for realistic regional applications.
As input data, ROMS requires grid variables, initial ocean condi-
tions, boundary conditions and ocean forcing (like tides, river
outflow, atmospheric surface heat and momentum fluxes). It is also
required input text non data files, where main model parameters
and other informations are specified (like the initial position of
Lagrangian floats, Eulerian stations, etc, depending on the modules
in use). As main output, ROMS stores snapshots and/or averages of
the ocean state variables. The model also stores a restart file, which
is important in the operational context since it can be used as initial
condition of the subsequent model runs.

4. The OOF3 engine

The operational engine is divided into two parts, one for anal-
ysis, which runs the ocean model forced with atmospheric analysis
or real data, and other for forecast which runs forced with atmo-
spheric predictions. The main mission of the Python engine is to
keep the analysis and forecast models running, checking the
availability of initial conditions and atmospheric forcing and veri-
fying the success of the simulations. Each analysis and forecast
cycle has 4 steps: 1) check/wait for the required forcing data and
initial conditions; 2) creation of the model input files; 3) simula-
tion; 4) plot/manage the model inputs and outputs. This cycle is
repeated continuously and only stops in case of some unexpected
error or missing data or file. Both ocean analysis and forecast initial
conditions are obtained from the restart file of the previous day
analysis.

The maintenance of the analysis and forecast cycles is per-
formed by the main Python module of the OOF3 engine (op_main).
This module requires a configuration text file, where data paths, file
names, characteristics of the submission job file (when using
a cluster’s queuing system), etc, can be defined.

Besides the main module, the engine includes three additional
modules, one for the visualisation of the input/output e op_vis,
another for files management of data files and graphics e op_clean,
and one for monitoring the current and past ocean simulations e

op_monitor.
The visualisation module can generate graphics for a variety of

slices and plots. A configuration text file associated to this module
allows the selection of the slices, the variables to be used, colours,
etc.

The cleaning module is used to delete/compress the engine
input/output files. The model input/output files and plots can easily
amount to many gigabytes per day, becoming necessary to choose
which files are to be deleted or compressed, a task that can be
specified in a text configuration file.

The last module of the Python engine is the monitoring module.
It allows to access the status of the analysis and forecast ocean
model runs, namely to check if the models are running, the
remaining computational time, etc.

These fourmodules are built on a large collection of Python tools
which execute all sort of tasks involved in ocean modelling and
data manipulation, like downloading data files from external
servers, interpolating and extrapolating fields, creating model
inputs, etc.

5. Outlook and future developments

The several analysis and plotting desktop environments in use
by the oceanographic community (being Matlab the most widely
used) have proved to be adequate mainly for interactive work and
for setting up seasonal simulations with the ROMS model (Penven
et al., 2008). These environments can be used for performing some
of the tasks required in coastal model forecasts. However, the use of
such tools in routine daily forecasts reveals the lack of flexibility
and optimisation in terms of speed and memory use, and the non-
robustness for batch mode work.

Python is ahigh-level, object-oriented,flexible and relativelyeasy
to learn and use language, and consequently the maintenance of the
routine execution can be performed by scientists or other operators
that are not necessarily efficient code developers. Enhancements of
OOF3 capabilities are thus accessible and painless. Python modules
can integrate all required demanding tasks including control of ex-
ecution in a common framework.

The oceanmodel ROMS includes severalmodules for phenomena
of interest in regional configurations, like sediment transport or
biological processes, which can be handled by relatively simple
extensions of OOF3. Since routines in other programming languages
like Fortran can be efficiently controlled by Python scripts, existing
open-source software for coupling to a wave model or an atmo-
spheric model like the Model Coupling Toolkit (Warner et al., 2008)
can be straightforwardly integrated in the OOF3 platform. In the near
future, it is intended to incorporate ocean state estimation through
data assimilation in OOF3. Among other envisaged OOF3 capabilities
we canmention the development of tools formodel skill assessment
andquality analysis ofmodel input andoutput and the incorporation
of scripts for distribution of model output in an OPeNDAP server.

In summary, OOF3 constitutes a powerful and efficient tool for
setting up and controlling routine forecasts. In spite of being
written for the model ROMS, since many others ocean models use
similar input/output schemes and sequences, OOF3 engine can be
adapted to steer the execution and analysis of other ocean models
with little effort. Operational forecast systems already imple-
mented with OOF3 are visible at the sites http://neptuno.fis.ua.pt/
oof and http://oceano.fis.ufba.br/oof.

Finally, our software illustrates how the combination of new
routines in the high-level scripting Python language with an
existing state-of-the-art ocean model written in a compiled
language has advantages in terms of code simplicity, reliability and
ease-of-use, similarly to what has been reported by Lin (2008) in
a Python implementation of an atmospheric model. In this contri-
bution, additionally we show that this software approach makes it
possible to tackle a new application like the maintenance of routine
forecasts and cope with the demanding software requirements
associated with it.

Acknowledgements

The authors acknowledge financing from EU project ECOOP (FP6
Contract No. 36355) and from project REMO (Rede de Modelagem e
Observaçáo Oceanográfica), funded by Petrobras.

References

Haidvogel, D., Arango, H., Budgell, W., Cornuelle, B., Curchitser, E., Lorenzo, E.D.,
Fennel, K., Geyer, W., Hermann, A., Lanerolle, L., Levin, J., McWilliams, J.,
Miller, A., Moore, A., Powell, T., Shchepetkin, A., Sherwood, C., Signell, R.,
Warner, J., Wilkin, J., 2008. Ocean forecasting interrain-following coordinates:
formulation and skill assessment of the Regional Ocean Modeling System.
J. Comput. Phys. 227, 3595e3624.

Lin, J.W.-B., 2008. qtcm 0.1.2: a Python implementation of the Neelin-Zeng quasi-
equilibrium tropical circulation model. Geosci. Model. Dev. 1, 315e344.

Oliphant, T.E., 2007. Python for scientific computing. Comput. Sci. Eng. 9, 10e20.

M. Marta-Almeida et al. / Environmental Modelling & Software 26 (2011) 680e682 681



Penven, P., Debreu, L., Marchesiello, P., McWilliams, J.C., 2006. Evaluation and
application of the ROMS 1-way embedding procedure to the central California
upwelling system. Ocean Model. 12, 157.

Penven, P., Marchesiello, P., Debreu, L., Lefvre, J., 2008. Software tools for pre- and post-
processingof oceanic regional simulations. Environ.Model. Software 23, 660e662.

Roberts, J.J., Best, B.D., Dunn, D.C., Treml, E.A., Halpin, P.N., 2010. Marine geo-
spatial ecology tools: an integrated framework for ecological geoprocessing

with ArcGIS, Python, R, MATLAB, and Cþþ. Environ. Model. Software 25,
1197e1207.

Shchepetkin, A.F., McWilliams, J.C., 2005. The Regional Ocean Modeling System
(ROMS): a split-explicit, free-surface, topography-following coordinates ocean
model. Ocean Model. 9, 347e404.

Warner, J.C., Perlin, N., Skyllingstad, E.D., 2008. Using the model coupling toolkit to
couple earth system models. Environ. Model. Software 23, 1240e1249.

M. Marta-Almeida et al. / Environmental Modelling & Software 26 (2011) 680e682682


