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Université de Liège
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PREFACE

The intent ofIntroduction to Geophysical Fluid Dynamics - Physical and Numerical Aspects
is to introduce its readers to the principles governing air and water flows on large terrestrial
scales and to the methods by which these flows can be simulatedon the computer. First
and foremost the book is directed to students and scientistsin dynamical meteorology and
physical oceanography. In addition, the environmental concerns raised by the possible impact
of industrial activities on climate and the accompanying variability of the atmosphere and
oceans create a strong desire on the part of atmospheric chemists, biologists, engineers and
many others to understand the basic concepts of atmosphericand oceanic dynamics. It is
hoped that those will find here a readable reference text thatwill provide them with the
necessary fundamentals.

The present volume is a significantly enlarged and updated revision of Introduction to
Geophysical Fluid Dynamicspublished by Prentice-Hall in 1994, but the objective has not
changed, namely to provide an introductory textbook and an approachable reference book.
Simplicity and clarity have therefore remained the guidingprinciples in writing the text.
Whenever possible, the physical principles are illustrated with the aid of the simplest ex-
isting models, and the computer methods are shown in juxtaposition with the equations to
which they apply. The terminology and notation have also been selected to alleviate to a
maximum the intellectual effort necessary to extract the meaning from the text. For example,
the expressions planetary wave and stratification frequency are preferred to Rossby wave and
Brunt-Väisälä frequency, respectively.

The book is divided in five parts. Following a presentation ofthe fundamentals in Part I,
the effects of rotation and of stratification are explored separately in Parts II and III. Then,
Part IV investigates the combined effects of rotation and stratification, which are at the core
of geophysical fluid dynamics. The book closes with Part V, which gathers a group of more
applied topics of contemporary interest. Each part is divided into short, relatively well con-
tained chapters to provide flexibility of coverage to the professor and ease of access to the
researcher. Physical principles and numerical topics are interspersed in order to show the
relation of the latter to the former, but a clear division in sections and subsections makes it
possible to separate the two if necessary.

Used as a textbook, the present volume should meet the needs of two courses, which are
almost always taught sequentially in oceanography and meteorology curricula, namely Geo-
physical Fluid Dynamics and Numerical Modeling of Geophysical Flows. The integration of

xi



xii PREFACE

both subjects here under a single cover makes it possible to teach both courses with a uni-
fied notation and clearer connection of one part to the other than the traditional use of two
textbooks, one for each subject. To facilitate the use as a textbook, a number of exercises
are offered at the end of every chapter, some more theoretical to reinforce the understanding
of the physical principles and others requiring access to a computer to apply the numerical
methods. An accompanying CD-ROM contains an assortment of data sets and MATLAB 
codes that permit instructors to ask students to perform realistic and challenging exercises.
At the end of every chapter, the reader will also find short biographies, which together form
a history of the intellectual developments of the subject matter and should inspire students to
achieve similar levels of distinction.

A general remark about notation is appropriate. Because mathematical physics in general
and this discipline in particular involve an array of symbols to represent a multitude of vari-
ables and constants, with and without dimensions, some conventions are desirable in order to
maximize clarity and minimize ambiguity. To this end, a systematic effort has been made to
reserve classes of symbols for certain types of variables: Dimensional variables are denoted
by lowercase Roman letters (such asu, v andw for the three velocity components), dimen-
sional constants and parameters use uppercase Roman letters (such asH for domain height
andL for length scale), and dimensionless quantities are assigned lowercase Greek letters
(such asα for an angle andε for a small dimensionless ratio). In keeping with a well estab-
lished convention in fluid mechanics, dimensionless numbers credited to particular scientists
are denoted by the first two letters of their name (e.g.,,Ro for the Rossby number andEk for
the Ekman number). Numerical notation is borrowed from Patrick J. Roache, and numerical
variables are represented by tildas (˜ ). Of course, rules breed exceptions (e.g.,, g for the
gravitational acceleration,ω for frequency andψ for streamfunction).

We the authors wish to acknowledge the assistance from numerous colleagues across the
globe, too many to permit an exhaustive list here. There is one person, however, who deserves
a very special note of recognition. Prof. Eric Deleersnijder of the Université catholique de
Louvain, Belgium, suggested that the numerical aspects be intertwined with the physics of
Geophysical Fluid Dynamics. He also provided significant assistance during the writing of
these numerical topics. An additional debt of gratitude goes to our students, who provided us
not only with a testing ground for the teaching of this material but also with numerous and
valuable comments. The following people are acknowledged for their pertinent remarks and
suggestions made on earlier versions of the text, and which have improved both the clarity
and accuracy of the presentation:(Hans Burchard, Charles Troupin, Evan Mason, Anders
Omstedt, Alexander Barth, list of names here, to be finalizedin later stages of production).

Benoit Cushman-Roisin
Jean-Marie Beckers
March 2006



PREFACE OF THE FIRST EDITION

The intent ofIntroduction to Geophysical Fluid Dynamicsis to introduce readers to this de-
veloping field. In the late 1950s, this discipline emerged asa few scientists, building on a
miscellaneous heritage of fluid mechanics, meteorology, and oceanography, began to model
complex atmospheric and oceanic flows by relatively simple mathematical analysis, thereby
unifying atmospheric and oceanic physics. Turning from artto science, the discipline then
matured during the 1970s. Appropriately, a first treatise titled Geophysical Fluid Dynamics
by Joseph Pedlosky (Springer-Verlag) was published in 1979. Since then, several other au-
thoritative textbooks have become available, all aimed at graduate students and researchers
dedicated to the physics of the atmosphere and oceans. It is my opinion that the teaching of
geophysical fluid dynamics is now making its way into sciencegraduate curricula outside of
meteorology and oceanography (e.g.,, physics and engineering). Simultaneously and in view
of today’s concerns regarding global change, acid precipitations, sea-level rise, and so forth,
there is also a growing desire on the part of biologists, atmospheric chemists and engineers
to understand the rudiments of climate and ocean dynamics. In this perspective, I believe
that the time has come for an introductory text aimed at upper-level undergraduate students,
graduate students, and researchers in environmental fluid dynamics.

In the hope of fulfilling this need, simplicity and clarity have been the guiding principles
in preparing this book. Whenever possible, the physical principles are illustrated with the
aid of the simplest existing models, and the terminology andnotation have been selected
to maximize the physical interpretation of the concepts andequations. For example, the
expressionplanetary waveis preferred toRossby wave,and subscripts are avoided whenever
not strictly indispensable.

The book is divided in five parts. After the fundamentals havebeen established in Part
I, the effects of rotation and stratification are explored separately in the following two parts.
Then, Part IV analyzes the combined effects of rotation and stratification, and the book closes
with Part V, on miscellaneous topics of contemporary interest. Each part is divided into
short, relatively well contained chapters to provide flexibility in the choice of materials to
be covered, according to the needs of the curriculum or the reader’s interests. Each chapter
corresponds to one or two lectures, occasionally three, andthe length is deemed suitable
for a one-semester course (45 lectures). Although it is alsoan inevitable reflection of my
personal choices, the selection of materials has been guided by the desire to emphasize the
physical principles at work behind observed phenomena. Such emphasis is also much in
keeping with the traditional teaching of geophysical fluid dynamics. The scientist interested
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in the description of atmospheric and oceanic phenomena will find available an abundance of
introductory texts in meteorology and oceanography.

Unlike existing texts in geophysical fluid dynamics, this book offers a number of exer-
cises at the end of every chapter. There, the reader/teacherwill also find short biographies
and suggestions for laboratory demonstrations. Finally, the text ends with an appendix on
wave kinematics, for it is my experience that not all students are familiar with the concepts
of wave number, dispersion relation, and group velocity, whereas these are central to the
understanding of geophysical wave phenomena.

A general remark on the notation is appropriate. Because mathematical physics in general
and this discipline in particular involve symbols representing variables and constants, with
and without dimensions, I believe that clarity is brought tothe mathematical description of
the subject when certain classes of symbols are reserved forcertain types of terms. In that
spirit, a systematic effort has been placed to assign the notation according to the following
rules: Dimensional variables are denoted by lowercase Roman letters (such asu, v, andw
for the velocity components), dimensional constants and parameters use uppercase Roman
letters (such asH for the domain depth,L for length scale), and dimensionless quantities are
assigned lowercase Greek letters (such asθ for an angle). In keeping with a well-established
convention of fluid mechanics, dimensionless numbers credited to particular scientists are
denoted by the first two letters of those scientists’ names (e.g.,, Ro for the Rossby number).
Of course, conventions breed exceptions (e.g.,, g for the constant gravitational acceleration,
ω for frequency, andψ for streamfunction).

In closing, I wish to acknowledge inspiration from numerouscolleagues from across the
globe, too many to permit an exhaustive list here. I am also particularly indebted to my
students at Dartmouth College; their thirst for knowledge prompted the present text. Don
L. Boyer, Arizona State University, Pijush K. Kundu, Nova University, Peter D. Killworth,
Robert Hooke Institute, Fred Lutgens, Central Illinois College, Joseph Pedlosky, Woods Hole
Oceanographic Institution, and George Veronis, Yale University, made many detailed and in-
valuable suggestions, which have improved both the clarityand accuracy of the presentation.
Finally, deep gratitude goes to Lori Terino for her expertise and patience in typing the text.

Benoit Cushman-Roisin
1993
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Chapter 1

Introduction

(October 18, 2006)SUMMARY : This opening chapter defines the discipline known as
Geophysical Fluid Dynamics, stresses its importance, and highlights its most distinctive at-
tributes. A brief history of numerical simulations in meteorology and oceanography is also
presented. Scale analysis and their relationship with finite differences are introduced to show
how discrete numerical grids depend on the scales under investigation and how finite differ-
ences allow to approximate derivatives at those scales. Theproblem of unresolved scales is
introduced as an aliasing problem in discretization.

1.1 Objective

The object of geophysical fluid dynamics is the study of naturally occurring, large-scale flows
on Earth and elsewhere, but mostly on Earth. Although the discipline encompasses the mo-
tions of both fluid phases – liquids (waters in the ocean, molten rock in the outer core) and
gases (air in our atmosphere, atmospheres of other planets,ionized gases in stars) – a re-
striction is placed on thescaleof these motions. Only the larger-scale motions fall within
the scope of geophysical fluid dynamics. For example, problems related to river flow, mi-
croturbulence in the upper ocean, and convection in clouds are traditionally viewed as topics
specific to hydrology, oceanography, and meteorology, respectively. Geophysical fluid dy-
namics deals exclusively with those motions observed in various systems and under different
guises but nonetheless governed by similar dynamics. For example, large anticyclones of our
weather are dynamically germane to vortices spun off by the Gulf Stream and to Jupiter’s
Great Red Spot. Most of these problems, it turns out, are at the large-scale end, where ei-
ther the ambient rotation (of Earth, planet or star) or density differences (warm and cold air
masses, fresh and saline waters) or both assume some importance. In this respect, geophysi-
cal fluid dynamics comprises rotating-stratified fluid dynamics.

Typical problems in geophysical fluid dynamics concern the variability of the atmosphere
(weather and climate dynamics), of the ocean (waves, vortices and currents) and, to a lesser
extent, the motions in the earth’s interior responsible forthe dynamo effect, vortices on other
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4 CHAPTER 1. INTRODUCTION

planets (such as Jupiter’s Great Red Spot, and Neptune’s Great Dark Spot), and convection
in stars (the sun, in particular).

1.2 Importance of geophysical fluid dynamics

Without its atmosphere and oceans, it is certain that our planet would not sustain life. The nat-
ural fluid motions occurring in these systems are therefore of vital importance to us, and their
understanding extends beyond intellectual curiosity – it is a necessity. Historically, weather
vagaries have baffled scientists and laypersons alike sincetimes immemorial. Likewise, con-
ditions at sea have long influenced a wide range of human activities, from exploration to
commerce, tourism, fisheries, and even wars.

Thanks in large part to advances in geophysical fluid dynamics, the ability to predict with
some confidence the paths of hurricanes (Figures 1-1 and 1-2)has led to the establishment of
a warning system that, no doubt, has saved numerous lives at sea and in coastal areas (Abbott,
2004). Warning systems, however, are only useful if sufficiently dense observing systems are
implemented, fast prediction capabilities are available and efficient flow of information is
ensured. A dreadful example of a situation in which a warningsystem was not yet adequate
to save lives was the earthquake off Indonesia’s Sumatra Island on 26 December 2004. The
tsunami generated by the earthquake was not detected, its consequences not assessed and
authorities not alerted within the two hours needed for the wave to reach beaches in the
region. On a larger scale, the passage every 3 to 5 years of an anomalously warm water mass
along the tropical Pacific Ocean and the western coast of South America, known as the El-
Niño event, has long been blamed for serious ecological damage and disastrous economical
consequences in some countries (O’Brien, 1978; Glantz, 2001). Now, thanks to increased
understanding of long oceanic waves, atmospheric convection, and natural oscillations in air-
sea interactions (Philander, 1990; D’Aleo, 2002), scientists have successfully removed the
veil of mystery on this complex event, and numerical models (e.g., Chenet al., 2004) offer
reliable predictions with at least one year oflead time, i.e., there is a year between the moment
the prediction is made and the time to which it applies.

Having acknowledged that our industrial society is placinga tremendous burden on the
planetary atmosphere and consequently on all of us, scientists, engineers, and the public are
becoming increasingly concerned about the fate of pollutants and greenhouse gases dispersed
in the environment and especially about their cumulative effect. Will the accumulation of
greenhouse gases in the atmosphere lead to global climatic changes that, in turn, will affect
our lives and societies? What are the various roles played bythe oceans in maintaining
our present climate? Is it possible to reverse the trend toward depletion of the ozone in the
upper atmosphere? Is it safe to deposit hazardous wastes on the ocean floor? Such pressing
questions cannot find answers without, first, an in-depth understanding of atmospheric and
oceanic dynamics and, second, the development of predictive models. In this twin endeavor,
geophysical fluid dynamics assumes an essential role, and the numerical aspects should not
be underestimated in view of the required predictive tools.
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Figure 1-1 Hurricane Frances during her passage over Florida on 5 September 2004. The diameter of
the storm is about 830 km and its top wind speed approaches 200km per hour. (Courtesy of NOAA,
Department of Commerce, Washington, D.C.)

1.3 Distinguishing attributes of geophysical flows

Two main ingredients distinguish the discipline from traditional fluid mechanics: the effects
of rotation and those of stratification. The controlling influence of one, the other, or both
leads to peculiarities exhibited only by geophysical flows.In a nutshell, the present book can
be viewed as an account of these peculiarities.

The presence of an ambient rotation, such as that due to the earth’s spin about its axis,
introduces in the equations of motion two acceleration terms that, in the rotating framework,
can be interpreted as forces. They are the Coriolis force andthe centrifugal force (for a
detailed explanation, see Stommel and Moore, 1989). Although the latter is the more palpable
of the two, it plays no role in geophysical flows, however surprising this may be. The former
and less intuitive of the two turns out to be a crucial factor in geophysical motions.

In anticipation of the following chapters, it can be mentioned here (without explanation)
that a major effect of the Coriolis force is to impart a certain vertical rigidity to the fluid.
In rapidly rotating, homogeneous fluids, this effect can be so strong that the flow displays
strict columnar motions; that is, all particles along the same vertical evolve in concert, thus
retaining their vertical alignment over long periods of time. The discovery of this property is
attributed to Geoffrey I. Taylor, a British physicist famous for his varied contributions to fluid
dynamics. (See the short biography at the end of Chapter 7.) It is said that Taylor first arrived
at the rigidity property with mathematical arguments alone. Not believing that this could be
correct, he then performed laboratory experiments that revealed, much to his amazement, that
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Figure 1-2 Computer prediction of the path of Hurricane Frances. The calculations were performed
on Friday 3 September 2004 to predict the hurricane path and characteristics over the next 5 days (until
Wednesday 8 September). The outline surrounding the trajectory indicates the level of uncertainty.
Compare the position predicted for Sunday 5 September with the actual position shown on Figure 1-1.
(Courtesy of NOAA, Department of Commerce, Washington, D.C.)

the theoretical prediction was indeed correct. Drops of dyereleased in such rapidly rotating,
homogeneous fluids form vertical streaks, which, within a few rotations, shear laterally to
form spiral sheets of dyed fluid (Figure 1-3). The vertical coherence of these sheets is truly
fascinating!

In large-scale atmospheric and oceanic flows, such state of perfect vertical rigidity is not
realized, chiefly because the rotation rate is not sufficiently fast and the density is not suffi-
ciently uniform to mask other, ongoing processes. Nonetheless, motions in the atmosphere,
in the oceans, and on other planets manifest a tendency toward columnar behavior. For ex-
ample, currents in the western North Atlantic have been observed to extend vertically over
4000 m without significant change in amplitude and direction(Schmitz, 1980).

Stratification, the other distinguishing attribute of geophysical fluid dynamics, arises be-
cause naturally occurring flows typically involve fluids of different densities (e.g., warm and
cold air masses, fresh and saline waters). Here, the gravitational force is of great importance,
for it tends to lower the heaviest fluid and to raise the lightest. Under equilibrium conditions,
the fluid is stably stratified, consisting of vertically stacked horizontal layers. Fluid motions,
however, disturb this equilibrium, which gravity systematically strives to restore. Small per-
turbations generate internal waves, the three-dimensional analogue of surface waves, with
which we are all familiar. Large perturbations, especiallythose maintained over time, may
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Figure 1-3 Experimental evidence of
the rigidity of a rapidly rotating, ho-
mogeneous fluid. In a spinning ves-
sel filled with clear water, an initially
amorphous cloud of aqueous dye is
transformed in the course of several
rotations into perfectly vertical sheets,
known asTaylor curtains.

cause mixing and convection. For example, the prevailing winds in our atmosphere are man-
ifestations of the planetary convection driven by the pole-to-equator temperature difference.

It is worth mentioning the perplexing situation in which a boat may experience strong
resistance to forward motion while sailing under apparently calm conditions. This phe-
nomenon, calleddead watersby mariners, was first documented by the Norwegian oceanog-
rapher Fridtjof Nansen, famous for his epic expedition on theFram through the Arctic Ocean,
begun in 1893. Nansen reported the problem to his Swedish colleague Vagn Walfrid Ekman
who, after performing laboratory simulations (Ekman, 1904), affirmed that internal waves
were to blame. The scenario is as follows: During times of dead waters , Nansen must have
been sailing in a layer of relatively fresh water capping themore saline oceanic waters and
of thickness, coincidently, comparable to the ship draft; the ship created a wake of inter-
nal waves along the interface (Figure 1-4), unseen at the surface but radiating considerable
energy and causing the noted resistance to the forward motion of the ship.

1.4 Scales of motions

To discern whether a physical process is dynamically important in any particular situation,
geophysical fluid dynamicists introducescales of motion. These are dimensional quantities
expressing the overall magnitude of the variables under consideration. They are estimates
rather than precisely defined quantities and are understoodsolely asorders of magnitudeof
physical variables. In most situations, the key scales are those for time, length and velocity.
For example, in the dead-water situation investigated by Ekman (Figure 1-4), fluid motions
comprise a series of waves whose dominant wavelength is about the length of the submerged
ship hull; this length is the natural choice for the length scaleL of the problem; likewise, the
ship speed provides a reference velocity that can be taken asthe velocity scaleU ; finally, the
time taken for the ship to travel the distanceL at its speedU is the natural choice of time
scale:T = L/U .

As a second example, consider Hurricane Frances during her course over the southeast-
ern United States in early September 2004 (Figure 1-1). The satellite picture reveals a nearly
circular feature spanning approximately 7.5◦ of latitude (830 km). Sustained surface wind
speeds of a category-4 hurricane such as Frances range from 59 to 69 m/s. In general, hur-
ricane tracks display appreciable change in direction and speed of propagation over 2-day
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Figure 1-4 A laboratory experiment by V. W. Ekman (1904) showing internal waves generated by a
model ship in a tank filled with two fluids of different densities. The heavier fluid at the bottom has been
colored to make the interface visible. The model ship (the superstructure of which was drawn onto the
original picture to depict Fridtjof Nansen’sFram) is towed from right to left, causing a wake of waves
on the interface. The energy consumed by the generation of these waves produces a drag that, for a real
ship, would translate into a resistance to forward motion. The absence of any significant surface wave
has prompted sailors to call such situationsdead waters. (From Ekman, 1904, and adapted by Gill,
1982)

intervals. Altogether, these elements suggest the following choice of scales for a hurricane:
L = 800 km,U = 60 m/s andT = 2× 105 s (= 55.6 h).

As a third example, consider the famous Great Red Spot in Jupiter’s atmosphere (Figure
1-5), which is known to have existed at least several hundredyears. The structure is an
elliptical vortex centered at 22◦S and spanning approximately 12◦ in latitude and 25◦ in
longitude; its highest wind speeds exceed 110 m/s, and the entire feature slowly drifts zonally
at a speed of 3 m/s (Ingersollet al., 1979; Dowling and Ingersoll, 1988). Knowing that the
planet’s equatorial radius is 71,400 km, we determine the vortex semi-major and semi-minor
axes (14,400 km and 7,500 km, respectively) and deemL = 10,000 km to be an appropriate
length scale. A natural velocity scale for the fluid isU = 100 m/s. The selection of a time
scale is somewhat problematic in view of the nearly steady state of the vortex; one choice is
the time taken by a fluid particle to cover the distanceL at the speedU (T = L/U = 105

s), whereas another is the time taken by the vortex to drift zonally over a distance equal to
its longitudinal extent (T = 107 s). Additional information on the physics of the problem is
clearly needed before selecting a time scale. Such ambiguity is not uncommon because many
natural phenomena vary on different temporal scales (e.g., the terrestrial atmosphere exhibits
daily weather variation as well as decadal climatic variations, among others). The selection
of a time scale then reflects the particular choice of physical processes being investigated in
the system.

There are three additional scales that play important rolesin analyzing geophysical fluid
problems. As we mentioned earlier, geophysical fluids generally exhibit a certain degree of
density heterogeneity, called stratification. The important parameters are then the average
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Figure 1-5 Southern Hemisphere of Jupiter as seen by the spacecraftCassini in 2000. The
Jupiter moon Io, of size comparable to our moon, projects itsshadow onto the zonal jets
between which the Great Red Spot of Jupiter is located (on theleft). For further im-
ages visithttp://photojournal.jpl.nasa.gov/target/Jupiter . (Image courtesy of
NASA/JPL/University of Arizona)

http://photojournal.jpl.nasa.gov/target/Jupiter
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densityρ0, the range of density variations∆ρ, and the heightH over which such density
variations occur. In the ocean, the weak compressibility ofwater under changes of pressure,
temperature, and salinity translates into values of∆ρ always much less thanρ0, whereas the
compressibility of air renders the selection of∆ρ in atmospheric flows somewhat delicate.
Since geophysical flows are generally bounded in the vertical direction, the total depth of the
fluid may be substituted for the height scaleH . Usually, the smaller of the two height scales
is selected.

As an example, the density and height scales in the dead-water problem (Figure 1-4) can
be chosen as follows:ρ0 = 1025 kg/m3, the density of either fluid layer (almost the same);
∆ρ = 1 kg/m3, the density difference between lower and upper layers (much smaller than
ρ0); andH = 5 m, the depth of the upper layer.

As the person new to geophysical fluid dynamics has already realized, the selection of
scales for any given problem is more an art than a science. Choices are rather subjective. The
trick is to choose quantities that are relevant to the problem, yet simple to establish. There
is freedom. Fortunately, small inaccuracies are inconsequential because the scales are meant
only to guide in the clarification of the problem, whereas grossly inappropriate scales will
usually lead to flagrant contradictions. Practice, which forms intuition, is necessary to build
confidence.

1.5 Importance of rotation

Naturally, we may wonder at which scales the ambient rotation becomes an important factor
in controlling the fluid motions. To answer this question, wemust first know the ambient
rotation rate, which we denote byΩ and define as:

Ω =
2π radians

time of one revolution
. (1.1)

Since our planet Earth actually rotates in two ways simultaneously, once per day about itself
and once a year around the sun, the terrestrial value ofΩ consists of two terms, 2π/24 hours
+ 2π/365.24 days = 2π/1 sidereal day = 7.2921× 10−5 s−1. Thesidereal day, equal to 23
hours 56 minutes and 4.1 seconds, is the period of time spanning the moment when a fixed
(distant) star is seen one day and the moment on the next day when it is seen at the same
angle from the same point on Earth. It is slightly shorter than the 24–hour solar day, the time
elapsed between the sun reaching its highest point in the skytwo consecutive times, because
the earth’s orbital motion about the sun makes the earth rotate slightly more than one full turn
with respect to distant stars before reaching the same Earth-Sun orientation.

If fluid motions evolve on a time scale comparable to or longerthan the time of one
rotation, we anticipate that the fluid does feel the effect ofthe ambient rotation. We thus
define the dimensionless quantity

ω =
time of one revolution

motion time scale
=

2π/Ω

T
=

2π

ΩT
, (1.2)

whereT is used to denote the time scale of the flow. Our criterion is asfollows: If ω is on
the order of or less than unity (ω <

∼1), rotation effects should be considered. On Earth, this
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Table 1.1 LENGTH AND VELOCITY SCALES OF MOTIONS IN WHICH ROTATION EFFECTS ARE IM-
PORTANT

L = 1 m U ≤ 0.012 mm/s
L = 10 m U ≤ 0.12 mm/s
L = 100 m U ≤ 1.2 mm/s
L = 1 km U ≤ 1.2 cm/s
L = 10 km U ≤ 12 cm/s
L = 100 km U ≤ 1.2 m/s
L = 1000 km U ≤ 12 m/s
L = Earth radius = 6371 km U ≤ 74 m/s

occurs whenT exceeds 24 hours.

A second and usually more useful criterion results from considering the velocity and
length scales of the motion. Let us denote these byU andL, respectively. Naturally, if a
particle traveling at the speedU covers the distanceL in a time longer than or comparable to
a rotation period, we expect the trajectory to be influenced by the ambient rotation, and so we
write

ε =
time of one revolution

time taken by particle to cover distanceL at speedU

=
2π/Ω

L/U
=

2πU

ΩL
. (1.3)

If ε is on the order of or less than unity (ε . 1), we conclude that rotation is important.

Let us now consider a variety of possible length scales, using the valueΩ for Earth. The
corresponding velocity criteria are listed in Table 1.1.

Obviously, in most engineering applications, such as the flow of water at a speed of 5 m/s
in a turbine 1 m in diameter (ε ∼ 4 × 105) or the air flow past a 5-m wing on an airplane
flying at 100 m/s (ε ∼ 2 × 106), the inequality is not met, and the effects of rotation can be
ignored. Likewise, the common task of emptying a bathtub (horizontal scale of 1 m, draining
speed on the order of 0.01 m/s and a lapse of about 1000 s, givingω ∼ 90 andε ∼ 900) does
not fall under the scope of Geophysical Fluid Dynamics. On the contrary, geophysical flows
(such as an ocean current flowing at 10 cm/s and meandering over a distance of 10 km or a
wind blowing at 10 m/s in a 1000-km-wide anticyclonic formation) do meet the inequality.
This demonstrates that rotation is usually important in geophysical flows.
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Figure 1-6 Vertical profile of density
in the northern Adriatic Sea (43◦32′N,
14◦03′E) on 27 May 2003. Den-
sity increases downward by leaps and
bounds, revealing the presence of dif-
ferent water masses stacked on top of
one another in such a way that lighter
waters float above denser waters. A re-
gion where the density increases sig-
nificantly faster than above and below,
marking the transition from one water
mass to the next, is called apycnocline.
(Data courtesy of Drs. Hartmut Peters
and Mirko Orlić)

1.6 Importance of stratification

The next question concerns the condition under which stratification effects are expected to
play an important dynamical role. Geophysical fluids typically consist of fluid masses of dif-
ferent densities, which under gravitational action tend toarrange themselves in vertical stacks
(Figure 1-6), corresponding to a state of minimal potentialenergy. But, motions continuously
disturb this equilibrium, tending to raise dense fluid and lower light fluid. The correspond-
ing increase of potential energy is at the expense of kineticenergy, thereby slowing the flow.
On occasions, the opposite happens: Previously disturbed stratification returns toward equi-
librium, potential energy converts into kinetic energy, and the flow gains momentum. In
sum, the dynamical importance of stratification can be evaluated by comparing potential and
kinetic energies.

If ∆ρ is the scale of density variations in the fluid andH is its height scale, a prototypical
perturbation to the stratification consists in raising a fluid element of densityρ0 + ∆ρ over
the heightH and, in order to conserve volume, lowering a lighter fluid element of density
ρ0 over the same height. The corresponding change in potentialenergy , per unit volume, is
(ρ0+∆ρ) gH − ρ0gH = ∆ρgH . With a typical fluid velocityU , the kinetic energy available
per unit volume is12ρ0U

2. Accordingly, we construct the comparative energy ratio

σ =
1
2ρ0U

2

∆ρgH
, (1.4)

to which we can give the following interpretation. Ifσ is on the order of unity (σ ∼ 1),
a typical potential-energy increase necessary to perturb the stratification consumes a sizable
portion of the available kinetic energy, thereby modifyingthe flow field substantially. Strati-
fication is then important. Ifσ is much less than unity (σ � 1), there is insufficient kinetic
energy to perturb significantly the stratification, and the latter greatly constrains the flow. Fi-
nally, if σ is much greater than unity (σ � 1), potential-energy modifications occur at very
little cost to the kinetic energy, and stratification hardlyaffects the flow. In conclusion, strati-
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fication effects cannot be ignored in the first two cases – thatis, when the dimensionless ratio
defined in (1.4) is on the order of or much less than unity (σ . 1). In other words,σ is to
stratification what the numberε, defined in (1.3), is to rotation.

A most interesting situation arises in geophysical fluids when rotation and stratification
effects are simultaneously important, yet neither dominates over the other. Mathematically,
this occurs whenε ∼ 1 andσ ∼ 1 and yields the following relations among the various
scales:

L ∼ U

Ω
and U ∼

√
∆ρ

ρ0
gH . (1.5)

(The factors2π and 1
2 have been omitted because they are secondary in a scale analysis.)

Elimination of the velocityU yields a fundamental length scale:

L ∼ 1

Ω

√
∆ρ

ρ0
gH . (1.6)

In a given fluid, of mean densityρ0 and density variation∆ρ, occupying a heightH on a
planet rotating at rateΩ and exerting a gravitational accelerationg, the scaleL arises as a
preferential length over which motions take place. On Earth(Ω = 7.29× 10−5 s−1 andg
= 9.81 m/s2), typical conditions in the atmosphere (ρ0 = 1.2 kg/m3, ∆ρ = 0.03 kg/m3, H =
5000 m) and in the ocean (ρ0 = 1028 kg/m3, ∆ρ = 2 kg/m3,H = 1000 m) yield the following
natural length and velocity scales:

Latmosphere ∼ 500 km Uatmosphere ∼ 30 m/s
Locean ∼ 60 km Uocean ∼ 4 m/s

Although these estimates are relatively crude, we can easily recognize here the typical size
and wind speed of weather patterns in the lower atmosphere and the typical width and speed
of major currents in the upper ocean.

1.7 Distinction between the atmosphere and oceans

Generally, motions of the air in our atmosphere and of seawater in the oceans that fall under
the scope of geophysical fluid dynamics occur on scales of several kilometers up to the size
of the earth. Atmospheric phenomena comprise the coastal sea breeze, local to regional pro-
cesses associated with topography, the cyclones, anticyclones, and fronts that form our daily
weather, the general atmospheric circulation, and climatic variations. Oceanic phenomena
of interest include estuarine flow, coastal upwelling and other processes associated with the
presence of a coast, large eddies and fronts, major ocean currents such as the Gulf Stream,
and the large-scale circulation. Table 1.2 lists the typical velocity, length and time scales of
these motions, while Figure 1-7 ranks a sample of atmospheric and oceanic processes accord-
ing to their spatial and temporal scales. As we can readily see, the general rule is that oceanic
motions are slower and slightly more confined than their atmospheric counterparts. Also, the
ocean tends to evolve more slowly than the atmosphere.
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Table 1.2 LENGTH, VELOCITY AND TIME SCALES IN THE EARTH’ S ATMOSPHERE AND OCEANS

Phenomenon Length Scale Velocity Scale Time Scale
L U T

Atmosphere:

Microturbulence 10–100 cm 5–50 cm/s few seconds
Thunderstorms few km 1–10 m/s few hours
Sea breeze 5–50 km 1–10 m/s 6 hours
Tornado 10–500 m 30–100 m/s 10–60 minutes
Hurricane 300–500 km 30–60 m/s Days to weeks
Mountain waves 10–100 km 1–20 m/s Days
Weather patterns 100–5000 km 1–50 m/s Days to weeks
Prevailing winds Global 5–50 m/s Seasons to years
Climatic variations Global 1–50 m/s Decades and beyond

Ocean:

Microturbulence 1–100 cm 1–10 cm/s 10–100 s
Internal waves 1–20 km 0.05–0.5 m/s Minutes to hours
Tides Basin scale 1–100 m/s Hours
Coastal upwelling 1–10 km 0.1–1 m/s Several days
Fronts 1–20 km 0.5–5 m/s Few days
Eddies 5–100 km 0.1–1 m/s Days to weeks
Major currents 50–500 km 0.5–2 m/s Weeks to seasons
Large-scale gyres Basin scale 0.01–0.1 m/s Decades and beyond

Besides notable scale disparities, the atmosphere and oceans also have their own pecu-
liarities. For example, a number of oceanic processes are caused by the presence of lateral
boundaries (continents, islands), a constraint practically non-existent in the atmosphere. On
the other hand, atmospheric motions are sometimes stronglydependent on the moisture con-
tent of the air (clouds, precipitation), a characteristic without oceanic counterpart.

Flow patterns in the atmosphere and oceans are generated by vastly different mechanisms.
By and large, the atmosphere is thermodynamically driven, that is, its primary source of
energy is the solar radiation. Briefly, this shortwave solarradiation traverses the air layer to
be partially absorbed by the continents and oceans, which inturn re-emit a radiation at longer
wavelengths. This second-hand radiation effectively heats the atmosphere from below, and
the resulting convection drives the winds.

In contrast, the oceans are forced by a variety of mechanisms. In addition to the periodic
gravitational forces of the moon and sun that generate the tides, the ocean surface is subjected
to a wind stress that drives most ocean currents. Finally, local differences between air and
sea temperatures generate heat fluxes, evaporation, and precipitation, which in turn act as
thermodynamical forcings capable of modifying the wind-driven currents or of producing
additional currents.

In passing, while we are contrasting the atmosphere with theoceans, it is appropriate
to mention an enduring difference in terminology. Because meteorologists and laypeople
alike are generally interested in knowing from where the winds are blowing, it is common
in meteorology to refer to air velocities by their directionof origin, such as easterly (from
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Figure 1-7 Various types of processes and structures in the atmosphere(top panel) and oceans (bottom
panel), ranked according to their respective length and time scales. (Diagram courtesy of Hans von
Storch)
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the east – that is, toward the west). On the contrary, sailorsand navigators are interested in
knowing where ocean currents may take them. Hence, oceanographers designate currents by
their downstream direction, such as westward (from the eastor to the west). Meteorologists
and oceanographers agree, however, on the terminology for vertical motions: upward or
downward.

1.8 Data acquisition

Because geophysical fluid dynamics deals exclusively with naturally occurring flows and,
moreover, those of rather sizable proportions, full-scaleexperimentation must be ruled out.
Indeed, how could one conceive of changing the weather, evenlocally, for the sake of a
scientific inquiry? Also, the Gulf Stream determines its ownfancy path, irrespective of what
oceanographers wish to study about it. In that respect, the situation is somewhat analogous to
that of the economist who may not ask the government to prompta disastrous recession for
the sake of determining some parameters of the national economy. The inability to control
the system under study is greatly alleviated by simulations. In geophysical fluid dynamics,
these investigations are conducted via laboratory experiments and numerical models.

As well as being reduced to noting the whims of nature, observers of geophysical flows
also face length and time scales that can be impractically large. A typical challenge is the
survey of an oceanic feature several hundred kilometers wide. With a single ship (which is
already quite expensive, especially if the feature is far away from the home shore), a typi-
cal survey can take several weeks, a time interval during which the feature might translate,
distort, or otherwise evolve substantially. A faster survey might not reveal details with a suf-
ficiently fine horizontal representation. Advances in satellite imagery and other methods of
remote sensing (Conwayet al., 1997; Marzano and Visconti, 2002) do provide synoptic (i.e.,
quasi-instantaneous) fields, but those are usually restricted to specific levels in the vertical
(e.g., cloud tops and ocean surface) or provide vertically integrated quantities. Also, some
quantities simply defy measurement, such as the heat flux andvorticity. Those quantities can
only be derived by an analysis on sets of proxy observations.

Finally, there are processes for which the time scale is wellbeyond the span of human life,
if not the age of civilization. For example, climate studiesrequire a certain understanding of
glaciation cycles. Our only recourse here is to be clever andto identify today some traces of
past glaciation events, such as geological records. Such anindirect approach usually requires
a number of assumptions, some of which may never be adequately tested. Finally, exploration
of other planets and of the sun is even more arduous.

At this point one may ask: What can we actually measure in the atmosphere and oceans
with a reasonable degree of confidence? First and foremost, anumber of scalar properties can
be measured directly and with conventional instruments. For both the atmosphere and ocean,
it is generally not difficult to measure the pressure and temperature. In fact, in the ocean
the pressure can be measured so much more accurately than depth that, typically, depth is
calculated from measured pressure on instruments that are gradually lowered into the sea. In
the atmosphere, one can also accurately measure the water vapor, rainfall and some radiative
heat fluxes (Raoet al., 1990; Marzano and Visconti, 2002). Similarly, the salinity of sea-
water can be either determined directly or inferred from electrical conductivity (Pickard and
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Emery, 1990). Also, the sea level can be monitored at shore stations. The typical problem,
however, is that the measured quantities are not necessarily those preferred from a physical
perspective. For example, one would prefer direct measurements of the Bernoulli function,
diffusion coefficients, and turbulent correlation quantities.

Vectorial quantities are usually more difficult to obtain than scalars. Horizontal winds
and currents can now be determined routinely by anemometersand currentmeters of various
types, including some without rotating components (Lutgens and Tarbuck, 1986; Pickard
and Emery, 1990), although usually not with the desired degree of spatial resolution. Fixed
instruments, such as anemometers atop buildings and oceanic currentmeters at specific depths
along a mooring line, offer fine temporal coverage, but adequate spatial coverage typically
requires a prohibitive number of such instruments. To remedy the situation, instruments
on drifting platforms (e.g., balloons in the atmosphere and drifters or floats in the ocean)
are routinely deployed. However, these instruments provide information that is mixed in
time and space, and thus is not ideally suited to most purposes. A persistent problem is
the measurements of the vertical velocity. Although vertical speeds can be measured with
acoustic Doppler current profilers, the meaningful signal is often buried below the level of
ambient turbulence and of instrumental error (position andsensitivity). Measuring the vector
vorticity, so dear to theoreticians, is out of the question,as is the three-dimensional heat flux.

Also, some uncertainty resides in the interpretation of themeasured quantities. For ex-
ample, can the wind measured in the vicinity of a building be taken as representative of the
prevailing wind over the city and so be used in weather forecasting, or is it more representa-
tive of a small-scale flow pattern resulting from the obstruction of the wind by the building?

Finally, sampling frequencies might not always permit the unambiguous identification of
a process. Measuring quantities at a given location every week might well lead to a data set
that includes also residual information on faster processes than weekly variations or a slower
signal that we would like to capture with our measurements. For example, if we measure
temperature on Monday at 3 o’clock in the afternoon one week and Monday at 7 o’clock in
the morning the next week, the measurement will include a diurnal heating component super-
imposed on the weekly variations. The measurements are thusnot necessarily representative
of the process of interest.

1.9 The emergence of numerical simulations

Given the complexity of weather patterns and ocean currents, one can easily anticipate that
the equations governing geophysical fluid motions, which weare going to establish in this
book, are formidable and not amenable to analytical solution except in rare instances and
after much simplification. Thus, one faces the tall challenge of having to solve the apparently
unsolvable. The advent of the electronic computer has come to the rescue, but at a definite
cost. Indeed, computers cannot solve differential equations but can only perform the most
basic arithmetic operations. The partial differential equations (PDEs) of Geophysical Fluid
Dynamics (GFD) need therefore to be transformed into a sequence of arithmetic operations.
This process requires careful transformations and attention to details.

The purpose of numerical simulations of GFD flows is not limited to weather prediction,
operational ocean forecasting and climate studies. There are situations when one desires to
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gain insight and understanding of a specific process, such asa particular form of instability
or the role of friction under particular conditions. Computer simulations are our only way
to experiment with the planet. Also, there is the occasionalneed to experiment with a novel
numerical technique in order to assess its speed and accuracy. Finally, simulations can be a
retracing of the past (hindcasting) or a smart interpolation of scattered data (nowcasting), as
well as the prediction of future states (forecasting).

Models of GFD flows in meteorology, oceanography and climatestudies come in all
types and sizes, depending on the geographical domain of interest (local, regional, conti-
nental, basinwide or global) and the desired level of physical realism. Regional models are
far too numerous to list here, and we only mention the existence of Atmospheric General
Circulations Models (AGCMs), Oceanic General CirculationModels (OGCMs) and coupled
General Circulation Models (GCMs). A truly comprehensive model does not exist, because
the coupling of air, sea, ice and land physics over the entireplanet is always open to the inclu-
sion of yet one more process heretofore excluded from the model. In developing a numerical
model of some GFD system, the question immediately arises asto what actually needs to be
simulated. The answer largely dictates the level of detailsnecessary and, therefore also, the
level of physical approximation and the degree of numericalresolution.

Geophysical flows are governed by a set of coupled, nonlinearequations in four-dimen-
sional space–time and exhibit a high sensitivity to small details. In mathematical terms, it
is said that the system possesses chaotic properties, and the consequence is that geophysi-
cal flows are inherently unpredictable, as Lorenz demonstrated for the atmosphere several
decades ago (Lorenz, 1969). The physical reality is that geophysical fluid systems are re-
plete with instabilities, which amplify in a finite time minor details into significant structures
(the butterfly-causing-a-tempest syndrome). The cyclonesand anticyclones anticyclones of
mid-latitude weather and the meandering of the coastal currents are but a couple of exam-
ples among many. Needless to say, the simulation of atmospheric and oceanographic fluid
motions is a most highly challenging task.

The initial impetus for simulations of geophysical fluid simulations was, not surprisingly,
weather prediction, an aspiration as old as mankind. More recently, climate studies have
become another leading force in model development, becauseof their need for extremely
large and complex models.

The first decisive step in the quest for weather prediction was made by Vilhelm Bjerknes
(1904) in a paper titledThe Problem of Weather Prediction Considered from the Pointof View
of Mechanics and Physics. He was the first to pose the problem as a set of time-dependent
equations derived from physics and to be solved from a given,and hopefully complete, set of
initial conditions. Bjerknes immediately faced the daunting task of integrating complicated
partial differential equations, and, because this was wellbefore electronic computers, resorted
to graphical methods of solution. Unfortunately, these hadlittle practical value and never
surpassed the art of subjective forecasting by a trained person pouring over weather charts.

Taking a different tack, Lewis Fry Richardson (see biography at end of Chapter 14) de-
cided that it would be better to reduce the differential equations to a set of arithmetic opera-
tions (additions, subtractions, multiplications and divisions exclusively) so that a step-by-step
method of solution may be followed and performed by people not necessarily trained in me-
teorology. Such reduction could be accomplished, he reasoned, by seeking the solution at
only selected points in the domain and by approximating spatial derivatives of the unknown
variables by finite differences across those points. Likewise, time could be divided into finite
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Figure 1-8 Model grid used by Lewis Fry Richardson as reported in his 1922 bookWeather Prediction
by Numerical Process. The grid was designed to optimize the fit between cells and existing meteoro-
logical stations, with observed surface pressures being used at the center of every shaded cell and winds
at the center of every white cell.
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Figure 1-9 Historical improvement of weather forecasting skill over North America. The S1 score
shown here is a measure of the relative error in the pressure gradient predictions at mid-height in the
troposphere. (From Kalnayet al., 1998, reproduction with the kind permission of theAmerican Meteo-
rological Society)

intervals and temporal derivatives approximated as differences across those time intervals.
And thus was born numerical analysis. Richardson’s work culminated in his 1922 book enti-
tledWeather Prediction by Numerical Process. His first grid, to forecast weather over western
Europe, is reproduced here as Figure 1-8. After the equations of motion had been dissected
into a sequence of individual arithmetic operations, the first algorithm before the word ex-
isted, computations were performed by a large group of people, calledcomputers, sitting
around an auditorium equipped with slide rules and passing their results to their neighbors.
Synchronization was accomplished by a leader in the pit of the auditorium as a conductor
leads an orchestra. Needless to say, the work was tedious andslow, requiring an impracti-
cally large number of people to conduct the calculations quickly enough so that a 24-hour
forecast could be obtained in less than 24 hours.

Despite an enormous effort on Richardson’s part, the enterprise was a failure, with pre-
dicted pressure variations rapidly drifting away from meteorologically acceptable values. In
retrospective, we now know that Richardson’s model was improperly initiated for lack of
upper-level data and that its six-hour time step was exceeding the limit required by numeri-
cal stability, of which, of course, he was not aware. The concept of numerical stability was
not known until 1928 when it was elucidated by Richard Courant, Karl Friedrichs and Hans
Lewy.

The work of Richardson was abandoned and relegated to the status of a curiosity or, as
he put it himself, “a dream”, only to be picked up again seriously at the advent of electronic
computers. In the 1940s, the mathematician John von Neumann(see biography at end of
Chapter 5) became interested in hydrodynamics and was seeking mathematical aids to solve
nonlinear differential equations. Contact with Alan Turing, the inventor of the electronic
computer, gave him the idea to build an automated electronicmachine that could perform
sequential calculations at a speed greatly surpassing thatof humans. He collaborated with
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Howard Aiken at Harvard University, who built the first electronic calculator, named the
ASCC (Automatic Sequence Controlled Calculator). In 1943,von Neumann helped build the
ENIAC (Electronic Numerical Integrator and Computer) at the University of Pennsylvania
and, in 1945, the EDVAC (Electronic Discrete Variable Calculator) at Princeton University.
Primarily because of the war-time need for improved weatherforecasts and also out of per-
sonal challenge, von Neumann paired with Jule Charney (see biography at end of Chapter 16)
and selected weather forecasting as the scientific challenge. But, unlike Richardson before
them, von Neumann and Charney started humbly with a much reduced set of dynamics, a
single equation to predict the pressure at mid-level in the troposphere. The results (Charney,
1950) exceeded expectations.

Success with a much reduced set of dynamics only encouraged further development.
Phillips (1956) developed a two-layer quasi-geostrophic1 model over a hemispheric domain.
The results did not predict actual weather but did behave like weather, with realistic cyclones
generated at the wrong places and times. This was nonetheless quite encouraging. A major
limitation of the quasi-geostrophic simplification is thatit fails near the Equator, and the only
remedy was a return to the full equations (calledprimitive equations), back to where Lewis
Richardson started. The main problem, it was found by then, is that primitive equations re-
tain fast-moving gravity waves and, although these hold only a small amount of energy, their
resolution demands both a much shorter time step of integration and a far better set of initial
conditions than were available at the time.

From then on, the major intellectual challenges were overcome, and steady progress (Fig-
ure 1-9) has been achieved thanks to ever faster and larger computers (Figure 1-10) and to
the gathering of an ever denser array of data around the globe. The reader interested in the
historical developments of weather forecasting will find anexcellent book-length account in
Nebeker (1995).

1.10 Scales analysis and finite differences

In the preceding section, we saw that computers are used to solve numerically equations
otherwise difficult to apprehend. Yet, even with the latest supercomputers and unchanged
physical laws, scientists are requesting more computer power than ever, and we may right-
fully ask what is the root cause of this unquenchable demand.To answer, we introduce a
simple numerical technique (finite differences) that shows the strong relationship between
scale analysis and numerical requirement. It is a prototypical example foreshowing a char-
acteristic of more elaborate numerical methods that will beintroduced in later chapters for
more realistic problems.

When performing a time-scale analysis, we assume that a physical variableu changes
significantly over a time scaleT by a typical valueU (Figure 1-11). With this definition of
scales, the time derivative is on the order of

du

dt
∼ U

T
. (1.7)

1Quasi-geostrophic dynamics are fully described in Chapter16. It suffices here to say that the formalism elim-
inates the velocity components under the assumption that rotational effects are very strong. The result is a drastic
reduction in the number of equations.
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Figure 1-10 Historical increase of
computational speed, as measured by
the number of operations performed
per second. (Adapted and supple-
mented from Hack (1992), who gives
credit to a 1987 personal communica-
tion with Worlton and with recent data
from http://www.top500.org )

http://www.top500.org
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Figure 1-11 Time-scale analysis of a
variableu. The time scaleT is the time
interval over which the variableu ex-
hibits variations comparable to its stan-
dard deviationU .

If we then assume that the time scale over which the functionu changes is also the one over
which its derivative changes (in other words, we assume the time scaleT to be representa-
tive of all type of variabilities, including derived fields), we can also estimate the order of
magnitude of variations of the second derivative

d2u

dt2
=

d

dt

(
du

dt

)
∼ U/T

T
=

U

T 2
, (1.8)

and so on for higher-order derivatives. This approach is thebasis for estimating the relative
importance of different terms in time-marching equations,an exercise we will repeat several
times in the next chapters.

We now turn our attention to the question of estimating derivatives with more accuracy
than by a mere order of magnitude. Typically, this problem arises upon discretizing equations,
a process by which all derivatives are replaced by algebraicapproximations based on a few
discrete values of the functionu (Figure 1-12). Suchdiscretizationis necessary because
computers possess a finite memory and are incapable of manipulating derivatives. We then
face the following problem: Having stored only a few values of the function, how can we
retrieve the value of the function’s derivatives that appear in the equations?

u

t

∆t

tn tn+1

Slope approximation

		

o
�

Discrete values

Real slope
R

Continuous function

Figure 1-12 Representation of a func-
tion by a finite number of sampled val-
ues and approximation of a first deriva-
tive by a finite difference over∆t.

First, it is necessary to discretize the independent variable timet, since the first dynamical
equations that we shall solve numerically are time-evolving equations. For simplicity, we
shall suppose that the discrete time momentstn, at which the function values are to be known,
are uniformly distributed with a constanttime step∆t

tn = t0 + n∆t, n = 1, 2, .... (1.9)

where the superscript index (not an exponent)n identifies the discrete time. Then, we note
by un the value ofu at timetn, i.e., un = u(tn). We now would like to determine the value
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of the derivativedu/dt at timetn knowing only the discrete valuesun. From the definition
of a derivative

du

dt
= lim

∆t→0

u(t+ ∆t)− u(t)
∆t

, (1.10)

we could directly deduce an approximation by allowing∆t to remain the finite time step

du

dt
' u(t+ ∆t)− u(t)

∆t
→ du

dt

∣∣∣∣
tn
' un+1 − un

∆t
. (1.11)

The accuracy of this approximation can be determined with the help of a Taylor series:

u(t+ ∆t) = u(t) + ∆t
du

dt

∣∣∣∣
t

+
∆t2

2

d2u

dt2

∣∣∣∣
t︸ ︷︷ ︸

∆t2 U
T2

+
∆t3

6

d3u

dt3

∣∣∣∣
t︸ ︷︷ ︸

∆t3 U
T3

+O(∆t4)︸ ︷︷ ︸
∆t4 U

T4

. (1.12)

To the leading order for small∆t, we obtain the following estimate

du

dt
=
u(t+ ∆t)− u(t)

∆t
+O

(
∆t

T

U

T

)
. (1.13)

The relativeerror on the derivative (the difference between the finite-difference approxima-
tion and the actual derivative, divided by the scaleU/T ) is therefore of the order∆t/T .
For the approximation to be acceptable, this relative errorshould be much smaller than one,
which demands that the time step∆t be sufficiently short compared to the time-scale at hand:

∆t� T. (1.14)

This condition can be visualized graphically by considering the effect of various values of∆t
on the resulting estimation of the time derivative (Figure1-13). In the following we write the
formal approximation as

du

dt

∣∣∣∣
tn

=
un+1 − un

∆t
+O(∆t), (1.15)

where it is understood that the measure of whether or not∆t is “small enough” must be based
on the time-scaleT of the variability of the variableu. Since in the simple finite difference
(1.15), the error, calledtruncation error, is proportional to∆t, the approximation is said to
be of first order. For an error proportional to∆t2, the approximation is said of second order
and so on.

For spatial derivatives, the preceding analysis is easily applicable, and we obtain a con-
dition on the horizontal grid size∆x relatively to the horizontal length scaleL, while the
vertical grid space∆z is constrained by the vertical length scaleH of the variable under
investigation:

∆x� L, ∆z � H. (1.16)

With these constraints on time-steps and grid sizes, we can begin to understand the need
for significant computer resources in GFD simulations: The number of grid pointsM in a 3D
domain of surfaceS and heightH is

M =
H

∆z

S

∆x2
, (1.17)
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∆t � T

Figure 1-13 Finite differencing with
various∆t values. Only when the time
step is sufficiently short compared to
the time scale,∆t � T , is the finite-
difference slope close to the derivative,
i.e., the true slope.

while the total number of time stepsN needed to cover a time periodP is

N =
P

∆t
. (1.18)

For a model covering the Atlantic Ocean (S ∼ 1014 m2), resolving geostrophic eddies
(see Figure1-7: ∆x ∼ ∆y ≤ 104 m) and stratified water masses (H/∆z ∼ 50) the number
of grid points is aboutM ∼ 5× 107. Then, at each of these points, several variables need to
be stored and calculated (three-dimensional velocity, pressure, temperatureetc.). Since each
variable takes 4 or 8 bytes of memory depending on the desirednumber of significant digits,
2 Gigabytes of RAM is required. The number of floating point operations to be executed to
simulate a single year can be estimated by taking a time-stepresolving the rotational period
of Earth∆t ∼ 103 s, leading toN ∼ 30000 time steps. The total number of operations to
simulate a full year can then be estimated by observing that for every grid point and time
step, a series of calculations must be performed (typicallyseveral hundreds), so that the total
number of calculations amounts to1014 − 1015. Therefore, on a contemporary supercom-
puter (one of the top 500 machines) with 1 Teraflops =1012 floating operations per second
exclusively dedicated to the simulation, less than half an hour would pass before the response
is available, while on a high-end PC (1-2 Gigaflops), we wouldneed to wait several days
before getting our results. And yet, even with such a large model, we can only resolve the
largest scales of motion (see Figure1-7), while motions on shorter spatial and temporal scales
simply cannot be simulated with this level of grid resolution. This does not mean, however,
that those shorter-scale motions may altogether be neglected and, as we will see (e.g., Chap-
ter 14), one of the problems of large-scale oceanic and atmospheric models is the need for
appropriateparameterizationof shorter-scale motions so that they may properly bear their
effects onto the larger-scale motions.

Should we dream to avoid such a parameterization by explicitly calculating all scales,
we would need aboutM ∼ 1024 grid points demanding5 × 1016 Gigabytes of computer
memory, andN ∼ 3× 107 time steps, for a total number of operations on the order of1034.
Willing to wait only for 106 seconds before obtaining the results, we would need a computer
delivering1028 flops . This is a factor1016 = 253 higher than the present capabilities, both
for speed and memory requirements. Using Moore’s Law, the celebrated rule that forecasts a
factor 2 in gain every 18 months, we would have to wait 53 times18 months,i.e., for about
80 years before computers could handle such a task.

Increasing resolution will therefore continue to call for the most powerful computers
available, and models will need to include parameterization of turbulence or other unresolved
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motions for quite some time. Grid spacing will thus remain a crucial aspect of all GFD
models, simply because of the large domain sizes and broad range of scales.

1.11 Higher-order methods

Rather than to increase resolution to better represent structures, we may wonder whether
using other approximations for derivatives than our simplefinite difference (1.11) would
allow larger time-steps or higher quality approximations and improved model results. Based
on a Taylor series

un+1 = un + ∆t
du

dt

∣∣∣∣
tn

+
∆t2

2

d2u

dt2

∣∣∣∣
tn

+
∆t3

6

d3u

dt3

∣∣∣∣
tn

+O(∆t4) (1.19)

un−1 = un −∆t
du

dt

∣∣∣∣
tn

+
∆t2

2

d2u

dt2

∣∣∣∣
tn
− ∆t3

6

d3u

dt3

∣∣∣∣
tn

+O(∆t4), (1.20)

we can imagine that instead of using aforward differenceapproximation of the time derivative
(1.11) we try a backward Taylor series (1.20) to design abackward differenceapproximation.
This approximation is obviously still of first order becauseof its truncation error:

du

dt

∣∣∣∣
tn

=
un − un−1

∆t
+O(∆t). (1.21)

Comparing (1.19) with (1.20), we observe that the truncation errors of the first-order
forward and backward finite differences are the same but haveopposite signs, so that by
averaging both, we obtain a second-order truncation error (you can verify this statement by
taking the difference between (1.19) and (1.20)):

du

dt

∣∣∣∣
tn

=
un+1 − un−1

2∆t
+O(∆t2). (1.22)

Before considering higher-order approximations, let us first check whether the increase
in order of approximation actually leads to improved approximations of the derivatives. To
do so, consider the sinusoidal function of periodT (and associated frequencyω)

u = U sin

(
2π

t

T

)
= U sin(ωt), ω =

2π

T
. (1.23)

Knowing that the exact derivative isωU cos(ωt), we can calculate the errors made by the
various finite-difference approximations (Figure1-14). Both the forward and backward finite
differences converge towards the exact value forω∆t → 0, with errors decreasing propor-
tionally to ∆t. As expected, the second-order approximation (1.22) exhibits a second-order
convergence (the slope is 2 in a log-log graph).

The convergence rate obeys our theoretical estimate forω∆t � 1. However, when
the time-step is relatively large (Figure1-15), the error associated with the finite-difference
approximations can be as large as the derivative itself. Forcoarse resolution,ω∆t ∼ O(1),
the relative error is of order one, so that we expect a 100% error on the finite-difference
approximation. Obviously, even with a second-order finite difference, we need at leastω∆t ≤
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0.8 to keep the relative error below 10%. In terms of the period ofthe signalT = (2π)/ω,
we need a time-step not larger than∆t . T/8, which implies that 8 points are needed along
one period to resolve its derivatives within a 10% error level. Even a fourth-order method
(to be shown shortly) cannot reconstruct derivatives correctly from a function sampled with
fewer than several points per period.

The design of the second-order difference was accomplishedsimply by inspection of a
Taylor series, a technique which cannot be extended to obtain higher-order approximations.
An alternate method exists to obtain in a systematic way finite-difference approximations to
any desired order, and it can be illustrated with the design of a fourth-order centered finite-
difference approximation of the first derivative. Expecting that higher-order approximations
need more information about a function in order to estimate its derivative at timetn, we will
combine values over a longer time interval, includingtn−2, tn−1, tn, tn+1 andtn+2:

du

dt

∣∣∣∣
tn
' a−2u

n−2 + a−1u
n−1 + a0u

n + a1u
n+1 + a2u

n+2. (1.24)

Expandingun+2 and the other values aroundtn, we can write

du

dt

∣∣∣∣
tn

= (a−2 + a−1 + a0 + a1 + a2) u
n

+ (−2a−2 − a−1 + a1 + 2a2)∆t
du

dt

∣∣∣∣
tn

+ (4a−2 + a−1 + a1 + 4a2)
∆t2

2

d2u

dt2

∣∣∣∣
tn

+ (−8a−2 − a−1 + a1 + 8a2)
∆t3

6

d3u

dt3

∣∣∣∣
tn

+ (16a−2 + a−1 + a1 + 16a2)
∆t4

24

d4u

dt4

∣∣∣∣
tn

+ (−32a−2 − a−1 + a1 + 32a2)
∆t5

120

d5u

dt5

∣∣∣∣
tn

+O(∆t6). (1.25)

There are 5 coefficients,a−2 to a2, to be determined. Two conditions must be satisfied to
obtain an approximation that tends to the first derivative as∆t→ 0

a−2 + a−1 + a0 + a1 + a2 = 0,

(−2a−2 − a−1 + a1 + 2a2)∆t = 1.

After satisfying these two necessary conditions, we have three parameters that can be freely
chosen so as to obtain the highest possible level of accuracy. This is achieved by imposing
that the coefficients of the next three truncation errors be zero:

4a−2 + a−1 + a1 + 4a2 = 0

−8a−2 − a−1 + a1 + 8a2 = 0

16a−2 + a−1 + a1 + 16a2 = 0.
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Equipped with 5 equations for 5 unknowns, we can proceed withthe solution:

−a−1 = a1 =
8

12∆t
, a0 = 0, − a−2 = a2 = − 1

12∆t
,

so that the fourth-order finite-difference approximation of the first derivative is:

du

dt

∣∣∣∣
tn
' 4

3

(
un+1 − un−1

2∆t

)
− 1

3

(
un+2 − un−2

4∆t

)
. (1.26)

This formula can be interpreted as a linear combination of two centered differences, one
across2∆t and the other across4∆t. The truncation error can be assessed by looking at the
next term in the series (1.25)

(−32a−2 − a−1 + a1 + 32a2)
∆t5

120

d5u

dt5

∣∣∣∣
tn

= −∆t4

30

d5u

dt5

∣∣∣∣
tn
, (1.27)

which shows that the approximation is indeed of fourth order.
The method can be generalized to approximate a derivative ofany orderp at timetn using

the current valueun,m points in the past (beforetn) andm points in the future (aftertn):

dpu

dtp

∣∣∣∣
tn

= a−mu
n−m + ...+ a−1u

n−1 + a0u
n + a1u

n+1 + ...+ amu
n+m. (1.28)

The discrete pointsn − m to n + m involved in the approximation define the so-called
numerical stencilof the operator.
Using a Taylor expansion for each term

un+q = un + q∆t
du

dt

∣∣∣∣
tn

+ q2
∆t2

2

d2u

dt2

∣∣∣∣
tn

+ ...+ qp
∆tp

p!

dpu

dtp

∣∣∣∣
tn

+O(∆tp+1) (1.29)

and injecting (1.29) for q = −m, ...,m into the approximation (1.28), we have on the left-
hand side the derivative we want to approximate and on the right a sum of derivatives. We im-
pose that the sum of coefficients multiplying a derivative lower than orderp be zero whereas
the sum of the coefficients multiplying thep-th derivative be one. This forms a set ofp + 1
equations for the2m + 1 unknown coefficientsaq (q = −m, ...,m). All constraints can be
satisfied simultaneously only if we use a number2m + 1 of points equal to or greater than
p + 1, i.e., 2m ≥ p. When there are more points than necessary, we can take advantage of
the remaining degrees of freedom to cancel the next few termsin the truncation errors. With
2m+ 1 points we can then obtain a finite difference of order2m− p+ 1. For example, with
m = 1 andp = 1, we obtained (1.22), a second-order approximation of the first derivative,
and withm = 2 andp = 1, (1.26), a fourth-order approximation.

Let us now turn to the second derivative, a very common occurence, at least when consid-
ering spatial derivatives. Withp = 2, m must be at least 1,i.e., 3 values of the function are
required as a minimum: 1 old, 1 current and 1 future values. Applying the preceding method,
we immediately obtain

d2u

dt2

∣∣∣∣
tn

'
(
un−1 − 2un + un+1

∆t2

)
, (1.30)
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a result we could also have obtained by direct inspection of (1.19) and (1.20).
Appendix C recapitulates a variety of discretization schemes for different orders of deriva-

tives and various levels of accuracy. It also includes skewed schemes, which are not symmet-
ric between past and future values but can be constructed in away similar to the fourth-order
finite-difference approximation of the first derivative.

1.12 Aliasing

We learned that the accuracy of a finite difference approximation of the first derivative
degrades rapidly when the time step∆t is not kept much lower than the time scaleT of the
variable, and we might wonder what would happen if∆t should by some misfortune be larger
thanT . To answer this question, we return to a physical signalu of periodT

u = U sin (ωt+ φ) , ω =
2π

T
(1.31)

sampled on a uniform grid of time step∆t

un = U sin (n ω∆t+ φ) (1.32)

and assume that there exists another signalv of higher frequencỹω given by

v = U sin (ω̃t+ φ) , ω̃ = ω +
2π

∆t
. (1.33)

The sampling of this other function at the same time intervals yields a discrete set of values

vn = U sin (n ω̃∆t+ φ) = U sin (n ω∆t+ 2nπ + φ) = un, (1.34)

which cannot be distinguished from the discrete valuesun of the first signal, although the
two signals are clearly not equal to each other. Thus, frequenciesω andω + 2π/∆t cannot
be separated in a sampling with time interval∆t because the higher-frequency signal mas-
querades as the lower-frequency signal. This unavoidable consequence of sampling is called
aliasing.

Since signals of frequencyω + 2π/∆t andω cannot be distinguished from each other, it
appears that only frequencies within the following range

− π

∆t
≤ ω ≤ π

∆t
(1.35)

can be recognized with a sampling interval∆t, and all other frequencies should preferably
be absent, lest they contaminate the sampling process.

Since a negative frequency corresponds to a 180◦ phase shift, becausesin(−ωt + φ) =
sin(ωt − φ + π), the useful range is actually0 ≤ ω ≤ π/∆t, and to sample a wave of
frequencyω the time step∆t may not exceed∆tmax = π/ω = T/2, which implies that at
least two samples of the signal must be taken per period. Thisminimum required sampling
frequency is called theNyquist frequency. Looking at the problem in a different way, with
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Figure 1-16 Shortest wave (atcut-
off frequencyπ/∆t or period2∆t) re-
solved by uniform grid in time.

Figure 1-17 Aliasing illustrated by sampling a given signal (gray sinusoidal curve) with an increasing
time interval. A high sampling rate (top row of images) resolves the signal properly. The boxed image
on the bottom row corresponds to the cut-off frequency, and the sampled signal appears as a seesaw.
The last two images correspond to excessively long time intervals that alias the signal, making it appear
as if it had a longer period than it actually has.

a given sampling interval∆t (rather than a given frequency), we recognize that the highest
resolved frequency isπ/∆t, called thecutoff frequency(Figure1-16).

Should higher frequencies be present and sampled, aliasinginevitably occurs, as illus-
trated by a sinusoidal function sampled with increasingly fewer points per period (Figure
1-17). The reader is also invited to experiment with MATLAB  scriptaliasanim.m . Up
to ∆t = T/2, the signal is recognizable, but, beyond, lines connectingconsecutive sampled
values appear to tunnel through crests and troughs, giving the impression of a signal with
longer period.

Aliasing is a major concern, and the danger it poses is often underestimated. This is
because we do not know whether the signal being represented by the discretization scheme
contains frequencies higher than the cut-off frequency, precisely because variability at those
frequencies is not retained and computed. In geophysical situations, the time step and grid
spacing is most often set not by the physics of the problem butby computer-hardware limits.
This forces the modeler to discard variability at unresolved frequencies and wavelengths, and
creates aliasing. Methods to overcome the undesired effects of aliasing will be presented in
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subsequent chapters.

Physical Problems

1-1. Name three naturally occurring flows in the atmosphere.

1-2. How did geophysical flows contribute to Christopher Columbus’ discovery of the New
World and to the subsequent exploration of the eastern shoreof North America? (Think
of both large-scale winds and major ocean currents.)

1-3. The sea breeze is a light wind blowing from the sea as the result of a temperature differ-
ence between land and sea. As this temperature difference reverses from day to night,
the daytime sea breeze turns into a nighttime land breeze. Ifyou were to construct a
numerical model of the sea-land breeze, should you include the effects of the planetary
rotation?

1-4. The Great Red Spot of Jupiter, centered at 22◦S and spanning 12◦ in latitude and 25◦ in
longitude, exhibits wind speeds of about 100 m/s. The planet’s equatorial radius and
rotation rates are, respectively, 71,400 km and 1.763 x 10−4 s−1. Is the Great Red Spot
influenced by planetary rotation?

1-5. Can you think of a technique for measuring wind speeds and ocean velocities with an
instrument that has no rotating component? (Hint: Think of measurable quantities
whose values are affected by translation.)

Numerical Exercises

1-1. Using the temperature measurements of Nansen (Figure1-18left), estimate typical ver-
tical temperature gradient values and typical temperaturevalues. Compare those values
to the estimates based on a Mediterranean profile (Figure1-18right). Which tempera-
ture scale do you need for the estimation of gradients in eachcase?

1-2. Perform a numerical derivation ofe−ω(t+|t|) usingω∆t = 0.1, 0.01, 0.001. Compare
the first-order forward, first-order backward and second-order centered schemes att =
1/ω. Then, repeat the derivation and comparison fort = 0. What do you conclude?

1-3. Apply forward, backward, second-order, and fourth-order discretizations tosinh(kx) at
x = 1/k for values ofk∆x covering the range[10−4, 1]. Plot errors on a logarithmic
scale and verify the convergence rates. Repeat the exercisefor x = 0. What strange
effect do you observe and why?
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Figure 1-18 Temperature values measured by Nansen during his 1894 NorthPole expedition (left) and
a typical temperature profile in the Mediterranean Sea (fromMedar  data base, right).

1-4. Establish a purely forward, finite-difference approximation of a first derivative that is
of second or higher order in accuracy. How many sampling points are required as a
function of the order of accuracy?

1-5. Suppose you need to evaluate∂u/∂x not at grid nodei, but at mid-distance between
nodesxi = i∆x andxi+1 = (i+1)∆x. Establish second-order and fourth-order finite
difference approximations to do so and compare the truncation errors to the correspond-
ing discretizations centered on the nodal pointi. What does this analysis suggest?

1-6. Assume that a spatial two-dimensional domain is covered by auniform grid with spacing
∆x in thex-direction and∆y in they-direction. How can you discretize∂2u/∂x∂y
to second order? Does the approximation satisfy a similar property as its mathematical
counterpart∂2u/∂x∂y = ∂2u/∂y∂x ?

1-7. Determine how a wave of wavelength43∆x and period5
3∆t is interpreted in a uniform

grid of mesh∆x and time step∆t. How does the computed propagation speed resulting
from the discrete sampling compare to the true speed?

1-8. Suppose you use numerical finite differencing to estimate derivatives of a function that
was sampled with some noise. Assuming the noise is uncorrelated (i.e., purely ran-
domly distributed, independently of the sampling interval), what do you expect would
happen during the finite differencing of first-order derivatives, second derivativesetc.?
Devise a numerical program that verifies your assertion, by adding a random noise of
intensityA/10 to the functionA sin(ωt), where the frequencyω is well resolved by
the numerical sampling (ω∆t = 0.05). Did you correctly guess what would happen?
Now plot the convergence as a function ofω∆t for increasing levels of noise.



Walsh Cottage , Woods Hole, Massachusetts
1962 – present

Every summer since 1962, this unassuming building of the Woods Hole Oceanographic In-
stitution (Falmouth, Massachusetts, USA) has been home to the Geophysical Fluid Dynamic
Summer Program, which has gathered oceanographers, meteorologists, physicists and math-
ematicians from around the world. This program (begun in 1959) has single-handedly been
responsible for many of the developments of geophysical fluid dynamics, from its humble
beginnings to its present status as a recognized disciplinein physical sciences. (Drawing by
Ryuji Kimura, reproduced with permission)
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UK Meteorological Office, Exeter, England
1854-present

The Meteorological Office in the United Kingdom was established in 1854 to provide mete-
orological information and sea currents by telegraph to people at sea and, within a few years,
began also to issue storm warnings to seaports and weather forecasts to the press. In 1920,
separate meteorological military services established during World War I were merged with
the civilian office under the Air Ministry. World War II led toanother large increase in both
personnel and resources, including the use of balloons. The“Met Office” has an outstanding
record of capitalizing on new technologies, beginning broadcasts on radio (in 1922) and then
on television (in 1936 by means of simple captions, and live broadcasts in 1954). The first
electronic computer was installed in 1962, and satellite imagery was incorporated in 1964.

As weather forecasts began to depend less on trained meteorologists drawing weather
maps and more on computational models, the need for the latest and best performing com-
puter platform became a driving force, leading to the acquisition of a Cyber supercomputer
in 1981, and a series of ever faster Cray supercomputers in the 1990s.

The impact of the Met Office can hardly be underestimated: Itsnumerical activities have
contributed enormously not only to the field of meteorology but also to the development of
computational fluid dynamics and physical oceanography, while the scope of its data anal-
yses and forecasts has spread well beyond tomorrow’s weather to other areas such as the
impact of the weather on the environment and human health. (For additional information see
http://www.met-office.gov.uk)
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Chapter 2

The Coriolis Force

(October 18, 2006)SUMMARY : The object of this chapter is to examine the Coriolis force,
a fictitious force arising from the choice of a rotating framework of reference. Some physical
considerations are offered to provide insight on this non-intuitive but essential element of
geophysical flows. The numerical section of this chapter treats time stepping introduced in
the particular case of inertial oscillations and generalized afterwards.

2.1 Rotating framework of reference

From a theoretical point of view, all equations governing geophysical fluid processes could
be stated with respect to an inertial framework of reference, fixed with respect to distant
stars. But, we people on Earth observe fluid motions with respect to this rotating system.
Also, mountains and ocean boundaries are stationary with respect to Earth. Common sense
therefore dictates that we write the governing equations ina reference framework rotating
with our planet. (The same can be said for other planets and stars.) The trouble arising
from the additional terms in the equations of motion is less than that which would arise from
having to reckon with moving boundaries and the need to subtract systematically the ambient
rotation from the results.

To facilitate the mathematical developments, let us first investigate the two-dimensional
case (Figure2-1). Let theX– andY –axes form the inertial framework of reference and the
x– andy–axes be those of a framework with the same origin but rotating at the angular rateΩ
(defined as positive in the trigonometric sense). The corresponding unit vectors are denoted
(I, J) and (i, j). At any timet, the rotatingx–axis makes an angleΩt with the fixedX–axis.
It follows that

i = + I cosΩt + J sin Ωt (2.1a)

j = − I sin Ωt + J cosΩt (2.1b)

I = + i cosΩt − j sin Ωt (2.2a)

J = + i sin Ωt + j cosΩt, (2.2b)

and that the coordinates of the position vectorr = XI + Y J = xi + yj of any point in the

37
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Figure 2-1 Fixed (X, Y ) and rotating
(x, y) frameworks of reference.

plane are related by

x = +X cosΩt + Y sin Ωt (2.3a)

y = −X sin Ωt + Y cosΩt. (2.3b)

The first time derivative of the preceding expressions yields

dx

dt
= +

dX

dt
cosΩt +

dY

dt
sin Ωt

+Ωy︷ ︸︸ ︷
− ΩX sinΩt + ΩY cosΩt (2.4a)

dy

dt
= − dX

dt
sin Ωt +

dY

dt
cosΩt − ΩX cosΩt − ΩY sin Ωt︸ ︷︷ ︸

−Ωx

. (2.4b)

The quantitiesdx/dt anddy/dt give the rates of change of the coordinates relative to the
moving frame as time evolves. They are thus the components ofthe relative velocity:

u =
dx

dt
i +

dy

dt
j = ui + vj. (2.5)

Similarly,dX/dt anddY/dt give the rates of change of the absolute coordinates and form
the absolute velocity:

U =
dX

dt
I +

dY

dt
J.

Writing the absolute velocity in terms of the rotating unit vectors, we obtain [using (2.2)]

U =

(
dX

dt
cosΩt+

dY

dt
sin Ωt

)
i +

(
−dX
dt

sin Ωt+
dY

dt
cosΩt

)
j

= U i + V j. (2.6)
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Thus,dX/dt anddY/dt are the components of the absolute velocityU in the inertial frame,
whereasU andV are the components of the same vector in the rotating frame. Use of (2.4)
and (2.3) in the preceding expression yields the following relations between absolute and
relative velocities:

U = u − Ωy, V = v + Ωx. (2.7)

These equalities simply state that the absolute velocity isthe relative velocity plus the en-
training velocity due to the rotation of the reference framework.

A second derivative with respect to time provides in a similar manner:

d2x

dt2
=

(
d2X

dt2
cosΩt+

d2Y

dt2
sin Ωt

)
+ 2Ω

(
− dX

dt
sin Ωt+

dY

dt
cosΩt

)

︸ ︷︷ ︸
V

− Ω2 (X cosΩt + Y sin Ωt)︸ ︷︷ ︸
x

(2.8a)

d2y

dt2
=

(
− d2X

dt2
sin Ωt+

d2Y

dt2
cosΩt

)
− 2Ω

(
dX

dt
cosΩt+

dY

dt
sin Ωt

)

︸ ︷︷ ︸
U

− Ω2 (− X sin Ωt + Y cosΩt)︸ ︷︷ ︸
y

. (2.8b)

Expressed in terms of the relative and absolute accelerations

a =
d2x

dt2
i +

d2y

dt2
j =

du

dt
i +

dv

dt
j = ai + bj

A =
d2X

dt2
I +

d2Y

dt2
J

=

(
d2X

dt2
cosΩt+

d2Y

dt2
sin Ωt

)
i +

(
d2Y

dt2
cosΩt− d2X

dt2
sin Ωt

)
j = Ai + Bj,

expressions (2.8) condense to

a = A + 2ΩV − Ω2x, b = B − 2ΩU − Ω2y.

In analogy with the absolute velocity vector,d2X/dt2 andd2Y/dt2 are the components of
the absolute accelerationA in the inertial frame, whereasA andB are the components of the
same vector in the rotating frame. The absolute acceleration components, necessary later to
formulate Newton’s law, are obtained by solving forA andB and using (2.7):

A = a − 2Ωv − Ω2x, B = b + 2Ωu − Ω2y. (2.9)

We now see that the difference between absolute and relativeacceleration consists of two
contributions. The first, proportional toΩ and to the relative velocity, is called the Coriolis
acceleration; the other, proportional toΩ2 and to the coordinates, is called the centrifugal
acceleration. When placed on the other side of the equality in Newton’s law, these terms
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can be assimilated to forces (per unit mass). The centrifugal force acts as an outward pull,
whereas the Coriolis force depends on the direction and magnitude of the relative velocity.

Formally, the preceding results could have been derived in avector form. Defining the
vector rotation

Ω = Ωk,

wherek is the unit vector in the third dimension (which is common to both systems of refer-
ence), we can write (2.7) and (2.9) as

U = u + Ω × r

A = a + 2Ω × u + Ω × (Ω × r), (2.10)

where× indicates the vectorial product. This implies that taking atime derivative of a vector
with respect to the inertial framework is equivalent to applying the operator

d

dt
+ Ω ×

in the rotating framework of reference.
A very detailed exposition of the Coriolis and centrifugal accelerations can be found in the

book by Stommel and Moore (1989). In addition, the reader will find a historical perspective
in Ripa (1994).

2.2 Unimportance of the centrifugal force

Unlike the Coriolis force, which is proportional to the velocity, the centrifugal force depends
solely on the rotation rate and the distance of the particle to the rotation axis. Even at rest
with respect to the rotating planet, particles experience an outward pull. Yet, on the earth as
on other celestial bodies, no matter goes flying out to space.How is that possible? Obviously,
gravity keeps everything together.

In the absence of rotation, gravitational forces keep the matter together to form a spherical
body (with the denser materials at the center and the lighterones on the periphery). The
outward pull caused by the centrifugal force distorts this spherical equilibrium, and the planet
assumes a slightly flattened shape. The degree of flattening is precisely that necessary to keep
the planet in equilibrium for its rotation rate.

The situation is depicted on Figure2-2. By its nature, the centrifugal force is directed
outward, perpendicular to the axis of rotation, whereas thegravitational force points toward
the planet’s center. The resulting force assumes an intermediate direction, and this direction
is precisely the direction of the local vertical. Indeed, under this condition a loose particle
would have no tendency of its own to fly away from the planet. Inother words, every particle
at rest on the surface will remain at rest unless it is subjected to additional forces.

The flattening of the earth, as well as that of other celestialbodies in rotation, is important
to neutralize the centrifugal force. But, this is not to say that it greatly distorts the geometry.
On the earth, for example, the distortion is very slight, because gravity by far exceeds the
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Figure 2-2 How the flattening of the
rotating earth (grossly exaggerated in
this drawing) causes the gravitational
and centrifugal forces to combine into
a net force aligned with the local verti-
cal, so that equilibrium is reached.

centrifugal force; the terrestrial equatorial radius is 6378 km, slightly greater than its polar
radius of 6357 km. The shape of the rotating oblate earth is treated in detail by Stommel and
Moore (1989) and by Ripa (1994).

For the sake of simplicity in all that follows, we will call the gravitational force the resul-
tant force, aligned with the vertical and equal to the sum of the true gravitational force and
the centrifugal force. Due to inhomogeneous distributionsof rocks and magma on earth, the
true gravitational force is not directed towards the centerof the earth. For the same reason as
the centrifugal force has rendered the earth surface oblate, this inhomogeneous true gravity
has deformed the earth surface until the total (apparent) gravitational force is perpendicular to
it. The surface so obtained is called ageoidand can be interpreted as the surface of an ocean
at rest (with a continuous extension on land). This virtual continuous surface is perpendic-
ular at every point to the direction of gravity (including the centrifugal force) and forms an
equipotentialsurface, meaning that a particle moving on that surface undergoes no change
in potential energy. This surface will be the reference surface from which land elevations,
(dynamic) sea surface elevations and ocean depth will be defined. For more on the geoid, the
reader is referred to Robinson (2004), Chapter 11.

In a rotating laboratory tank, the situation is similar but not identical. The rotation causes
a displacement of the fluid toward the periphery. This proceeds until the resulting inward
pressure gradient prevents any further displacement. Equilibrium then requires that at any
point on the surface, the downward gravitational force and the outward centrifugal force
combine into a resultant force normal to the surface (Figure2-3), so that the surface becomes
an equipotential surface. Although the surface curvature is crucial in neutralizing the cen-
trifugal force, the vertical displacements are rather small. In a tank rotating at the rate of one
revolution every two seconds (30 rpm) and 40 cm in diameter, the difference in fluid height
between the rim and the center is a modest 2 cm.
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Figure 2-3 Equilibrium surface of a
rotating fluid in an open container. The
surface slope is such that gravitational
and centrifugal forces combine into a
net force everywhere aligned with the
local normal to the surface.

2.3 Free motion on a rotating plane

The preceding argument allows us to combine the centrifugalforce with the gravitational
force, but the Coriolis force remains. To have an idea of whatthis force can cause, let us
examine the motion of a free particle (that is, a particle notsubject to any external force) on
a plane attached to the North pole of the rotating earth.

If the particle is free of any force, its acceleration in the inertial frame is nil, by New-
ton’s law. According to (2.9), with the centrifugal-acceleration terms no longer present, the
equations governing the velocity components of the particle are

du

dt
− 2Ωv = 0,

dv

dt
+ 2Ωu = 0. (2.11)

The general solution to this system of linear equations is

u = V sin(ft + φ), v = V cos(ft + φ), (2.12)

wheref = 2Ω, called the Coriolis parameter, has been introduced for convenience, andV
andφ are two arbitrary constants of integration. Without loss ofgenerality,V can always be
chosen as nonnegative. (Do not confuse this constantV with they–component of the absolute
velocity introduced in Section2.1.) A first result is that the particle speed(u2+v2)1/2 remains
unchanged in time. It is equal toV , a constant determined by the initial conditions.

Although the speed remains unchanged, the componentsu andv do depend on time, im-
plying a change in direction. To document this curving effect, it is most instructive to derive
the trajectory of the particle. The coordinates of the particle position change, by definition of
the vector velocity, according todx/dt = u anddy/dt = v, and a second time integration
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provides

x = x0 −
V

f
cos(ft + φ) (2.13a)

y = y0 +
V

f
sin(ft + φ), (2.13b)

wherex0 and y0 are additional constants of integration to be determined from the initial
coordinates of the particle. From the last relations, it follows directly that

(x − x0)
2 + (y − y0)

2 =

(
V

f

)2

. (2.14)

This implies that the trajectory is a circle centered at (x0, y0) and of radiusV/|f |. The
situation is depicted on Figure2-4.

R = V
f

...........................................................................................................................................................
......................

..................
....

�
V

Ω = f
2

(x0, y0)

Figure 2-4 Inertial oscillation of a free
particle on a rotating plane. The or-
bital period is exactly half of the am-
bient revolution period. This figure has
been drawn with a positive Coriolis pa-
rameter,f , representative of the North-
ern Hemisphere. Iff were negative (as
in the Southern Hemisphere), the parti-
cle would veer to the left.

In the absence of rotation (f = 0), this radius is infinite, and the particle follows a straight
path, as we could have anticipated. But, in the presence of rotation (f 6= 0), the particle
turns constantly. A quick examination of (2.13) reveals that the particle turns to the right
(clockwise) iff is positive or to the left (counterclockwise) iff is negative. In sum, the rule
is that the particle turns in the sense opposite to that of theambient rotation.

At this point, we may wonder whether this particle rotation is none other than the negative
of the ambient rotation, in such a way as to keep the particle at rest in the absolute frame of
reference. But, there are at least two reasons why this is notso. The first is that the coordinates
of the center of the particle’s circular path are arbitrary and are therefore not required to
coincide with those of the axis of rotation. The second and most compelling reason is that
the two frequencies of rotation are simply not the same: the ambient rotating plane completes
one revolution in a time equal toTa = 2π/Ω, whereas the particle covers a full circle in a
time equal toTp = 2π/f = π/Ω, calledinertial period. Thus, the particle goes around its
orbit twice as the plane accomplishes a single revolution.

The spontaneous circling of a free particle endowed with an initial velocity in a rotating
environment bears the name ofinertial oscillation. Note that, since the particle speed can
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Figure 2-5 Geometrical interpretation
of the apparent veering of a particle tra-
jectory viewed in a rotating framework.
The veering is to the right when the am-
bient rotation is counterclockwise, as
shown here for two particular trajecto-
ries, one originating from the rim, the
other from the axis of rotation.

vary, so can the inertial radius,V/|f |, whereas the frequency ,|f | = 2|Ω|, is a property of
the rotating environment and is independent of the initial conditions.

The preceding exercise may appear rather mathematical and devoid of any physical inter-
pretation. There exists, however, a geometric argument anda physical analogy. Let us first
discuss the geometric argument. Consider a rotating table and, on it, a particle initially (t =
0) at a distanceR from the axis of rotation, approaching the latter at a speedu (Figure2-5).
At some later timet, the particle has approached the axis of rotation by a distanceut and has
covered the distanceΩRt laterally. It now lies at the position indicated by a solid dot. During
the lapset, the table has rotated by an angleΩt, and, to an observer rotating with the table,
the particle seems to have originated from the point on the rim indicated by the open circle.
The construction shows that, although the actual trajectory is perfectly straight, the apparent
path as noted by the observer rotating with the table curves to the right. A similar conclusion
holds for a particle radially pushed away from the center with a speedu. In absolute axes, the
trajectory is a straight line again arriving at a distanceut from the center. During the lapse
t, the table has rotated and for an observer on the rotating platform, the particle, instead of
arriving in the location of the asterisk, apparently veeredto the right.

The problem with this argument is that to construct the absolute trajectory, we chose a
straight path, that is, we implicitly considered the total absolute acceleration, which in the
rotating framework includes the centrifugal acceleration. The latter, however, should not
have been retained for consistency with the case of terrestrial rotation, but because it is a
radial force, it does not account for the transverse displacement. Therefore, the apparent
veering is, at least for a short interval of time, entirely due to the Coriolis effect.
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2.4 Analogies and physical interpretations

X

Y

I

J

k

g

Figure 2-6 Side view (a) and top view (b) of a mass on a paraboloid surface.

Consider1 a particle of massM in a gravitational fieldg on a paraboloid surface (Figure2-6)
of elevationZ given by

Z =
Ω2

2g

(
X2 + Y 2

)
. (2.15)

Provided that the paraboloid is sufficiently flat compared toits radiusR (Ω2R/2g � 1), the
equations of motions of the mass are easily derived

d2X

dt2
= − g ∂Z

∂X
= − Ω2X,

d2Y

dt2
= − g ∂Z

∂Y
= − Ω2Y, (2.16)

and describe a pendulum motion.
The frequencyΩ measures the curvature of the surface and is the pendulum’s natural

frequency of oscillation. Note how the gravitational restoring force takes on the form of a
negative centrifugal force. Without loss of generality, wecan choose the initial position of the
particle asX = X0, Y = 0. In that location, we launch the particle with an initial velocity
of dX/dt = U0 anddY/dt = V0 in absolute axes. The trajectory in absolute axes is easily
found as the solution of (2.16)

X = X0 cosΩt+
U0

Ω
sin Ωt (2.17a)

Y =
V0

Ω
sinΩt. (2.17b)

1A similar analogy was suggested to the authors by Prof. Satoshi Sakai at Kyoto University.
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Figure 2-7 Oscillation of the
paraboloid pendulum viewed in
absolute axes. Dots represent the
imprint of the mass on the paraboloid
which rotates with the rotation rateΩ.

Two particular solutions are noteworthy. If the initial condition is a pure radial displace-
ment (V0 = 0), the particle forever oscillates in the vertical planeY = 0. The oscillation, of
period2π/Ω, takes it to the center twice per period, that is, everyπ/Ω time interval. At the
other extreme, the particle can be imparted an initial azimuthal velocity of magnitude such
that the outward centrifugal force of the ensuing circling motion exactly cancels the inward
gravitational pull at that radial distance:

U0 = 0, V0 = ±ΩX0, (2.18)

in which case the particle remains at a fixed distance from thecenter (X2 + Y 2 = X2
0 )

and circles at a constant angular rateΩ, counterclockwise or clockwise, depending on the
direction of the initial azimuthal velocity.

Outside of these two extreme behaviors, the particle describes an elliptical trajectory of
size, eccentricity, and phase related to the initial condition. The orbit does not take it through
the center but brings it, twice per period, to a distance of closest approach (perigee) and,
twice, to a distance of largest excursion (apogee).

At this point, the reader may rightfully wonder: Where is theanalogy with the motion of
a particle subject to the Coriolis force? To show this analogy, let us now view the particle
motion in a rotating frame, but, of course, not any rotating frame: Let us select the angular
rotation rateΩ equal to the particle’s frequency of oscillation. This choice is made so that, in
the rotating frame of reference, the outward centrifugal force, is everywhere and at all times
exactly canceled by the inward gravitational pull experienced on the parabolic surface. Thus,
the equations of motion expressed in the rotating frame include only the relative acceleration
and the Coriolis force, that is, they are none other than (2.11).

Let us now consider the oscillations as seen by an observer inthe rotating frame (Figure
2-8). When the particle oscillates strictly back and forth, therotating observer sees a curved
trajectory. Because the particle passes by the origin twiceper oscillation, the orbit seen by
the rotating observer also passes by the origin twice per period. When the particle reaches its
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extreme displacement on one side, it reaches an apogee on itsorbit as viewed in the rotating
frame; then, by the time it reaches its maximum displacementon the opposite side,π/Ω
later, the rotating framework has rotated exactly by half a turn, so that this second apogee
of the orbit coincides with the first. Therefore, the reader can readily be convinced that the
orbit in the rotating frame is drawn twice per period of oscillation. Algebraic or geometric
developments reveal that the orbit in the rotating framework is circular (Figure2-8a).

In the other extreme situation, when the particle circles ata constant distance from the
origin, two cases must be distinguished, depending on whether it circles in the direction of or
opposite to the observer’s rotating frame. If the directionis the same [positive sign in (2.18)],
the observer simply chases the particle, which then appearsstationary, and the orbit reduces
to a single point (Figure2-8b). This case corresponds to the state of rest of a particle ina
rotating environment [V = 0 in (2.12) through (2.13)]. If the sense of rotation is opposite
[minus sign in (2.18)], the reference frame rotates at the rateΩ in one direction, whereas the
particle circles at the same rate in the opposite direction.To the observer, the particle appears
to rotate at the rate 2Ω. The orbit is obviously a circle centered at the origin and ofradius
equal to the particle’s radial displacement; it is covered twice per revolution of the rotating
frame (Figure2-8c). Finally, for arbitrary oscillations, the orbit in the rotating frame is a
circle of finite radius that is not centered at the origin, does not pass by the origin, and may or
may not include the origin (Figure2-8d). The reader may experiment with MATLAB  code
parabolic.m for further explorations of trajectories.

2.5 Acceleration on a three-dimensional rotating planet

For all practical purposes, except as outlined earlier whenthe centrifugal force was discussed
(Section2.2), the earth can be taken as a perfect sphere. This sphere rotates about its North
Pole – South Pole axis. At any given latitudeϕ, the north–south direction departs from the
local vertical, and the Coriolis force assumes a form different from that established in the
preceding section.

Figure2-9depicts the traditional choice for a local Cartesian framework of reference: the
x–axis is oriented eastward, they–axis, northward and thez–axis, upward. In this framework,
the earth’s Rotation vector is expressed as

Ω = Ω cosϕ j + Ω sinϕ k. (2.19)

The absolute acceleration minus the centrifugal component,

du

dt
+ 2 Ω × u,

has the following three components

x :
du

dt
+ 2Ω cosϕ w − 2Ω sinϕ v (2.20a)

y :
dv

dt
+ 2Ω sinϕ u (2.20b)

z :
dw

dt
− 2Ω cosϕ u. (2.20c)
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(a)

(b)

(c)

(d)

Figure 2-8 Orbits (full line) in absolute axes with imprint of trajectories (dots) on rotating framework
(apparent trajectory). Each row shows the situation for a different initial condition and after 1/8, 1/4,
1/2 and a full period2πΩ−1. Orbits differ according to the initial velocity: the first row (a) shows
oscillations obtained without initial velocity, the second row (b) was created with initial velocityU0 =
0, V0 = X0Ω, the third row (c) corresponds to the opposite initial velocity U0 = 0, V0 = −X0Ω, and
the last row (d) corresponds to an arbitrary initial velocity.
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Figure 2-9 Definition of a local Carte-
sian framework of reference on a spher-
ical earth. The coordinatex is directed
eastward,y northward, andz upward.

With x, y, andz everywhere aligned with the local eastward, northward, andvertical direc-
tions, the coordinate system is curvilinear, and additional terms arise in the components of
the relative acceleration. These terms will be introduced in Section3.2, only to be quickly
dismissed because of their relatively small size in most instances.

For convenience, we define the quantities

f = 2Ω sinϕ (2.21)

f∗ = 2Ω cosϕ. (2.22)

The coefficientf is called theCoriolis parameter, whereasf∗ has no traditional name and
will be called here thereciprocal Coriolis parameter. In the Northern Hemisphere,f is
positive; it is zero at the equator and negative in the Southern Hemisphere. In contrast,f∗
is positive in both hemispheres and vanishes at the poles. Anexamination of the relative
importance of the various terms (Section4.3) will reveal that, generally, thef–terms are
important, whereas thef∗–terms may be neglected.

Horizontal, unforced motions are described by

du

dt
− fv = 0 (2.23a)

dv

dt
+ fu = 0 (2.23b)
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Figure 2-10 Evidence of inertial os-
cillations in the Baltic Sea, as reported
by Gustafson and Kullenberg (1936).
The plot is a progressive–vector dia-
gram constructed by the successive ad-
dition of velocity measurements at a
fixed location. For weak or uniform
velocities, such a curve approximates
the trajectory that a particle starting at
the point of observation would have
followed during the period of obser-
vation. Numbers indicate days of the
month. Note the persistent veering to
the right, at a period of about 14 hours,
which is the value of2π/f at that lat-
itude (57.8◦N). [From Gustafson and
Kullenberg, 1936, as adapted by Gill,
1982]

and are still characterized by solution (2.12). The difference resides in the value off , now
given by (2.21). Thus, inertial oscillations on Earth have periodicitiesequal to2π/f =
π/Ω sinϕ, ranging from 12 h at the poles to infinity along the equator. Pure inertial oscilla-
tions are, however, quite rare because of the usual presenceof pressure gradients and other
forces. Nonetheless, inertial oscillations are not uncommonly found to contribute to observa-
tions of oceanic currents. An example of such an occurrence,where the inertial oscillations
made up almost the entire signal, was reported by Gustafson and Kullenberg (1936). Cur-
rent measurements in the Baltic Sea showed periodic oscillations about a mean value. When
added to one another to form a so-called progressive vector diagram (Figure2-10), the cur-
rents distinctly showed a mean drift, on which were superimposed quite regular clockwise
oscillations. The theory of inertial oscillation predictsclockwise rotation in the Northern
Hemisphere with period of2π/f = π/Ω sinϕ, or 14 h at the latitude of observations, thus
confirming the interpretation of the observations as inertial oscillations.

2.6 Numerical approach to oscillatory motions

The equations of free motion on a rotating plane (2.11) have been considered in some detail
in Section2.3, and it is now appropriate to consider their discretization, as the corresponding
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terms are part of all numerical models of geophysical flows. Upon introducing the time
increment∆t, an approximation to the components of the velocity will be determined at the
discrete instantstn = n∆t with n = 1, 2, 3, ..., which are denoted̃un = ũ(tn) andṽn =
ṽ(tn), with tildes used to distinguish the discrete solution fromthe exact one. The so-called
Euler methodbased on first-order forward differencing yields the simplest discretization of
equations (2.11):

du

dt
− fv = 0 −→ ũn+1 − ũn

∆t
− f ṽn = 0

dv

dt
+ fu = 0 −→ ṽn+1 − ṽn

∆t
+ fũn = 0.

The latter pair can be cast into a recursive form as follows:

ũn+1 = ũn + f∆t ṽn (2.24a)

ṽn+1 = ṽn − f∆t ũn. (2.24b)

Thus, given initial values̃u0 andṽ0 at t0, the solution can be computed easily at timet1

ũ1 = ũ0 + f∆t ṽ0 (2.25)

ṽ1 = ṽ0 − f∆t ũ0. (2.26)

Then, by means of the same algorithm, the solution can be obtained iteratively at timest2, t3

and so on (do not confuse the temporal index with an exponent here and in the following).
Clearly, the main advantage of the preceding scheme is its simplicity, but it is not sufficient
to render it acceptable, as we shall soon learn.

To explore the numerical error generated by the Euler method, we carry out Taylor ex-
pansions of the type

ũn+1 = ũn + ∆t

[
dũ

dt

]

t=tn
+

∆t2

2

[
d2ũ

dt2

]

t=tn
+ O(∆t3)

and similarly forṽ to obtain the following expressions from (2.24)

[
dũ

dt
− f ṽ

]

t=tn
= −

[
d2ũ

dt2

]

t=tn

∆t

2
+ O(∆t2) (2.27a)

[
dṽ

dt
+ fũ

]

t=tn
= −

[
d2ṽ

dt2

]

t=tn

∆t

2
+ O(∆t2). (2.27b)

Derivation of (2.27a) with respect to time and use of (2.27b) allow to recast (2.27a) into a
simpler form, and similarly for (2.27b):

dũn

dt
− f ṽn =

f2∆t

2
ũn + O(∆t2) (2.28a)
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dṽn

dt
+ fũn =

f2∆t

2
ṽn + O(∆t2). (2.28b)

Obviously, the numerical scheme mirrors the original equations, except that an additional
term appears in each right-hand side. This additional term takes the form of anti-friction
(friction would have a minus sign instead) and will therefore increase the discrete velocity
over time.

The truncation errorof the Euler scheme – the right-hand side of the preceding expres-
sions – tends to zero as∆t vanishes, which is why the scheme is said to beconsistent. The
truncation is on the order of∆t at the first power and the scheme is therefore said to be
first-order accurate, which is the lowest possible level of accuracy. Nonetheless, this is not
the chief weakness of the present scheme, since we must expect that the introduction of anti-
friction will create an unphysical acceleratation. Indeed, elementary manipulations of the
time-stepping algorithm (2.24) lead to(ũn+1)2 + (ṽn+1)2 = (1+f2∆t2)

{
(ũn)2 + (ṽn)2

}

so that by recursion

‖ ũ‖2 = (ũn)2 + (ṽn)2 = (1 + f2∆t2)n
{
(ũ0)2 + (ṽ0)2

}
. (2.29)

So, although the kinetic energy (directly proportional to the squared norm‖ũ‖2) of the in-
ertial oscillation must remain constant, as was seen in Section 2.3, the kinetic energy of the
discrete solution increases without bound2 even if the time step∆t is taken much smaller
than the characteristic time1/f . Algorithm (2.24) is unstable. Because such a behavior is
not acceptable, we need to formulate an alternative type of discretization.

In our first scheme, the time derivative was taken by going forward from time leveltn to
tn+1 and the other terms attn, and the scheme became a recursive algorithm to calculate the
next values from the current values. Such a discretization is called anexplicit scheme. By
contrast, in animplicit scheme, the terms other than the time derivatives are taken at the new
time tn+1 (which is similar to taking a backward difference for the time derivative):

ũn+1 − ũn
∆t

− f ṽn+1 = 0 (2.30a)

ṽn+1 − ṽn
∆t

+ fũn+1 = 0. (2.30b)

In this case, the norm of the discrete solution decreases monotonically toward zero, according
to

(ũn)2 + (ṽn)2 = (1 + f2∆t2)−n
{
(ũ0)2 + (ṽ0)2

}
. (2.31)

This scheme can be regarded asstable, but as the kinetic energy should neither decrease or
increase, it may rather be considered asoverly stable.

Of interest is the family of algorithms based on a weighted average between explicit and
implicit schemes:

2 ¿From the context it should be clear thatn in (1+ f2∆t2)n is an exponent, whereas iñun it is the time index.
In the following text, we will not point out this distinctionagain, leaving it to the reader to verify the context.
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ũn+1 − ũn
∆t

− f [(1− α)vn + αṽn+1] = 0 (2.32a)

ṽn+1 − ṽn
∆t

+ f [(1− α)un + αũn+1] = 0, (2.32b)

with 0 ≤ α ≤ 1. The numerical scheme is explicit whenα = 0 and implicit whenα = 1.
Hence, the coefficientα may be regarded as the degree of implicitness in the scheme. It has
a crucial impact on the time evolution of the kinetic energy:

(ũn)2 + (ṽn)2 =

[
1 + (1− α)2f2∆t2

1 + α2f2∆t2

]n {
(ũ0)2 + (ṽ0)2

}
. (2.33)

According to whetherα is less than, equal to or greater than1/2, the kinetic energy increases,
remains constant or decreases over time. It seems thereforeappropriate to select the scheme
with α = 1/2, which is usually said to besemi-implicit.

It is now instructive to compare the semi-implicit approximate solution with the exact
solution (2.12). For this to be relevant, the same initial conditions are prescribed,i.e., ũ0 =
V sinφ andũ0 = V cosφ. Then, at any timetn, the discrete velocity may be shown to be

ũn = V sin(f̃ tn + φ)

ṽn = V cos(f̃ tn + φ),

with the angular frequencỹf given by

f̃ =
1

∆t
arctan

(
f∆t

1− f2∆t2/4

)
. (2.34)

Although the amplitude of the oscillation (V ) is correct, the numerical angular frequency,
f̃ , differs from the true valuef . However, the smaller the dimensionless productf∆t, the
smaller the error:

f̃ → f

(
1 − f2∆t2

12

)
as f∆t → 0.

In other words, selecting a time increment∆tmuch shorter than1/f , the time scale of inertial
oscillations, leads to a frequency that is close to the exactone.

2.7 Numerical convergence and stability

When carrying out a Taylor-series expansion on the discreteequations of the inertial oscil-
lations, we showed that the truncation error vanishes as∆t tends to zero. However, we are
not so much interested in knowing that the limit of the discretized equation for increasing
resolution is the exact equation (consistency) as we are in making sure that thesolutionof
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the discretized equation tends to thesolutionof the differential equations (i.e., the exact solu-
tion). If the difference between the exact and discrete solutions tends to zero as∆t vanishes,
then the discretization is said toconverge.

Unfortunately proving convergence is not a trivial task, especially as we generally do
not know the exact solution, in which case the use of numerical discretizations would be
superfluous. Even the exact solution of the discrete equation can most often not be written
in a closed form, the discretization only providing a method, analgorithm, to advance the
solution in time.

Without knowing precisely the solutions of either the continuous problem or its dis-
crete version, direct proofs of convergence involve mathematics well beyond the scope of
the present book and will be not pursued further. We will, however, rely on a famous theorem
called theLax-Richtmyer equivalence theorem[lax and Richtmyer, 1956], which states that

A consistent finite-difference scheme for a linear partial differential equation for
which the initial value problem is well posed is convergent if and only if it is
stable.

So, while proof of convergence is a mathematical exercise for researchers well versed
in functional analysis, we will restrict ourselves here andin every other instance across the
book to verify consistency and stability and will then invoke the theorem to ascertain con-
vergence. This is a particularly interesting approach, notonly because checking stability and
consistency is much easier than proving directly convergence, but also because stability anal-
ysis provides further insight in propagation properties ofthe numerical scheme (see section
5.4). There remains, however, to define stability and to design efficient methods to verify
the stability of numerical schemes. Our analysis of the explicit Euler scheme (2.24) for the
discretization of inertial oscillations led us to concludethat it is unstable because the velocity
norm, and hence the energy of the system, gradually increases with every time step.

The adjectiveunstableseems quite natural in this context but lacks precision, andan exact
definition is yet to be given. Imagine for example the use of animplicit Euler scheme (gen-
erally taken as the archetype of a stable scheme) on a standard linear differential equation:

∂u

∂t
= γu → ũn+1 − ũn

∆t
= γ ũn+1. (2.35)

We readily see that for0 < γ∆t < 1, the norm of̃u increases:

ũn =

(
1

1− γ∆t

)n
ũ0. (2.36)

We would however hardly disqualify the scheme as unstable, since the numerical solution
increases its norm simply because the exact solutionu = u0eγt does so. In the present case
we can even show that the numerical solution actually converges to the exact solution:

lim
∆t→0

ũn = ũ0 lim
∆t→0

(
1

1− γ∆t

)n
= ũ0 lim

∆t→0

(
1

1− γ∆t

)t/∆t
= ũ0eγt. (2.37)

with t = n∆t.
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Stability is thus a concept that should not only be related tothe behavior of the discrete
solution, but also to the behavior of the exact solution. Loosely speaking, we will qualify a
numerical scheme as unstable if its solution grows much faster than the exact solution and,
likewise, overstable if its solution decreases much fasterthan the exact solution.

2.7.1 Formal stability definition

A mathematical definition of stability, one which allows thediscrete solution to grow but
only to a certain extent, is as follows. If the discrete statevariable is represented by an array
x (collecting into a single vector the values of all variablesat all spatial grid points), which
is stepped in time by an algorithm based on the selected discretization, the corresponding
numerical scheme is said to be stable over a fixed time interval T if there exists a constantC
such that

‖xn ‖ ≤ C ‖x0 ‖ (2.38)

for all n∆t ≤ T . A scheme is thus stable if regardless of∆t (≤ T ), the numerical solution
remains bounded fort ≤ T .

This definition of stability leaves the numerical solution quite some room for growth,
very often well beyond what a modeler is willing to tolerate.This definition of stability is,
however, the necessary and sufficient stability used in the lax-Richtmyer equivalence theorem
and thus allows us to verify convergence. If we permit a slower rate of growth in the numerical
solution, we will not destroy convergence. In particular, we could decide to use the so-called
strict stability condition.

2.7.2 Strict stability

For a system conserving one or several integral norms (such as total energy or wave action),
we may naturally impose that the corresponding norm of the numerical solution not grow at
all over time:

‖xn ‖ ≤ ‖x0 ‖ . (2.39)

Obviously, a scheme that is stable in the sense of (2.39) is also stable in the sense of
(2.38), while the inverse is not necessarily true. The more stringent definition (2.39) will
be calledstrict stability conditionand refers to the condition that the norm of the numerical
solution is not allowed to increase at all.

2.7.3 Choice of a stability criterion

The choice of stability criterion will depend largely on themathematical and physical prob-
lem at hand. For a wave-propagation problem, for example, strict stability will be the natural
choice (assuming some norm is conserved in the physical process), while for physically un-
bounded problems, the less stringent numerical stability definition (2.38) may be used.

We can now examine two previous discretization schemes in the light of these two stabil-
ity definitions. For the explicit Euler discretization (2.24) of inertial oscillation, the scheme
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is unstable in the sense of (2.39) (and deserves this label in view of the required energy con-
servation), although it is technically stable in the sense of (2.38), as we will proceed to show.
Since the norm of the velocity is, according to (2.29),

‖ ũn ‖=
(
1 + f2∆t2

)n/2 ‖ ũ0 ‖, (2.40)

we simply need to demonstrate3 that the amplification is limited by a constant independent
of n and∆t:

(
1 + f2∆t2

)n/2 ≤
(
1 + f2∆t2

)T/(2∆t) ≤ e f2∆tT
2 ≤ e f2T2

2 . (2.42)

The scheme is thus stable in the sense of (2.38) and even if growth of the norm can be quite
important, according to the lax-Richtmyer equivalence theorem, the solution will converge
as the time step is reduced. This is indeed what is observed (Figure2-11) and can be proved
explicitly (see numerical exercise 2.5). In practice, however, the time step is never allowed
to be very small for obvious computer constraints. Also, thetime windowT over which
simulations take place can be very large and any increase of the velocity norm is unacceptable
even if the solution is guaranteed to converge for smaller time steps. For this reason, the strict
stability condition (2.39) is preferred, and the semi-implicit Euler discretizationchosen.

In the second example, that of the implicit Euler scheme applied to the growth equation,
the scheme (2.35) is stable in the sense of (2.38) (since it converges), but allows growth in
the numerical solution as does the mathematical solution.

Recapitulating the different concepts encountered in the numerical discretization, we now
have a recipe to construct a convergent method: Design a discretization for which consistency
(an equation-related property) can be verified by straightforward Taylor-series expansion,
then check stability of the numerical scheme (some practical methods will be provided later)
and finally invoke the lax-Richtmyer equivalence theorem toprove convergence (a solution-
related property). But, as the equivalence theorem is strictly valid only for linear equations,
surprises may arise in nonlinear systems. We also have to mention that establishing conver-
gence by this indirect method demands that initial and boundary conditions, too, converge
to those of the continuous differential system. Finally, convergence is assured only for well
posed initial-value problems. This, however, is not a concern here, since all geophysical fluid
models are physically well posed.

2.8 Predictor-corrector methods

Up to now, we have illustrated numerical discretizations onthe linear equations describing
inertial oscillations. The methods can be easily generalized to equations with a nonlinear
source termQ in the equation governing the variableu, as

3 For the demonstration we use the inequality

(1 + a)b ≤ eab for a, b ≥ 0 (2.41)

which can be easily be proved by observing that(1 + a)b = eb ln(1+a) and thatln(1 + a) ≤ a whena ≥ 0.
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Figure 2-11 Representation (called a hodograph) of the numerical solution (ũ, ṽ) (2.32a)–(2.32b) of
the explicit discretization of the inertial oscillation (α = 0), the implicit version (α = 1) and the
semi-implicit scheme (α = 1/2). The hodograph on the left was obtained withf∆t = 0.05 and the
one on the right panel withf∆t = 0.005. The inertial oscillation (Figure 2-4) is clearly visible,but
the explicit scheme induces spiralling out and the implicitscheme spiralling in. When the time step
is reduced (moving from left panel to right panel), the solution approaches the exact solution. In both
cases, 10 inertial periods were simulated.

du

dt
= Q(t, u). (2.43)

For simplicity, we consider here a scalar variableu, but extension to a state vectorx, such as
x = (u, v), is straightforward.

The previous methods can be recapitulated as follows:

• The explicit Euler method (forward scheme):

ũn+1 = ũn + ∆t Qn (2.44)

• The implicit Euler method (backward scheme):

ũn+1 = ũn + ∆t Qn+1 (2.45)

• The semi-implicit Euler scheme (trapezoidal scheme):

ũn+1 = ũn +
∆t

2

(
Qn +Qn+1

)
(2.46)

• A general two-points scheme (with0 ≤ α ≤ 1):

ũn+1 = ũn + ∆t
[
(1 − α)Qn + αQn+1

]
. (2.47)
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Figure 2-12 Time integration of the source termQ betweentn and tn+1: (a) exact integration, (b)
explicit scheme, (c) implicit scheme, and (d) semi-implicit, trapezoidal scheme.

Note that these schemes may be interpreted either as finite-difference approximations of
the time derivative or finite-difference approximations ofthe time integration of the source
term. Indeed,

u(tn+1) = u(tn) +

∫ tn+1

tn
Q dt, (2.48)

and the various schemes can be viewed as different ways of approximating the integral, as
depicted in Figure2-12. All discretization schemes based on the exclusive use ofQn and
Qn+1 to evaluate the integral betweentn andtn+1, which are calledtwo-point methods, are
inevitably first-order methods, except the semi-implicit (or trapezoidal) scheme, which is of
second order. Second order is thus the highest order achievable with a two-point method. To
achieve an order higher than two, denser sampling of theQ term must be used to approximate
the time integration.

Before considering this, however, a serious handicap should be noted: The source termQ
depends on the unknown variableũ, and we face the problem of not being able to calculate
Qn+1 beforewe knowũn+1, which is to be calculated from the value ofQn+1. There is a
vicious circle here! In the original case of inertial oscillations, the circular dependence was
overcome by an algebraic manipulation of the equations prior to solution (gathering alln+ 1
terms on the left), but when the source term is nonlinear, as is often the case, such preliminary
manipulation is generally not possible and we need to circumvent the exact calculation by
searching for a good approximation.

Such an approximation may proceed by using a first guessũ? in theQ term:
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Qn+1 ' Q(tn+1, ũ?), (2.49)

as long as̃u? is a sufficiently good estimate of̃un+1. The closer̃u? is to ũn+1, the more
faithful is the scheme to the ideal the implicit value. If this estimatẽu? is provided by a
preliminary explicit (forward) step, according to:

ũ? = ũn + ∆t Q(tn, ũn) (2.50a)

ũn+1 = ũn +
∆t

2

(
Q(tn, ũn) +Q(tn+1, ũ?)

)
(2.50b)

we obtain a two-step algorithm, called theHeun method. It can be shown to be second-order
accurate.

This second-order method is actually a particular member ofa family of so-calledpredictor-
corrector methods, in which a first guess̃u? is used as a proxy of̃un+1 in the computation of
complicated terms.

2.9 Higher-order schemes

If we want to go beyond second-order methods, we need to take into account a greater number
of values of theQ term than those attn andtn+1. We have two basic possibilities: either
to include intermediate points betweentn and tn+1, or to useQ values at previous steps
n− 1, n− 2, .... The first approach leads to the so-called family ofRunge-Kutta methods(or
multi-stage methods), while the second generates the so-calledmulti-step methods.

tn tn+1(c)tn tn+1

Q

(b)tn tn+1

Q

(a)

Q

t

Figure 2-13 Runge-Kutta schemes of increasing complexity: (a) mid-point integration, (b) integration
with parabolic interpolation, (c) with cubic interpolation.

The simplest method, using a single intermediate point, is the so-calledmid-point method.
In this case (Figure2-13), the integration is achieved by first calculating the valueũn+1/2

(playing the role of̃u?) at an intermediate stagetn+1/2 and then integrating for the whole
step based on this mid-point estimate:
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ũn+1/2 = ũn +
∆t

2
Q(tn, ũn) (2.51a)

ũn+1 = ũn + ∆t Q(tn+1/2, ũn+1/2). (2.51b)

This method, however, is only second-order accurate and offers no improvement over the
earlier Heun method (2.50).

A popular fourth-order method can be constructed by using a parabolic interpolation be-
tween the values ofQ with two successive estimates at the central point before proceeding
with the full step:

ũn+1/2
a = ũn +

∆t

2
Q(tn, ũn) (2.52a)

ũ
n+1/2
b = ũn +

∆t

2
Q(tn+1/2, ũn+1/2

a ) (2.52b)

ũ? = ũn + ∆t Q(tn+1/2, ũ
n+1/2
b ) (2.52c)

ũn+1 = ũn + ∆t

(
1

6
Q(tn, ũn) +

2

6
Q(tn+1/2, ũn+1/2

a )

+
2

6
Q(tn+1/2, ũ

n+1/2
b ) +

1

6
Q(tn+1, ũ?)

)
. (2.52d)

We can increase the order to any desired level by using higher-polynomial interpolations
(Figure2-13).

As mentioned earlier, instead of using intermediate pointsto increase the order of accu-
racy, we can exploit already available evaluations ofQ from previous steps (Figure2-14).
The most popular method in GFD models is theleapfrog method, which simply reuses the
value at time stepn− 1 to “jump over” theQ term attn in a2∆t step:

ũn+1 = ũn−1 + 2∆t Qn. (2.53)

This algorithm offers second-order accuracy while being fully explicit.
An alternative second-order method using the value atn − 1 is the so-calledAdams-

Bashforth method:

ũn+1 = ũn + ∆t

(
3Qn −Qn−1

)

2
, (2.54)

which can be interpreted in the light of Figure2-14(bottom panel). Higher-order methods
can be constructed by recalling more points from the past (n − 2, n − 3, ...), but we will
not pursue this approach further for the following two reasons. Firstly, using anterior points
creates a problem at the start of the calculation from the initial condition. The first step must
be different in order avoid using one or several points that do not exist, and an explicit Euler
scheme is usually performed. One such step is sufficient to initiate the leapfrog and Adams-
Bashforth schemes, but methods that use earlier values (atn − 2, n − 3, ...) require more
cumbersome care, which can amount to considerable effort ina GFD code. Secondly, the use
of several points in the past demands a proportional increase in computer storage, because
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Figure 2-14 (a) Exact integration from
tn−1 or tn towardstn+1, (b) leapfrog
integration starts fromtn−1 to reach
tn+1, whereas (c) Adams-Bashforth in-
tegration starts fromtn to reachtn+1,
using previous values to extrapolateQ
over the integration intervaltn, tn+1.

values cannot be discarded as quickly before making room fornewer values. Again, for a sin-
gle equation, this is not much of a trouble, but in actual applications, size matters and only a
few past values can be stored in the central memory of the machine. A similar problem arises
also with multi-stage methods, although these do not need any particular starting mechanism.

We can conclude the section by remarking that higher-order methods can always be de-
signed but at the price of more frequent evaluations of the right-hand side of the equation
(potentially a very complicated term) and/or greater storage of numerical values at different
time steps. Since higher-order methods create more burden on the computation, we ought to
ask whether they at least provide better numerical solutions than lower-order methods. We
have therefore to address the question of accuracy of these methods, which will be considered
in Section4.8.

A fundamental difference between analytical solutions andnumerical approximations
emerges. For some equations, properties of the solution canbe derived without actually
solving the equations. It is easy to prove, for example, thatthe velocity magnitude remains
constant during an inertial oscillation. The numerical solution on the other hand is generally
not guaranteed to satisfy the same property as its analytical counterpart (the explicit Euler
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Figure 2-15 Schematic representation of discretization properties and mathematical properties inter-
play.

discretization did not conserve the velocity norm). Therefore, we cannot be sure that math-
ematical properties of the analytical solutions will also be present in the numerical solution.
This might appear as a strong drawback of numerical methods but can actually be used to
assess the quality of numerical schemes. Also, for numerical schemes with adjustable param-
eters (as the implicit factor), those parameters can be chosen so that the numercial solution
respects as best as possible the exact properties.

We can summarize by recognizing the fact that numerical solutions generally do not in-
herit the mathematical properties of the exact solution (Figure 2-15), a handicap particu-
larly easy to understand in the case of inertial oscillationand its discretization by an ex-
plicit scheme (Figure2-16). Later we will encounter other properties (energy conservation,
potential-vorticity conservation, positiveness of concentrations, etc.) that can be used to guide
the choice of parameter values in numerical schemes.
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∂u
∂t = fv,
∂v
∂t = −fu

ũn+1 = ũn + f∆t ṽn,

ṽn+1 = ṽn − f∆t ũn

∂
∂t (u

2 + v2) = 0

‖ ũn ‖2=
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1 + ∆t2f2
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Figure 2-16 Schematic representation of discretization properties and mathematical properties inter-
play exemplified in the case of inertial oscillation.

Analytical Problems

2-1. On Jupiter, a day lasts 9.9 Earth hours and the equatorial circumference is 448,600
km. Knowing that the measured gravitational acceleration at the equator is 26.4 m/s2,
deduce the true gravitational acceleration and the centrifugal acceleration.

2-2. The Japanese Shinkansen train (bullet train) zips from Tokyo to Ozaka (both at approx-
imately 35◦N) at a speed of 185 km/h. In the design of the train and tracks,do you
think that engineers had to worry about the earth’s rotation? (Hint: The Coriolis effect
induces an oblique force, the lateral component of which could produce a tendency of
the train to lean sideways.)

2-3. Determine the lateral deflection of a cannonball that is shotin London (51◦31′N) and
flies for 25 s at an average horizontal speed of 120 m/s. What would be the lateral
deflection in Murmansk (68◦52′N) and Nairobi (1◦18′S)?

2-4. On a perfectly smooth and frictionless hockey field at Dartmouth College (43◦38′N),
how slowly should a puck be driven to perform an inertial circle of diameter equal to
the field width (26 m)?

2-5. A stone is dropped from a 300-m-high bridge at 35◦N. In which cardinal direction is it
deflected under the effect of the earth’s rotation? How far from the vertical does the
stone land? (Neglect air drag.)
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2-6. At 43◦N, raindrops fall from a cloud 2500 m above ground through a perfectly still atmo-
sphere (no wind). In falling, each raindrop experiences gravity, a linear drag force with
coefficientC = 1.3 s−1 (i.e., the drag force in thex, y andz directions is respectively
−Cu, −Cv and−Cw per unit mass) and is also subjected to the three-dimensional
Coriolis force. What is the trajectory of one raindrop? How far eastward and north-
ward has the Coriolis force deflected the raindrop by the timeit hits the ground? (Hint:
It can be shown that the terminal velocity is reached very quickly relatively to the total
falling time.)

2-7. A set of two identical solid particles of massM attached to each other by a weightless
rigid rod of lengthL are moving on a horizontal rotating plane in the absence of exter-
nal forces (Figure2-17). As in geophysical fluid dynamics, ignore the centrifugal force
caused by the ambient rotation. Establish the equations governing the motion of the set
of particles, derive the most general solution, and discussits physical implications.

i

j

y

x

θ

M

ML

............................... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ......
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......
...... Ω

Figure 2-17 Two linked masses on a
rotating plane (Problem 2-7).

2-8. At t = 0, two particles of equal massm but opposite electrical chargesq are released
from rest at a distanceL from each other on a rotating plane (constant rotation rate
Ω = f/2). Assuming as in GFD that the centrifugal force is externally balanced, write
the equations of motion of the two particles and the accompanying initial conditions.
Then, show that the center of mass (the mid-point between theparticles) is not moving,
and write a differential equation governing the evolution of the distancer(t) between
the two particles. Is it possible that, as on a non-rotating plane, the electrical attraction
between the two particles will make them collide (r = 0)?

2-9. Study the trajectory of a free particle of massM released from a state of rest on a
rotating, sloping, rigid plane (Figure2-18). The angular rotation rate isΩ, and the
angle formed by the plane with the horizontal isα. Friction and the centrifugal force
are negligible. What is the maximum speed acquired by the particle, and what is its
maximum downhill displacement?



2.9. HIGHER-ORDER SCHEMES 65
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Figure 2-18 A free particle on a rotat-
ing, frictionless slope (Problem 2-9).

Figure 2-19 Progressive vector dia-
gram constructed from current-meter
observation in the Mediterranean Sea
taken in October 1973 (Problem 2-10).
[Courtesy of Martin Mork, University
of Bergen, Norway]

2-10. The curve reproduced in Figure2-19is a progressive vector diagram constructed from
current-meter observations at latitude 43◦09′N in the Mediterranean Sea . Under the
assumption of a uniform but time-dependent flow field in the vicinity of the mooring,
the curve can be interpreted as the trajectory of a water parcel. Using the marks count-
ing the days along the curve, show that this set of observations reveals the presence of
inertial oscillations. What is the average orbital velocity in these oscillations?

Numerical Exercises

2-1. When using the semi-implicit scheme (2.32a) – (2.32b) with α = 1/2, how many time
steps are required per complete cycle (period of2π/f ) to guarantee a relative error on
f not exceeding 1%?
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2-2. Develop an Euler scheme to calculate the position coordinatesx andy of a particle
undergoing inertial oscillations from its velocity componentsu andv, themselves cal-
culated with an Euler scheme. Graph the trajectory[x̃n, ỹn] for n = 1, 2, 3, ... of the
particle. What do you notice?

2-3. For the semi-implicit discretization of the inertial oscillation, calculate the number of
complete cycles it takes before the exact solution and its numerical approximation are
in phase opposition (180◦ phase shift). Show this number of cycles as a function of the
parameterf∆t. What can you conclude for a scheme for whichf∆t = 0.1 in terms of
time windows that can be analyzed before the solution is out of phase?

2-4. Devise a leapfrog scheme for inertial oscillations and analyze its stability and angular
frequency properties by searching for a numerical solutionof the following form4:

ũn = V %n sin(f̃n∆t+ φ), ṽn = V %n cos(f̃n∆t+ φ).

2-5. Calculate the discrete solution of the explicit Euler-scheme applied to inertial oscilla-
tions by searching for a solution of the same form as in Problem 2-4 where% andf̃ are
again parameters to be determined. Show that the discrete solution converges to the
exact solution (2.12).

2-6. Prove the assertion that scheme (2.51) is of second order.

2-7. Adapt coriolisdis.m for a discretization of inertial oscillation with a frictional
term

du

dt
= fv − c u (2.55)

dv

dt
= −fu − c v, (2.56)

wherec = f k. Run the explicit discretization with increasing values ofk in [0, 1]. For
which value ofk does the explicit Euler discretization give you a solution with constant
norm? Can you interpret this result in view of the modified equation?

2-8. Try several time discretization methods on the following set of equations:

du

dt
= fv (2.57)

dv

dt
= −fu+ fk (1− u2)v, (2.58)

with initial conditionu = 2, v = 0 at t = 0. Use two values for the parameterk: first
k = 0.1 and thenk = 1. Finally try k = 5. What do you notice?

4For%n, n is an exponent, not an index.



Pierre Simon Marquis de Laplace
1749 – 1827

¿From humble roots in rural France, Pierre Simon Laplace distinguished himself early by
his abilities and went on to Paris. There, at the Académie des Sciences, Jean D’Alembert
recognized the talents of the young Laplace and secured for him a position in the military
school. Set with this appointment, Laplace began a study of planetary motions, which led
him to make advances in integral calculus and differential equations. Skillful at changing
his political views during the turbulent years of the FrenchRevolution, Laplace managed
to survive and continued his research almost without interruption. In 1799, he published
the first volume of a substantial memoir titledMécanique Ćeleste, which later grew into a
five-volume treatise and has since been regarded as a cornerstone of classical physics. Some
have said that this work is Isaac Newton’sPrincipia (of 1687) translated in the language
of differential calculus with the clarification of many important points that had remained
puzzling to Newton. One such aspect is the theory of ocean tides, which Laplace was the first
to establish on firm mathematical grounds.

The name Laplace is attached today to a differential operator (the sum of second deriva-
tives), which arises in countless problems of physics, including geophysical fluid dynamics
(see Chapter16). (Photo fromhttp://occawlonline.pearsoned.com – Pearson
Education.)
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Gaspard Gustave de Coriolis
1792 – 1843

Born in France and trained as an engineer, Gaspard Gustave deCoriolis began a career in
teaching and research at age 24. Fascinated by problems related to rotating machinery, he
was led to derive the equations of motion in a rotating framework of reference. The result of
these studies was presented to the Académie des Sciences inthe summer of 1831. In 1838,
Coriolis stopped teaching to become director of studies at the Ecole Polytechnique, but his
health declined quickly and he died a few short years later.

The world’s largest experimental rotating table, at the Institut de Mécanique in Grenoble,
France, is named after him and has been used in countless simulations of geophysical fluid
phenomena. (Photo from the archives of the Académie des Sciences, Paris.)
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Chapter 3

Equations of Fluid Motion

(October 18, 2006)SUMMARY : The object of this chapter is to establish the equations
governing the movement of a stratified fluid in a rotating environment. These equations are
then simplified somewhat by taking advantage of the so-called Boussinesq approximation.
The chapter concludes by introducing finite-volume discretizations and showing their relation
to the budget calculations used to establish the mathematical equations of motion.

3.1 Mass budget

A necessary statement in fluid mechanics is that mass be conserved. That is, any imbal-
ance between convergence and divergence in the three spatial directions must create a local
compression or expansion of the fluid. Mathematically, the statement takes the form:

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw) = 0, (3.1)

whereρ is the density of the fluid (in kg/m3), and (u, v, w) are the three components of
velocity (in m/s). All four variables generally vary in the three spatial directions,x andy in
the horizontal,z in the vertical, as well as timet.

This equation, often called thecontinuity equation, is classical in traditional fluid me-
chanics. Sturm (2001, page 4) reports that Leonardo da Vinci(1452–1519) had derived a
simplified form of the statement of mass conservation for a stream with narrowing width.
However, the three-dimensional differential form provided here was most likely written much
later and credit ought probably to go to Leonhard Euler (1707–1783). For a detailed deriva-
tion, the reader is referred to Batchelor (1967), Fox and McDonald (1992), or Appendix A of
the present text.

Note that spherical geometry introduces additional curvature terms, which we neglect
to be consistent with our previous restriction to length scales substantially shorter than the
global scale.
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3.2 Momentum budget

For a fluid, Isaac Newton’s second law “mass times acceleration equals the sum of forces”
is better stated per unit volume with density replacing massand, in the absence of rotation
(Ω = 0), the resulting equations are called the Navier-Stokes equations. For geophysical
flows, rotation is important and acceleration terms must be augmented as done in (2.20):

x : ρ

(
du

dt
+ f∗w − fv

)
= − ∂p

∂x
+

∂τxx

∂x
+

∂τxy

∂y
+

∂τxz

∂z
(3.2)

y : ρ

(
dv

dt
+ fu

)
= − ∂p

∂y
+

∂τxy

∂x
+

∂τyy

∂y
+

∂τyz

∂z
(3.3)

z : ρ

(
dw

dt
− f∗u

)
= − ∂p

∂z
− ρg +

∂τxz

∂x
+

∂τyz

∂y
+

∂τzz

∂z
, (3.4)

where thex–, y– andz–axes are directed eastward, northward and upward, respectively,
f = 2Ω sinϕ is the Coriolis parameter,f∗ = 2Ω cosϕ the reciprocal Coriolis parameter,ρ
density,p pressure,g the gravitational acceleration, and theτ terms represent the normal and
shear stresses due to friction.

That the pressure force is equal and opposite to the pressuregradient and that the viscous
force involves the derivatives of a stress tensor should be familiar to the student who has
had an introductory course in fluid mechanics. Appendix A retraces the formulation of those
terms for the student new to fluid mechanics.

The effective gravitational force (sum of true gravitational force and the centrifugal force;
see Section2.2) is ρg per unit volume and is directed vertically downward. So, thecorre-
sponding term occurs only in the third equation, for the vertical direction.

Because the acceleration in a fluid is not counted as the rate of change in velocity at a
fixed location but as the change in velocity of a fluid particleas it moves along with the flow,
the time derivatives in the acceleration components,du/dt, dv/dt anddw/dt, consist of both
the local time rate of change and the so-called advective terms:

d

dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
. (3.5)

This derivative is called thematerial derivative.
The preceding equations assume a Cartesian system of coordinates and thus hold only

if the dimension of the domain under consideration is much shorter than the earth’s radius.
On Earth, a length scale not exceeding 1000 km is usually acceptable. The neglect of the
curvature terms is in some ways analogous to the distortion introduced by mapping the curved
earth’s surface onto a plane.

Should the dimensions of the domain under consideration be comparable to the size of
the planet, thex–, y– andz–axes need to be replaced by spherical coordinates, and curvature
terms enter all equations. See Appendix A for those equations. For simplicity in the expo-
sition of the basic principles of geophysical fluid dynamics, we shall neglect throughout this
book the extraneous curvature terms and use Cartesian coordinates exclusively.

Equations (3.2) through (3.4) can be viewed as three equations providing the three veloc-
ity components,u, v andw. They implicate, however, two additional quantities, namely, the
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pressurep and the densityρ. An equation forρ is provided by the conservation of mass (3.1),
and one additional equation is still required.

3.3 Equation of state

The description of the fluid system is not complete until we also provide a relation between
density and pressure. This relation is called theequation of stateand tells us about the nature
of the fluid. To go further, we need to distinguish between airand water.

For an incompressible fluid such as pure water at ordinary pressures and temperatures,
the statement can be as simple asρ = constant. In this case, the preceding set of equations
is complete. In the ocean, however, water density is a complicated function of pressure,
temperature and salinity. Details can be found in Gill (1982– Appendix 3), but for most
applications, it can be assumed that the density of seawateris independent of pressure (
Incompressibility) and linearly dependent upon both temperature (warmer waters are lighter)
and salinity (saltier waters are denser), according to:

ρ = ρ0 [1 − α(T − T0) + β(S − S0)], (3.6)

whereT is the temperature (in degrees Celsius or Kelvin) andS the salinity (defined in the
past as grams of salt per kilogram of seawater,i.e., in parts per thousand, denoted by ‰,
and more recently by the so-called practical salinity unit “psu”, derived from measurements
of conductivity and having no units). The constantsρ0, T0, andS0 are reference values
of density, temperature, and salinity, respectively, whereasα is the coefficient of thermal
expansion andβ is called, by analogy, the coefficient of saline contraction1. Typical seawater
values areρ0 = 1028 kg/m3, T0 = 10◦C = 283 K,S0 = 35,α = 1.7× 10−4 K−1, andβ = 7.6
× 10−4.

For air, which is compressible, the situation is quite different. Dry air in the atmosphere
behaves approximately as an ideal gas, and so we write:

ρ =
p

RT
, (3.7)

whereR is a constant, equal to 287 m2/(s2 K) at ordinary temperatures and pressures. In the
preceding equation,T is the absolute temperature (temperature in degrees Celsius + 273.15).

Air in the atmosphere most often contains water vapor. For moist air, the preceding
equation is generalized by introducing a factor that varieswith thespecific humidityq:

ρ =
p

RT (1 + 0.608q)
. (3.8)

The specific humidityq is defined as

q =
mass of water vapor

mass of air
=

mass of water vapor
mass of dry air + mass of water vapor

. (3.9)

1The latter expression is a misnomer, since salinity increases density not by contraction of the water but by the
added mass of dissolved salt.
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For details, the reader is referred to Curry and Webster (1999).
Unfortunately, our set of governing equations is not yet complete. Although we have

added one equation, by so doing we have also introduced additional variables, namely tem-
perature and, depending on the nature of the fluid, either salinity or specific humidity. Addi-
tional equations are clearly necessary.

3.4 Energy budget

The equation governing temperature arises from conservation of energy. The principle of
energy conservation, also known as the first law of thermodynamics, states that the internal
energy gained by a parcel of matter is equal to the heat it receives minus the mechanical work
it performs. Per unit mass and unit time, we have

de

dt
= Q − W, (3.10)

whered/dt is the material derivative introduced in (3.5), e is the internal energy,Q the rate
of heat gain, andW the rate of work done by the pressure force onto the surrounding fluid,
all per unit mass. The internal energy, a measure of the thermal agitation of the molecules
inside the fluid parcel, is proportional to the temperature:

e = CvT

temperature
whereCv is the heat capacity at constant volume, andT the absolute temperature. For air
at sea-level pressure and ambient temperatures,Cv = 718 J/(kg K), while for seawaterCv =
3990 J/(kg K).

In the ocean, there is no internal heat source2, whereas in the atmosphere release of latent
heat by water-vapor condensation or, conversely, uptake oflatent heat by evaporation consti-
tute internal sources. Leaving such complication for more advanced textbooks in dynamical
and physical meteorology (Curry and Webster, 1999), theQ term in (3.10) includes only the
heat gained by a parcel through its contact with its neighbors via the process of diffusion.
Using the Fourier law of heat conduction, we write

Q =
kT
ρ
∇2T,

wherekT is the thermal conductivity of the fluid and the Laplace operator∇2 is defined as
the sum of double derivatives:

52 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

2In most cases, the absorption of solar radiation in the first meters of the upper ocean is treated as a surface flux,
though occasionally it must be taken into account as a radiative absorption.
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The work done by the fluid is the pressure force (= pressure× area) multiplied by the
displacement in the direction of the force. Counting area times displacement as volume, the
work is pressure multiplied by the change in volume, and on a per–mass and per–time basis:

W = p
dv

dt
,

wherev is the volume per mass,i.e., v = 1/ρ.
With its pieces assembled, Equation (3.10) becomes

Cv
dT

dt
=

kT
ρ
∇2T − p

dv

dt

=
kT
ρ
∇2T +

p

ρ2

dρ

dt
. (3.11)

Elimination ofdρ/dt with the continuity equation (3.1) leads to:

ρCv
dT

dt
+ p

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
= kT ∇2T. (3.12)

This is the energy equation, which governs the evolution of temperature.
For water, which is nearly incompressible, the divergence term (∂u/∂x + ∂v/∂y +

∂w/∂z) can be neglected (to be shown later), while for air, one may introduce thepotential
temperatureθ defined as

θ = T

(
ρ0

ρ

)R/Cv

, (3.13)

for which the physical interpretation will be given later (Section11.3). Taking its material
derivative, and using (3.11), lead successively to

Cv
dθ

dt
=

(
ρ0

ρ

)R/Cv
(
Cv

dT

dt
− RT

ρ

dρ

dt

)

Cv
dθ

dt
=

θ

T

(
Cv

dT

dt
− p

ρ2

dρ

dt

)

ρCv
dθ

dt
= kT

θ

T
∇2T. (3.14)

The net effect of this transformation of variables is the elimination of the divergence term.
WhenkT is zero or negligible, the right-hand side of the equation vanishes, leaving only

dθ

dt
= 0. (3.15)

Unlike the actual temperatureT , which is subject to the compressibility effect (through the
divergence term), the potential temperatureθ of an air parcel is conserved in the absence of
heat diffusion.
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3.5 Salt and moisture budgets

The set of equations is not yet complete because there is a remaining variable for which a last
equation is required: salinity in the ocean and specific humidity in the atmosphere.

For seawater, density varies with salinity as stated in (3.6). Its evolution is governed by
the salt budget:

dS

dt
= κS ∇2S, (3.16)

which simply states that a seawater parcel conserves its salt content, except for redistribu-
tion by diffusion. The coefficientκS is the coefficient of salt diffusion, which plays a role
analogous to the heat diffusivitykT .

For air, the remaining variable is specific humidity and, because of the possibility of evap-
oration and condensation, its budget is complicated. Leaving this matter for more advanced
texts in meteorology, we simply write an equation similar tothat of salinity:

dq

dt
= κq ∇2q, (3.17)

which states that specific humidity is redistributed by contact with neighboring parcels of
different moisture content, and in which the diffusion coefficient κq is the analogue ofκT
andκS.

3.6 Summary of governing equations

Our set of governing equations is now complete. For air (or any ideal gas), there are seven
variables (u, v,w, p, ρ, T andq), for which we have a continuity equation (3.1), three momen-
tum equations (3.2) through (3.4), an equation of state (3.7), an energy equation (3.12), and
a humidity equation (3.17). conduction (see biography at the end of this chapter) is credited
for having been the first to recognize that atmospheric physics can, in theory, be fully de-
scribed by a set of equations governing the evolution of the seven aforementioned variables (
Bjerknes, 1904; see also Nebeker, 1995, chapter 5).

For seawater, the situation is similar. There are again seven variables (u, v,w, p, ρ, T and
S) for which we have the same continuity, momentum and energy equations, the equation
of state (3.6), and the salt equation (3.16). No particular person is credited with this set of
equations.

3.7 Boussinesq approximation

Although the equations established in the previous sections already contain numerous sim-
plifying approximations, they are still too complicated for the purpose of geophysical fluid
dynamics. Additional simplifications can be obtained by theso-calledBoussinesq approxi-
mationwithout appreciable loss of accuracy.
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In most geophysical systems, the fluid density varies, but not greatly, around a mean
value. For example, the average temperature and salinity inthe ocean areT = 4◦C and
S = 34.7, to which corresponds a densityρ = 1028 kg/m3 at surface pressure. Variations in
density within one ocean basin rarely exceed 3 kg/m3. Even in estuaries where fresh river
waters (S = 0) ultimately turn into salty seawaters (S = 34.7), the relative density difference
is less than 2%.

By contrast, the air of the atmosphere becomes gradually more rarefied with altitude, and
its density varies from a maximum at ground level to nearly zero at great heights, thus cov-
ering a 100% range of variations. Most of the density changes, however, can be attributed to
hydrostatic pressure effects, leaving only a moderate variability caused by other factors. Fur-
thermore, weather patterns are confined to the lowest layer,the troposphere (approximately
10 km thick), within which the density variations responsible for the winds are usually no
more than 5%.

As it appears justifiable in most instances3 to assume that the fluid density,ρ, does not
depart much from a mean reference value,ρ0, we take the liberty to write:

ρ = ρ0 + ρ′(x, y, z, t) with |ρ′| � ρ0, (3.18)

where the variationρ′ caused by the existing stratification and/or fluid motions issmall com-
pared to the reference valueρ0. Armed with this assumption, we proceed to simplify the
governing equations.

The continuity equation, (3.1), can be expanded as follows:

ρ0

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
+ ρ′

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)

+

(
∂ρ′

∂t
+ u

∂ρ′

∂x
+ v

∂ρ′

∂y
+ w

∂ρ′

∂z

)
= 0.

Geophysical flows indicate that relative variations of density in time and space are not larger
than – and usually much less than – the relative variations ofthe velocity field. This implies
that the terms in the third group are on the same order as – if not much less than – those in the
second. But, terms in this second group are always much less than those in the first because
|ρ′| � ρ0. Therefore, only that first group of terms needs to be retained, and we write

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (3.19)

Physically, this statement means that conservation of masshas become conservation of vol-
ume. The reduction is to be expected because volume is a good proxy for mass when mass
per volume (= density) is nearly constant. A hidden implication of this simplification is the
elimination of sound waves, which rely on compressibility for their propagation.

Thex– andy–momentum equations (3.2) and (3.3), being similar to each other, can be
treated simultaneously. There,ρ occurs as a factor only in front of the left-hand side. So,
whereverρ′ occurs,ρ0 is there to dominate. It is thus safe to neglectρ′ next toρ0 in that
pair of equations. Further, the assumption of a Newtonian fluid (viscous stresses proportional

3 The situation is obviously somewhat uncertain on other planets that are known to possess a fluid layer ( Jupiter
and Neptune, for example), and on the sun.
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to velocity gradients), with the use of the reduced continuity equation, (3.19), permits us to
write the components of the stress tensor as

τxx = µ

(
∂u

∂x
+

∂u

∂x

)
, τxy = µ

(
∂u

∂y
+

∂v

∂x

)
, τxz = µ

(
∂u

∂z
+

∂w

∂x

)

τyy = µ

(
∂v

∂y
+

∂v

∂y

)
, τyz = µ

(
∂v

∂z
+

∂w

∂y

)

τzz = µ

(
∂w

∂z
+

∂w

∂z

)
, (3.20)

whereµ is called the coefficient of dynamic viscosity. A subsequentdivision byρ0 and the
introduction of thekinematic viscosityν = µ/ρ0 yield

du

dt
+ f∗w − fv = − 1

ρ0

∂p

∂x
+ ν ∇2u (3.21)

dv

dt
+ fu = − 1

ρ0

∂p

∂y
+ ν ∇2v. (3.22)

The next candidate for simplification is thez–momentum equation, (3.4). There,ρ ap-
pears as a factor not only in front of the left-hand side, but also in a product withg on the
right. On the left, it is safe to neglectρ′ in front of ρ0 for the same reason as previously,
but on the right it is not. Indeed, the termρg accounts for the weight of the fluid, which, as
we know, causes an increase of pressure with depth (or, a decrease of pressure with height,
depending on whether we think of the ocean or atmosphere). With theρ0 part of the density
goes a hydrostatic pressurep0, which is a function ofz only:

p = p0(z) + p′(x, y, z, t) with p0(z) = P0 − ρ0gz, (3.23)

so thatdp0/dz = −ρ0g, and the vertical-momentum equation at this stage reduces to

dw

dt
− f∗ u = − 1

ρ0

∂p′

∂z
− ρ′g

ρ0
+ ν ∇2w, (3.24)

after a division byρ0 for convenience. No further simplification is possible because the
remainingρ′ term no longer falls in the shadow of a neighboring term proportional to ρ0.
Actually, as we will see later, the termρ′g is the one responsible for the buoyancy forces that
are such a crucial ingredient of geophysical fluid dynamics.

Note that the hydrostatic pressurep0(z) can be subtracted fromp in the reduced momen-
tum equations, (3.21) and (3.22), because it has no derivatives with respect tox andy, and is
dynamically inactive.

For water, the treatment of the energy equation, (3.10), is straightforward. First, continu-
ity of volume, (3.19), eliminates the middle term, leaving

ρCv
dT

dt
= kT∇2T.



3.7. BOUSSINESQ APPROXIMATION 77

Next, the factorρ in front of the first term can be replaced once again byρ0, for the same
reason as it was done in the momentum equations. Defining the heat kinematic diffusivity
κT = kT /ρ0Cv, we then obtain

dT

dt
= κT ∇2T, (3.25)

which is isomorphic to the salt equation, (3.16).
For seawater, the pair of equations (3.16) for salinity and (3.25) for temperature com-

bine to determine the evolution of density. A simplificationresults if it may be assumed that
the salt and heat diffusivities,κS andκT , can be taken as equal. If diffusion is primarily
governed by molecular processes, this assumption is invalid. In fact, a substantial difference
between the rates of salt and heat diffusion is responsible for peculiar small-scale features,
such as salt fingers, which are studied in the discipline calleddouble diffusion(Turner, 1973,
Chapter 8). However, molecular diffusion generally affects only small-scale processes, up to
a meter or so, whereas turbulence regulates diffusion on larger scales. In turbulence, efficient
diffusion is accomplished by eddies, which mix salt and heatat equal rates. The values of dif-
fusivity coefficients in most geophysical applications maynot be taken as those of molecular
diffusion; instead, they should be taken much larger and equal to each other. The corre-
sponding turbulent diffusion coefficient, also callededdy diffusivity, is typically expressed as
the product of a turbulent eddy velocity with a mixing length(Tennekes and Lumley, 1972;
Pope, 2000) and, although there exists no single value applicable to all situations, the value
κS = κT = 10−2 m2/s is frequently adopted. Notingκ = κS = κT and combining equations
(3.16) and (3.25) with the equation of state (3.6), we obtain

dρ′

dt
= κ∇2ρ′, (3.26)

whereρ′ = ρ−ρ0 is the density variation. In sum, the energy and salt-conservation equations
have been merged into a density equation, which is not to be confused with mass conservation
(3.1).

For air, the treatment of the energy equation (3.12) is more subtle, and the reader inter-
ested in a rigorous discussion is referred to the article by Spiegel and Veronis (1960). Here,
for the sake of simplicity, we limit ourselves to suggestivearguments. First, the change of
variable (3.13) from actual temperature to potential temperature eliminates the divergence
term in (3.12) and takes care of the compressibility effect. Then, for weak departures from
a reference state, the relation between actual and potential temperatures and the equation of
state can both be linearized. Finally, assuming that heat and moisture are diffused by turbu-
lent motions at the same rate, we can combine their respective budget into a single equation,
(3.26).

In summary, the Boussinesq approximation, rooted in the assumption that the density
does not depart much from a mean value, has allowed the replacement of the actual densityρ
by its reference valueρ0 everywhere, except in front of the gravitational acceleration and in
the energy equation, which has become an equation governingdensity variations.

At this point, since the original variablesρ andp no longer appear in the equations, it is
customary to drop the primes fromρ′ andp′ without risk of ambiguity. So, from here on, the
variablesρ andp will be used exclusively to denote the perturbation densityand perturbation
pressure. This perturbation pressure is sometimes called thedynamic pressure, because it is
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usually a main contributor to the flow field. The only place where total pressure comes into
play is then the equation of state.

3.8 Flux formulation and conservative form

The preceding equations form a complete set of equations andthere is no need to invoke
further physical laws. Nevertheless we can manipulate the equations to write them in another
form, which, though mathematically equivalent, has some practical advantages. Consider
for example the equation for temperature (3.25), which was deduced from the energy equa-
tion using the Boussinesq approximation. Under the same Boussinesq approximation, mass
conservation was reduced to volume conservation (3.19) and we can write the temperature
equation by first expanding the material derivative (3.5)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
= κT ∇2T, (3.27)

and then using volume conservation (3.19) to obtain

∂T

∂t
+

∂

∂x
(uT ) +

∂

∂y
(vT ) +

∂

∂z
(wT )

− ∂

∂x

(
κT

∂T

∂x

)
− ∂

∂y

(
κT

∂T

∂y

)
− ∂

∂z

(
κT

∂T

∂z

)
= 0. (3.28)

The latter form is called aconservative formulation, the reason for which will become clear
upon applying the divergence theorem. This theorem, also known as Gauss’s Theorem, states
that for any vector (qx, qy, qz) the volume integral of its divergence is equal to the integral of
the flux over the enclosing surface:

∫

V

(
∂qx

∂x
+

∂qy

∂y
+

∂qz

∂z

)
dx dy dz =

∫

S
(qxnx + qyny + qznz) dS (3.29)

where the vector (nx, ny, nz) is the outward unit vector normal to the surfaceS delimiting
the volumeV (Figure3-1). Integrating the conservative form (3.28) over a fixed volume is
then particularly simple and leads to an expression for the evolution of the heat content in the
volume as a function of the fluxes entering and leaving the volume:

d

dt

∫

V
T dt +

∫

S
q ·n dS = 0. (3.30)

The flux q of temperature is composed of an advective flux(uT, vT, wT ) due to flow
across the surface and a diffusive (conductive) flux−κT (∂T/∂x, ∂T/∂y, ∂T/∂z). If the
value of each flux is known on a closed surface, the evolution of the average temperature
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inside the volume can be calculated without knowing the detailed distribution of temperature.
This property will be used now for the development of a particular discretization method.

q

n

Figure 3-1 The divergence theorem
allows the replacement of the integral
over the volumeV of the divergence
∂qx/∂x+ ∂qy/∂y + ∂qz/∂z of a flux
vectorq = (qx, qy, qz) by the integral,
over the surfaceS containing the vol-
ume, of the scalar product of the flux
vector and the normal vectorn to this
surface.

3.9 Finite-volume discretization

The conservative form (3.28) naturally leads to a numerical method with a clear physical
interpretation, the so-calledfinite-volumeapproach. To illustrate the concept, we consider
the equation for temperature in a one-dimensional (1D) case

∂T

∂t
+

∂q

∂x
= 0, (3.31)

in which the fluxq for temperatureT = T (x, t) includes both advectionuT and diffusion
−κT∂T/∂x

q = uT − κT
∂T

∂x
. (3.32)

We can integrate (3.31) over a given interval (labeled by indexi) whose boundaries are
noted by indicesi−1/2 andi+1/2, so that we integrate overx in the rangexi−1/2 < x < xi+1/2.
Though the interval of integration is of finite size∆xi = xi+1/2 − xi−1/2 (Figure3-2), the
integration is performed exactly:

d

dt

∫ xi+1/2

xi−1/2

T dx + qi+1/2 − qi−1/2 = 0. (3.33)
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By defining the cell-average temperatureT̄i for cell i as

T̄i =
1

∆xi

∫ xi+1/2

xi−1/2

T dx, (3.34)

we obtain the evolution equation of the discrete fieldT̄i:

dT̄i
dt

+
qi+1/2 − qi−1/2

∆xi
= 0. (3.35)

Although we seem to have fallen back on adiscretizationof the spatial derivative, ofq in
this instance, the equation we just obtained isexact. This seems to be paradoxical compared
to our previous discussions on inevitable errors associated with discretization. At first sight it
appears that we found a discretization method without errors, but we must realize that (3.35)
is still incomplete in the sense that two different variables appear in a single equation, the
discretized averagēTi and the discretized flux,qi−1/2 andqi+1/2. These two, however, are
related to thelocal value of the continuous temperature field [the advective fluxat xi±1/2 is
uT (xi±1/2, t)], whereas the integrated equation is written for theaveragevalue of tempera-
ture. The averaging of the equation prevents us from retrieving information at the local level,
and only average values (over the spatial scale∆xi) can be determined. Therefore, we have
to find an approximate way of assessing the local value of fluxes based solely on average tem-
perature values. We also observe that with the grid size∆xi we only retain information at
scales longer than∆xi, a property we have already mentioned in the context of aliasing (Sec-
tion 1.12). The shorter spatial scales have simply been eliminated bythe spatial averaging
(Figure3-2).

-
x

6

- -

T̄i

qi−1/2 qi+1/2

xi

T

-�
∆xi

Figure 3-2 Replacement of the con-
tinuous functionT by its cell-averaged
discrete values̄Ti. The evolution of the
finite-volume averaged temperature is
given by the difference of the fluxq
between the surrounding interfaces at
xi−1/2 andxi+1/2.

A further exact time-integration of (3.35) yields

T̄ n+1
i − T̄ ni +

∫ tn+1

tn
qi+1/2 dt−

∫ tn+1

tn
qi−1/2 dt

∆xi
= 0,

expressing that the difference in average temperature (i.e., heat content) is given by the net
flux entering the finite cell during the given time interval. Again, to this stage, no approxi-
mation is needed, and the equation isexactand can be formulated in terms of time-averaged
fluxesq̂
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q̂ =
1

∆tn

∫ tn+1

tn
q dt (3.36)

to yield an equation for discrete averaged quantities:

T̄ n+1
i − T̄ ni

∆tn
+

q̂i+1/2 − q̂i−1/2

∆xi
= 0. (3.37)

This equation is stillexactbut to be useful needs to be supplemented with a scheme to cal-
culate the average fluxeŝq as functions of average temperaturesT̄ . Only at that point are
discretization approximations required, and discretization errors introduced.

It is noteworthy also to realize how easy the introduction ofnon-uniform grid spacing
and time-stepping has been up to this point. Though we reference the interfaces by index
i± 1/2, the position of an interface does not need to lie at mid-distance between consecutive
grid nodesxi. Only their logical, topological position must be ordered in the sense that grid
nodes and interfaces must be interleaved.

Without further investigation of the way average fluxes can be computed, we interpret
different discretization methods in relation to the mathematical budget formulation used to
establish the governing equations (Figure3-3). From brute-force replacement of differential
operators by finite differences to the establishment of equations for finite volumes and subse-
quent discretization of fluxes, all methods aim at replacingthe continuous problem by a finite
set of discrete equations.

One of the main advantages of the finite-volume approach presented here is its conserva-
tion property. Consider the set of integrated equations forconsecutive cells:

∆x1T̄
n+1
1 = ∆x1T̄

n
1 + ∆tnq̂1/2 −∆tnq̂1+1/2

...

∆xi−1T̄
n+1
i−1 = ∆xi−1T̄

n
i−1 + ∆tnq̂i−1−1/2 −∆tnq̂i−1/2

∆xiT̄
n+1
i = ∆xiT̄

n
i + ∆tnq̂i−1/2 −∆tnq̂i+1/2

∆xi+1T̄
n+1
i+1 = ∆xi+1T̄

n
i+1 + ∆tnq̂i+1/2 −∆tnq̂i+1+1/2

...

∆xmT̄
n+1
m = ∆xmT̄

n
m + ∆tnq̂m−1/2 −∆tnq̂m+1/2.

Since every flux appears in two consecutive equations with opposite sign, the flux leaving
a cell enters its neighbor and there is no loss or gain of the quantity being transported across
cells (heat in the case of temperature). This is an expression of local conservationbetween
grid cells.

Furthermore, summation of all equations leads to complete cancellation of the fluxes
except for the very first and last ones. What we obtain is none other than the exact expression
for evolution of the total quantity. In the case of temperature, this is a global heat budget:
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Discrete equations

-

?

�

? +

ρ*

�

1

*
-�

?

6 dx dy → 0

dx

d
y

ρu+
d(ρu)

ρu

∂ρ
∂t + ∂(ρu)

∂x + ∂(ρv)
∂y = 0

dx ∼ ∆x
Finite difference

Divergence theorem

Control volume budget
∂ρ̄
∂t + 1

V

∫
S
ρu·n dS = 0Flux (ρu·n) approximations

Figure 3-3 Schematic representation of several discretization methods. ¿From the budget calculations
(upper-left box), the limit to infinitesimal values ofdx, dy leads to the continuous equations (upper-right
box), whereas keeping differentials formally at finite values leads to crude finite differencing (downward
path from upper left to bottom left). If the operators in the continuous equations are discretized using
Taylor expansions, higher-quality finite-difference methods are obtained (diagonal path from upper
right to lower left). Finally, by preliminary integration of the continuous equations over a finite volume
and then discretization of fluxes (path from upper right to lower right and then to lower left), discrete
equations satisfying conservation properties can be designed.
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6

-
x

- -

T̄i

q̂i−1/2 q̂i+1/2

T

i i + 1i − 11 m

--

x1/2 xm+1/2

Figure 3-4 Within a domain covered
by m finite volumes, fluxes at the in-
terface ensure conservation of the rele-
vant property (heat in the case of tem-
perature) between finite volumes, since
the fluxes are uniquely defined at in-
terfaces. Fluxes therefore redistribute
the property from cell to cell across
the domain, without actually changing
their total content, except for import
and export at the end points. The finite-
volume approach easily ensures both
local and global conservation.

d

dt

∫ xm+1/2

x1/2

T dx = q1/2 − qm+1/2 (3.38)

which states that the total heat content of the system increases or decreases over time accord-
ing to the import or export of heat at the extremities of the domain. In particular, if the domain
is insulated (q = 0 at both boundaries), the total heat content is conserved in the numerical
scheme as well as in the original mathematical model. Moreover, this holds irrespectively of
the way by which the fluxes are evaluated from the cell-averaged temperatures, provided that
they are uniquely defined at every cell interfacexi+1/2. Therefore, the finite-volume approach
also ensuresglobal conservation.

We will show later how advective and diffusive fluxes can be approximated using the cell-
averaged discrete values̄Ti, but will have to remember then that the conservative character of
the finite-volume approach is ensured simply by using a unique flux estimate at each volume
interface.

Analytical Problems

3-1. Derive the energy equation (3.12) from equations (3.1) and (3.11).

3-2. Derive the continuity equation (3.19) from first principles by invoking conservation of
volume. (Hint: State that the volume in a cube of dimensions∆x∆y∆z is unchanged
as fluid is imported and exported through all six sides.)

3-3. A laboratory tank consists of a cylindrical container 30 cm in diameter, filled whilst
at rest with 20 cm of fresh water and then spun at 30 rpm. After astate of solid-
body rotation is achieved, what is the difference in water level between the rim and the
center? How does this difference compare to the minimum depth at the center?
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3-4. Consider the Mediterranean Sea of surfaceS = 2.5× 1012 m2 over which an average
heat loss of7 W/m2 is observed. Due to an average surface water loss of0.9 m/year
(evaporation being more important than rain and river runoff combined), salinity would
increase, water level drop and temperature decrease, if it were not for a compensation
by exchange with the Atlantic Ocean through the Strait of Gibraltar. Assuming that
water, salt and heat contents of the Mediterranean do not change over time and that ex-
change across Gibraltar is accomplished by a two-layer process (Figure3-5), establish
sea-wide budgets of water, salt and heat. Given that the Atlantic inflow is characterized
by Ta = 15.5◦C,Sa = 36.2 and a volume flow of1.4 Sv (1 Sv= 106 m3/s), what are the
outflow characteristics? Is the outflow at the surface or at the bottom?

-
�

Tm, Sm

Ta, Sa

Gibraltar sill

7 W/m2 0.9 m/year water loss Figure 3-5 Schematic representation
of the Mediterranean basin and its ex-
changes across the Strait of Gibraltar
in order to perform budget calculations,
relating Atlantic Water characteristics
Ta, Sa, and losses over the basin, to
Mediterranean outflow characteristics
Tm, Sm.

3-5. Within the Boussinesq approximation and for negligible diffusion in (3.26), show that
for an ocean at rest, density can only be a function of depth:ρ = ρ(z). (Hint: The
situation at rest is characterized by the absence of movement and temporal variations.)

3-6. Neglecting atmospheric pressure, calculate the pressurep0(z) = −ρ0gz at 500 m depth
in the ocean. Compare it with the dynamic pressure of an oceanat rest of density
ρ = ρ0 − ρ′ez/h, whereρ′ = 5 kg/m3 andh = 30 m. What do you conclude? Do you
think measurements of absolute pressure could be useful in determining the depth of
observation?

3-7. In a dry atmosphere where the potential temperature is constant over the vertical, the
densityρ(z) can be expressed in terms of the actual temperatureT (z) as

ρ(z) = ρ0

(
T (z)

θ

)Cv/R

(3.39)

according to (3.13). This allows the equation of state (3.7) to be expressed in terms of
only pressurep(z) and temperature. By taking the vertical derivative of this expression
and using the hydrostatic balance (dp/dz = −ρg), show that the vertical temperature
gradientdT/dz is constant. Of what sign is this constant?
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Numerical Exercises

3-1. Compare values of density obtained with the full equation ofstate for seawater found in
MATLAB  file iew80.m with values obtained from the linearized version (3.6), for
various trial values ofT andS. Then compare density differences between two differ-
ent water masses, calculated again with both state equations. Finally, using numerical
derivatives of the full equation of state with the help of MATLAB  file iew80.m , can
you provide a numerical estimate for the expansion coefficientsα andβ introduced in
(3.6) for a Mediterranean water mass ofT0 = 12.8◦C,S0 = 38.4?

3-2. Generalize the finite-volume method to a two-dimensional system. In particular, what
kind of fluxes do you have to define and how do you interpret them? Is local and global
conservation still ensured?

3-3. Derive a conservative form of the momentum equations without friction in spherical
coordinates and design a finite-volume discretization. (Hint: Use volume conserva-
tion expressed in spherical coordinates and volume integrals in spherical coordinates
according to

∫
V u dV =

∫
r

∫
λ

∫
ϕ u r

2 cosϕ dϕ dλ dr.)

3-4. Using the finite-volume approach of the one-dimensional temperature evolution assum-
ing that only advection is present, with a flow directed towards increasingx (u > 0),
discretize the average fluxes. What kind of hypothesis do youneed to make to obtain
an algorithm allowing you to calculatēT n+1

i knowing the values of̄T at the preceding
time-step? Does your approximation remain valid whenu < 0 ?



Joseph Valentin Boussinesq
1842 – 1929

Perhaps not as well known as he deserves, Joseph Boussinesq was a French physicist who
made significant contributions to the theory of hydrodynamics, vibration, light and heat. One
possible reason for this relative obscurity is the ponderous style of his writings. Among his
subjects of study was hydraulics, which led to his research on turbulent flow. In 1896, the
work of Osborne Reynolds (see biography at the end of the following chapter) was barely a
year old when it was picked up by Boussinesq, who applied the partitioning between average
and fluctuating quantities to observations of pipe and riverflows. This led him to identify cor-
rectly that the cause of turbulence in those instances is friction against boundaries. This paved
the way for Ludwig Prandtl’s theory of boundary layers (see biography at end of Chapter 8).

It can almost be claimed that the wordturbulenceitself is owed in large part to Boussi-
nesq. Indeed, while Osborne Reynolds spoke of “sinuous motion”, Boussinesq used the more
expressive phrase “écoulement tourbillonnant et tumultueux”, which was reduced by one of
his followers to “régime turbulent”, hence turbulence. (Photo from Ambassade de France au
Canada)
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Vilhelm Frimann Koren Bjerknes
1862 – 1951

Early in his career, Bjerknes became interested in applyingthe then-recent work of Lord
Kelvin and Hermann von Helmholtz on energy and vorticity dynamics to motions in the at-
mosphere and ocean. He argued that the dynamics of air and water flows on geophysical
scales could be framed as a problem of physics and that, givena particular state of the atmo-
sphere, one should be able to compute its future states. In other words, weather forecasting
is reducible to seeking the solution of a mathematical problem. This statement, self-evident
today, was quite revolutionary at the time (1904).

When in 1917, he was offered a professorship at the University of Bergen in Norway,
Bjerknes founded the Bergen Geophysical Institute and began systematic efforts at develop-
ing a self-contained mathematical model for the evolution of weather based on measurable
quantities. Faced by the complexity of these equations, he gradually shifted his efforts toward
more qualitative aspects of weather description, and out ofthis work came the now familiar
concepts of air masses, cyclones and fronts.

Throughout his work, Bjerknes projected enthusiasm for hisideas and was able to attract
and stimulate young scientists to follow in his footsteps, including his son Jacob Bjerknes.
(Photo courtesy of the Bergen Geophysical Institute)

87



88 CHAPTER 3. EQUATIONS



Chapter 4

Equations Governing Geophysical
Flows

(October 18, 2006)SUMMARY : This chapter continues the development of the equations
that form the basis of dynamical meteorology and physical oceanography. Averaging is per-
formed over turbulent fluctuations and further simplifications are justified based on a scale
analysis. In the process, some important dimensionless numbers are introduced. The need
for an appropriate set of initial and boundary conditions isalso explored from mathematical,
physical and numerical points of view.

4.1 Reynolds-averaged equations

Geophysical flows are typically in a state of turbulence, andmost often we are only interested
in the statistically averaged flow, leaving aside all turbulent fluctuations. To this effect and
following Reynolds (1894), we decompose each variable intoa mean, denoted with a set of
brackets, and a fluctuation, denoted by a prime:

u = 〈u〉 + u′, (4.1)

such that〈u′〉 = 0 by definition.
There are several ways to define the averaging process, some more rigorous than others,

but we shall not be concerned here with those issues, prefering to think of the mean as a
temporal average over rapid turbulent fluctuations, on a time interval long enough to obtain
a statistically significant mean, yet short enough to retainthe slower evolution of the flow
under consideration. Our hypothesis is that such an intermediate time interval exists.

Quadratic expressions such as the productuv of two velocity components have the fol-
lowing property:

89
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〈uv〉 = 〈〈u〉 〈v〉〉+ 〈〈u〉 v′〉↗=0
+ 〈〈v〉u′〉↗=0

+ 〈u′v′〉
= 〈u〉 〈v〉+ 〈u′v′〉 (4.2)

and similarly for〈uu〉, 〈wu〉, 〈uρ〉 etc.We recognize here that the average of a product is not
equal to the product of the averages. This is a double-edged sword: On one hand, it generates
mathematical complications but, on the other hand, it also creates interesting situations.

Our objective is to establish equations governing the mean quantities,〈u〉, 〈v〉, 〈w〉, 〈p〉
and〈ρ〉. Starting with the average of thex−momentum equation (3.21), we have:

∂ 〈u〉
∂t

+
∂ 〈uu〉
∂x

+
∂ 〈vu〉
∂y

+
∂ 〈wu〉
∂z

+ f∗ 〈w〉 − f 〈v〉 = − 1

ρ0

∂ 〈p〉
∂x

+ ν ∇2 〈u〉 (4.3)

which becomes

∂ 〈u〉
∂t

+
∂(〈u〉 〈u〉)

∂x
+
∂(〈u〉 〈v〉)

∂y
+
∂(〈u〉 〈w〉)

∂z
+ f∗ 〈w〉 − f 〈v〉 =

− 1

ρ0

∂ 〈p〉
∂x

+ ν ∇2 〈u〉 − ∂ 〈u′u′〉
∂x

− ∂ 〈u′v′〉
∂y

− ∂ 〈u′w′〉
∂z

. (4.4)

We note that this last equation for the mean field looks identical to the original equation,
except for the presence of three new terms at the end of the right-hand side. These terms
represent the effects of the turbulent fluctuations on the mean flow. Combining these terms
with corresponding frictional terms

∂

∂x

(
ν
∂ 〈u〉
∂x
− 〈u′u′〉

)
,

∂

∂y

(
ν
∂ 〈u〉
∂y
− 〈u′v′〉

)
,

∂

∂z

(
ν
∂ 〈u〉
∂z
− 〈u′w′〉

)

indicates that the averages of velocity fluctuations add to the viscous stresses (for example,
−〈u′w′〉 adds toν∂ 〈u〉 /∂z) and can therefore be considered as frictional stresses caused by
turbulence. To give credit to Osborne Reynolds who first decomposed the flow into mean and
fluctuating components, the expressions−〈u′u′〉,−〈u′v′〉 and−〈u′w′〉 are calledReynolds
stresses. Since they do not have the same form as the viscous stresses (ν∂ 〈u〉 /∂x etc.), it
can be said that the mean turbulent flow behaves as a fluid governed by a frictional law other
than that of viscosity. In other words, turbulent flow behaves as a non-Newtonian fluid.

Similar averages of they- andz-momentum equations (3.22)–(3.24) over the turbulent
fluctuations yield

∂ 〈v〉
∂t

+
∂(〈u〉 〈v〉)

∂x
+
∂(〈v〉 〈v〉)

∂y
+
∂(〈v〉 〈w〉)

∂z
+ f 〈u〉 − 1

ρ0

∂ 〈p〉
∂y

=

∂

∂x

(
ν
∂ 〈v〉
∂x
− 〈u′v′〉

)
+

∂

∂y

(
ν
∂ 〈v〉
∂y
− 〈v′v′〉

)
+

∂

∂z

(
ν
∂ 〈v〉
∂z
− 〈v′w′〉

)
(4.5)
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∂ 〈w〉
∂t

+
∂(〈u〉 〈w〉)

∂x
+
∂(〈v〉 〈w〉)

∂y
+
∂(〈w〉 〈w〉)

∂z
− f∗ 〈u〉 −

1

ρ0

∂ 〈p〉
∂z

= −g 〈ρ〉

∂

∂x

(
ν
∂ 〈w〉
∂x

− 〈u′w′〉
)

+
∂

∂y

(
ν
∂ 〈w〉
∂y

− 〈v′w′〉
)

+
∂

∂z

(
ν
∂ 〈w〉
∂z

− 〈w′w′〉
)
. (4.6)

4.2 Eddy coefficients

Computer models of geophysical fluid systems are limited in their spatial resolution. They
are therefore incapable of resolving all but the largest turbulent fluctuations, and all motions
of lengths shorter than the mesh size. In one way or another, we must state something about
these unresolved turbulent and sub-grid scale motions in order to incorporate their aggregate
effect on the larger, resolved flow. This process is calledsub-grid scale parameterization.
Here, we present the simplest of all schemes. More sophisticated parameterizations will
follow in later sections of the book, particularly Chapter14.

The primary effect of fluid turbulence and of motions at sub-grid scales (small eddies and
billows) is dissipation. It is therefore tempting to represent both the Reynolds stresses and
the effect of unresolved motions as some form of super viscosity. This is done summarily by
replacing the molecular viscosityν of the fluid by a much largereddy viscosityto be defined
in terms of turbulence and grid properties. This rather crude approach was first proposed by
Boussinesq.

The parameterization, however, recognizes one essential property: the anisotropy of the
flow field and of its modeling grid. Horizontal and vertical directions are treated differently
by assigning two distinct eddy viscosities,A in the horizontal andνE in the vertical. Because
turbulent motions and mesh size cover longer distances in the horizontal than in the vertical,
A covers a much larger span of unresolved motions and needs to be significantly larger than
νE . Furthermore, as they ought to depend in some elementary wayon flow properties and grid
dimensions, each of which may vary from place to place, eddy viscosities should be expected
to exhibit some spatial variations. Returning to the basic manner by which the momentum
budget was established, with stress differentials among forces on the right-hand sides, we are
led to retain these eddy coefficients inside the first derivatives, as follows:
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, (4.7a)
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, (4.7b)
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Since we will work exclusively with averaged equations in the rest of the book (unless
otherwise specified), there is no longer any need to denote averaged quantities with brackets.
Consequently,〈u〉 has been replaced byu and similarly for all other variables.

In the energy (density) equation, heat and salt molecular diffusion needs likewise to be
superseded by the dispersing effect of unresolved turbulent motions and sub-grid scale pro-
cesses. Using the same horizontal eddy viscosityA for energy as for momentum is generally
adequate, because the larger turbulent motions and subgridprocesses act to disperse heat and
salt as effectively as momentum. In the vertical, however, the practice is usually to distinguish
dispersion of energy from that of momentum by introducing a verticaleddy diffusivityκE that
differs from the vertical eddy viscosityνE . The energy (density) equation then becomes:
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)
, (4.8)

The linear continuity equation is not subjected to any such adaptation and remains unchanged:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (4.9)

For more details on eddy viscosity and diffusivity and some schemes to make those de-
pend on flow properties, the reader is referred to textbooks on turbulence, such as Tennekes
and Lumley (1972) or Pope (2000). A widely used method to incorporate sub-grid scale
processes in the horizontal eddy viscosity is that proposedby Smagorinsky (1964):

A = ∆x ∆y

√(
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)2
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(
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)2

+
1

2
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∂u

∂y
+
∂v

∂x

)2

, (4.10)

in which∆x and∆y are the local grid dimensions. Because such sub-grid scale parameteri-
zation is meant to represent physical processes, it ought toobey certain symmetry properties,
notably invariance with respect to rotation of the coordinate system in the horizontal plane.
An appropriate formulation forA ought therefore to be expressed solely in terms of the ro-
tational invariants of the tensor formed by the velocity derivatives. One should note that the
preceding formulation unfortunately does not satisfy thiscondition. Nonetheless it is often
used in numerical models.
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Table 4.1 TYPICAL SCALES OF ATMOSPHERIC AND OCEANIC FLOWS

Variable Scale Unit Atmospheric value Oceanic value
x L m 100 km = 105 m 10 km = 104 m
y L
z H m 1 km = 103 m 100 m = 102 m
t T s ≥ 1

2 day' 4× 104 s ≥ 1 day' 9× 104 s
u U m/s 10 m/s 0.1 m/s
v U
w W m/s
p P kg/m·s2
ρ ∆ρ kg/m3

4.3 Scales of motion

Simplifications of the equations established in the preceding section are possible beyond the
Boussinesq approximation and averaging over turbulent fluctuations. However, these require
a preliminary discussion of orders of magnitude. Accordingly, let us introduce a scale for
every variable, as we already did in a limited way in1.10. By scale, we mean a dimensional
constant of dimensions identical to that of the variable andhaving a numerical value repre-
sentative of the values of that same variable. Table4.1 provides illustrative scales for the
variables of interest in geophysical fluid flow. Obviously, scale values do vary with every
application, and the values listed in Table4.1 are only suggestive. Even so, the conclusions
drawn from the use of these particular values stand in the vast majority of cases. If doubt
arises in a specific situation, the following scale analysiscan always be redone.

In the construction of Table4.1, we were careful to satisfy the criteria of geophysical fluid
dynamics outlined in Sections1.5and1.6,

T & 1

Ω
, (4.11)

for the time scale and

U

L
. Ω, (4.12)

for the velocity and length scales. It is generally not required to discriminate between the
two horizontal directions, and we assign the same length scaleL to both coordinates and the
same velocity scaleU to both velocity components. The same, however, cannot be said of the
vertical direction. Geophysical flows are typically confined to domains that are much wider
than they are thick, and theaspect ratioH/L is small. The atmospheric layer that determines
our weather is only about 10 km thick, yet cyclones and anticyclones spread over thousands
of kilometers. Similarly, ocean currents are generally confined to the upper hundred meters
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of the water column but extend over tens of kilometers or more, up to the width of the ocean
basin. It follows that for large-scale motions

H � L, (4.13)

and we expectW to be vastly different fromU .
The continuity equation in its reduced form (4.9) contains three terms, of respective orders

of magnitude:

U

L
,

U

L
,

W

H
.

We ought to examine three cases:W/H is much less than, on the order of, or much greater
thanU/L. The third case must be ruled out. Indeed, ifW/H � U/L, the equation reduces
in first approximation to∂w/∂z = 0, which implies thatw is constant in the vertical; because
of a bottom somewhere, that flow must be supplied by lateral convergence (see later section
4.6.1), and we deduce that the terms∂u/∂x and/or∂v/∂y may not be both neglected at the
same time. In sum,w must be much smaller than initially thought.

In the first case, the leading balance is two-dimensional,∂u/∂x + ∂v/∂y = 0, which
implies that convergence in one horizontal direction must be compensated by divergence in
the other horizontal direction. This is very possible. The intermediate case, withW/H on
the order ofU/L, implies a three-way balance, which is also acceptable. In summary, the
vertical-velocity scale must be constrained by

W . H

L
U (4.14)

and, by virtue of (4.13),

W � U. (4.15)

In other words, large-scale geophysical flows are shallow (H � L) and nearly two-dimensional
(W � U ).

Let us now consider thex–momentum equation in its Boussinesq and turbulence-averaged
form (4.7a). Its various terms scale sequentially as

U

T
,

U2

L
,

U2

L
,

WU

H
, ΩW , ΩU ,

P

ρ0L
,
AU
L2

,
AU
L2

,
νEU

H2
.

The previous remark immediately shows that the fifth term (ΩW ) is always much smaller
than the sixth (ΩU ) and can be safely neglected1.

Because of the fundamental importance of the rotation termsin geophysical fluid dynam-
ics, we can anticipate that the pressure-gradient term willscale as the Coriolis terms,i.e.,

P

ρ0L
= ΩU → P = ρ0ΩLU. (4.16)

1Note, however, that near the Equator, wheref goes to zero whilef∗ reaches its maximum, the simplification
may be invalidated. If this is the case, a re-examination of the scales is warranted. The fifth term is likely to remain
much smaller than some other terms, such as the pressure gradient, but there may be instances when thef∗ term
must be retained. Because such a situation is exceptional, we will dispense with thef∗ term here.
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For typical geophysical flows, this dynamic pressure is muchsmaller than the basic hydro-
static pressure due to the weight of the fluid.

Although horizontal and vertical dissipation due to turbulent and sub-grid scale processes
is retained in the equation (its last three terms), it cannotdominate the Coriolis force in
geophysical flows, which ought to remain among the dominant terms. This implies

AU
L2

and
νEU

H2
. ΩU. (4.17)

Similar considerations apply to they–momentum equation (4.7b). But, the vertical mo-
mentum equation (4.7c) may be subjected to additional simplifications. Its various terms
scale sequentially as
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L
,
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,

W 2

H
, ΩU ,
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,
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,
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,
νEW

H2
.

The first term (W/T ) cannot exceedΩW , which is itself much less thanΩU , by virtue of
(4.11) and (4.15). The next three terms are also much smaller thanΩU , this time because
of (4.12), (4.14) and (4.15). Thus, the first four terms may all be neglected compared to the
fifth. But, this fifth term is itself quite small. Its ratio to the first term on the right-hand side
is

ρ0ΩHU

P
∼ H

L
,

which, according to (4.16) and (4.13) is much less than one.
Finally, the last three terms are small. WhenW is substituted forU in (4.17), we have

AW
L2

and
νEW

H2
. ΩW � ΩU. (4.18)

Thus, the last three terms on the right-hand side of the equation are much less than the fifth
term on the left, which was already found to be very small. In summary, only two terms
remain, and the vertical-momentum balance reduces to the simplehydrostatic balance

0 = − 1

ρ0

∂p

∂z
− gρ

ρ0
. (4.19)

In the absence of stratification (density perturbationρ nil), the next term in line that
should be considered as a possible balance to the pressure gradient(1/ρ0)(∂p/∂z) is f∗u.
However, under such balance, the vertical variation of the pressurep would be given by the
vertical integration ofρ0f∗u and its scale beρ0ΩHU . Since this is much less than the already
established pressure scale (4.16), it is negligible, and we conclude that the vertical variation
of p is very weak. In other words,p is nearlyz–independent in the absence of stratification:

0 = − 1

ρ0

∂p

∂z
. (4.20)

So, the hydrostatic balance (4.19) continues to hold in the limitρ→ 0.
Since the pressurep is already a small perturbation to a much larger pressure, itself in

hydrostatic balance, we conclude that geophysical flows tend to be fully hydrostatic even in
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the presence of substantial motions2. Looking back, we note that the main reason behind this
reduction is the strong geometric disparity of geophysicalflows (H � L).

In rare instances when this disparity between horizontal and vertical scales does not exist,
such as in convection plumes and short internal waves, the hydrostatic approximation ceases
to hold and the vertical-momentum balance includes a three-way balance between vertical
acceleration, pressure gradient and buoyancy.

4.4 Recapitulation of equations governing geophysical flows

The Boussinesq approximation performed in the previous chapter and the preceding devel-
opments have greatly simplified the equations. We recapitulate them here.
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y −momentum:
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu =

− 1

ρ0

∂p

∂y
+

∂

∂x

(
A∂v
∂x

)
+

∂

∂y

(
A∂v
∂y

)
+

∂

∂z

(
νE
∂v

∂z

)
(4.21b)

z −momentum: 0 = − ∂p

∂z
− ρg (4.21c)

continuity:
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energy:
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where the reference densityρ0 and the gravitational accelerationg are constant coefficients,
the Coriolis parameterf = 2Ω sinϕ is dependent on latitude or taken as a constant, and the
eddy viscosity and diffusivity coefficientsA, νE andκE may taken as constants or functions
of flow variables and grid parameters. These five equations for the five variablesu, v,w, p and
ρ form a closed set of equations, the cornerstone of geophysical fluid dynamics, sometimes
calledprimitive equations.

Using the continuity equation (4.21d), the horizontal-momentum and density equations

2According to Nebeker (1995, page 51), the scientist deserving credit for the hydrostatic balance in geophysical
flows is Alexis Clairaut (1713–1765).
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can be written inconservative form:
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These will be found useful in numerical discretization.

4.5 Important dimensionless numbers

The scaling analysis of Section4.3was developed to justify the neglect of some small terms.
But this does not necessarily imply that the remaining termsare equally large. We now wish
to estimate the relative sizes of those terms that have been retained.

The terms of the horizontal momentum equations in their lastform (4.21a) and (4.21b)
scale sequentially as
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By definition, geophysical fluid dynamics treats those motions in which rotation is an impor-
tant factor. Thus, the termΩU is central to the preceding sequence. A division byΩU , to
measure the importance of all other terms relative to the Coriolis term, yields the following
sequence of dimensionless ratios:
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The first ratio,

RoT =
1

ΩT
, (4.23)

is called thetemporal Rossby number. It compares the local time rate of change of the velocity
to the Coriolis force and is on the order of unity or less, as has been repeatedly stated [see
(4.11)]. The next number,
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Ro =
U

ΩL
, (4.24)

which compares advection to Coriolis force, is called theRossby number3 and is fundamental
in geophysical fluid dynamics. Like its temporal analogueRoT , it is at most on the order of
unity by virtue of (4.12). As a general rule, the characteristics of geophysical flows vary
greatly with the values of the Rossby numbers.

The next number is the product of the Rossby number byWL/UH , which is on the order
of one or less by virtue of (4.14). It will be shown in Section11.5that the ratioWL/UH is
generally on the order of the Rossby number itself. The next ratio,P/ρ0ΩLU , is on the order
of unity by virtue of (4.16).

The last two ratios measure the relative importance of horizontal and vertical friction. Of
the two, only the latter bears a name:

Ek =
νE

ΩH2
, (4.25)

is called theEkman number. For geophysical flows, this number is small. For example,
with an eddy viscosityνE as large as 10−2 m2/s, Ω = 7.3× 10−5 s−1 andH = 100 m,
Ek = 1.4× 10−2. The Ekman number is even smaller in laboratory experimentswhere the
viscosity reverts to its molecular value and the height scaleH is much more modest. [Typical
experimental values areΩ = 4 s−1, H = 20 cm, andν(water) = 10−6 m2/s, yieldingEk = 6
× 10−6.] Although the Ekman number is small, indicating that the dissipative terms in the
momentum equation may be negligible, these need to be retained. The reason will become
clear in Chapter8, when it is shown that vertical friction creates a very important boundary
layer.

In nonrotating fluid dynamics, it is customary to compare inertial and frictional forces
by defining theReynolds number, Re. In the preceding scaling, inertial and frictional forces
were not compared to each other but each was instead comparedto the Coriolis force, yielding
the Rossby and Ekman numbers, respectively. There exists a simple relationship between the
three numbers and the aspect ratioH/L:
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. (4.26)

Since the Rossby number is on the order of unity or slightly less, but the Ekman number and
the aspect ratioH/L are both much smaller than unity, the Reynolds number of geophysical
flows is extremely large, even after the molecular viscosityhas been replaced by a much
larger eddy viscosity.

With (4.16), the two terms in the hydrostatic equation (4.21c) scale respectively as

P

H
, g∆ρ

and the ratio of the latter over the former is
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=

U

ΩL
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= Ro · gH∆ρ
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.

3See biographic note at the end of this chapter.
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This leads to the additional dimensionless ratio

Ri =
gH∆ρ

ρ0U2
, (4.27)

which we already encountered in Section1.6. It is called theRichardson number4. For
geophysical flows, this number may be much less than, on the order of, or much greater than
unity, depending on whether stratification effects are negligible, important or dominant.

4.6 Boundary conditions

The equations of section4.4 governing geophysical flows form a closed set of equations,
with the number of unknown functions being equal to the number of available independent
equations. However, the solution of those equations is uniquely defined only when additional
specifications are provided. Those auxiliary conditions concern information on the initial
state and geographical boundaries of the system (Figure4-1).

�

-�

6?

	�

Figure 4-1 Schematic representation of possible exchanges between the system under investigation
and the surrounding environment. Boundary conditions mustspecify the influence of this outside world
on the evolution within the domain. Exchanges may take placeat the air-sea interface, in bottom layers,
along coasts and/or at any other boundary of the domain.

Because the governing equations (4.21) contain first-order time derivatives ofu, v andρ,
initial conditionsare required, one for each of these three-dimensional fields. Because the
respective equations, (4.21a), (4.21b) and (4.21e), providetendenciesfor these variables in
order to calculate futurevalues, it is necessary to specify from where to start. The variables

4See biography at the end of Chapter 14
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for which such initial conditions are required are calledstate variables. The remaining vari-
ablesw andp, which have no time derivative in the equations, are calleddiagnosticvariables,
i.e., they are variables that can be determined at any moment fromthe knowledge of the other
variables at the same moment. Note that, if a non-hydrostatic formalism is retained, the time
derivative of the vertical velocity arises [see (4.7c)], andw passes from being a diagnostic
variable to a state variable, and an initial condition becomes necessary for it, too.

The determination of pressure needs special care dependingon whether the hydrostatic
approximation is applied and on the manner in which sea surface height is modeled. Since the
pressure gradient is a major force in geophysical flows, the handling of pressure is a central
question in the development of GFD models. This point deserves a detailed analysis, which
we postpone to section7.6.

The conditions to impose atspatialboundaries of the domain are more difficult to ascer-
tain than initial conditions. The mathematical theory of partial differential equations teaches
us that the number and type of required boundary conditions depend on the nature of the par-
tial differential equations. Standard classification (e.g., Durran 1999) of second-order partial
differential equations makes the distinction betweenhyperbolic, parabolicandelliptic equa-
tions. This classification is based on the concept ofcharacteristics, which are lines along
which information propagates. The geometry of these lines constrains where information is
propagated from the boundary into the domain or from the domain outward across the bound-
ary and therefore prescribes along which portion of the domain’s boundary information needs
to be specified in order to define uniquely the solution withinthe domain.

A major problem with the GFD governing equations is that their classification cannot be
established once and for all. Firstly, the coupled set of equations (4.21) is more complicated
than a single second-order equation for which standard classification can be performed and,
secondly, the equation type can change with the solution itself. Indeed, propagation of infor-
mation is mostly accomplished by a combination of flow advection and wave propagation,
and these may at various times leave and enter through the same boundary segment. Thus,
the number and type of required boundary conditions is susceptible to change over time with
the solution of the problem, which is obviously not knowna priori. It is far from a trivial task
to establish the mathematically correct set of boundary conditions, and the reader is referred
to specialized literature for further information (e.g., Blayo and Debreu, 2000; Durran, 1999).
The imposition of boundary conditions during analytical studies in the present book will be
guided by purely physical arguments, and the well behaved nature of the subsequent solution
will serve asa posterioriverification.

For the many situations when no analytical solution is available, not only isa posteriori
verification out of the question, but the problem is further complicated by the fact that numer-
ical discretization solves modified equations with truncation errors, rather than the original
equations. The equations may demand fewer or more boundary and initial conditions. If
the numerical scheme asks for more conditions than those provided by the original equations,
these conditions must be related to the truncation error in such a way that they disappear when
the grid size (or time step) vanishes: We demand that all boundary and initial conditions be
consistent.

Let us for example revisit the initialization problem of theleapfrog scheme from this
point of view. As we have seen (Section2.9), the leapfrog discretization∂u/∂t = Q →
ũn+1 = ũn−1 +2∆tQn needs two values,̃u0 andũ1, to start the time-stepping. The original
problem, however, indicates that only one initial condition, ũ0, may be imposed, the value
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of which is dictated by the physics of the problem. The secondcondition,ũ1, must then be
such that its influence disappears in the limit∆t→ 0. This will be the case with the explicit
Euler schemẽu1 = ũ0 + ∆tQ [whereQ(t0, ũ0) stands for the other terms in the equation
at timet0]. Indeed,ũ1 tends to the actual initial valuẽu0 and the first leapfrog step yields
ũ2 = ũ0 + 2∆tQ(t1, ũ0 + O(∆t)) which is consistent with a finite difference over a2∆t
time step.

Leaving for later sections the complexity of the additionalconditions that may be required
by virtue of the discretization schemes, the following sections present the boundary condi-
tions that are most commonly encountered in GFD problems. They stem from basic physical
requirements.

4.6.1 Kinematic conditions

A most important condition, independent of any physical property or sub-grid scale parame-
terization, is that air and water flows do not penetrate land5. To translate this impermeability
requirement into a mathematical boundary condition, we simply express that the velocity
must be tangent to the land boundary, that is, the normal vector to the boundary surface and
the velocity vector are orthogonal to each other.

Consider the solid bottom of the domain. With this boundary defined asz − b(x, y) = 0,
the normal vector is given by [∂(z−b)/∂x, ∂(z−b)/∂y, ∂(z−b)/∂z] = [−∂b/∂x,−∂b/∂y,
1], the boundary condition is

w = u
∂b

∂x
+ v

∂b

∂y
at the bottom. (4.28)

We can interpret this condition in terms of a fluid budget at the bottom (Figure4-2) or
alternatively as the condition that the bottom is a materialsurface of the fluid, not crossed by
the flow and immobile. Expressing that the bottom is a material surface indeed demands

d

dt
(z − b) = 0, (4.29)

which is equivalent to (4.28) sincedz/dt = w and∂b/∂t = 0.
At a free surface, the situation is similar to the bottom except for the fact that the boundary

is moving with the fluid. If we exclude overturning waves, theposition of the surface is
uniquely defined at every horizontal point by its vertical positionη (Figure4-3), andz−η = 0
is the equation of the boundary. We then express that it is a material surface6:

d

dt
(z − η) = 0 at the free surface (4.30)

and obtain the surface boundary condition

w =
∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
at z = η. (4.31)

5There is no appreciable penetration of land by water and air at geophysical scales.
6Exceptions are evaporation and precipitation at the air-sea interface. When important, these may be accommo-

dated in a straightforward manner.
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Figure 4-2 Notation and two physical interpretations of the bottom boundary condition illustrated here
in a (x, z) plane for a topography independent ofy. The impermeability of the bottom imposes that
the velocity be tangent to the bottom defined byz − b = 0. In terms of the fluid budget, which can be
extended to a finite volume approach, expressing that the horizontal inflow matches the vertical outflow
requiresu (b(x+ dx)− b(x)) = w dx, which fordx → 0 leads to (4.28). Note that the velocity ratio
w/u is equal to the topographic slopedb/dx, which scales like the ratio of vertical to horizontal length
scales,i.e., theaspect ratio.

Particularly simple cases are those of a flat bottom and of a free surface of which the
vertical displacements are neglected (such as small water waves on the surface of the deep
sea) — called therigid-lid approximation, which will be scrutinized in Section7.6. In such
cases, the vertical velocity is simply zero at the corresponding boundary.

A difficulty with the free surface boundary arises because the boundary condition is im-
posed atz = η, i.e., at a location changing over time, depending on the flow itself. Such
a problem is called amoving boundary problem, a topic which is a discipline unto itself in
Computational Fluid Dynamics (CFD) (e.g., Crank 1987).

In oceanic models, lateral walls are introduced in additionto bottom and top boundaries
so that the water depth remains non-zero all the way to the edge (Figure4-4). This is because
watering and dewatering of land that would otherwise occur at the outcrop of the ocean floor
is difficult to model with a fixed grid. At a vertical wall, impermeability demands that the
normal component of the horizontal velocity be zero.

4.6.2 Dynamic condition

The previous impermeability conditions are purely kinematic, involving only velocity compo-
nents. Dynamical conditions, implicating forces, are sometimes also necessary, for example
when requiring continuity of pressure at the air-sea interface.

Ignoring the effect of surface tension, which is important only for very short water waves
(capillary waves, with wavelengths no longer than a few centimeters), the pressurepatm

exerted by the atmosphere on the sea must equal the pressurepsea exerted by the ocean onto
the atmosphere:

patm = psea at air-sea interface. (4.32)
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Figure 4-3 Notation for the surface
boundary condition. Expressing imper-
meability of the moving surfacez −
η = 0 results in boundary condition
(4.31). (The elevation of the sea sur-
face heightη is exaggerated compared
to h for the purpose of illustration.)
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Figure 4-4 Vertical section across an
oceanic domain reaching the coast. Be-
sides surface and bottom boundaries,
the coast introduces an additionallat-
eral boundary. Introducing an artifi-
cal vertical wall is necessary because
a fixed numerical grid cannot describe
well the exact position of the water’s
edge. Occasionally, a vertical wall
is assumed at the shelf break, remov-
ing the entire shelf area from the do-
main, because the reduced physics of
the model are incapable of representing
some processes on the shelf.

If the sea surface elevation isη and pressure is hydrostatic below, it follows that continuity of
pressure at the actual surfacez = η implies

psea(z = 0) = patm at sea level + ρ0gη (4.33)

at the more convenient reference sea levelz = 0.
Another dynamical boundary condition depends on whether the fluid is considered in-

viscid or viscous. In reality all fluids are subject to internal friction, so that, in principle, a
fluid particle next to fixed boundary must adhere to that boundary and its velocity be zero.
However, the distance over which the velocity falls to zero near a boundary is usually short
because viscosity is weak. This short distance restricts the influence of friction to a narrow
band of fluid along the boundary, called aboundary layer. If the extent of this boundary
layer is negligible compared to the length scale of interest, and generally it is, it is permissi-
ble to neglect friction altogether in the momentum equations. In this case, slip between the
fluid and the boundary must be allowed, and the only boundary condition to be applied is the
impermeability condition.
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Figure 4-5 Open boundaries are com-
mon in regional modeling. Condi-
tions at open boundaries are gener-
ally difficult to impose. In particu-
lar the nature of the condition depends
on whether the flow enters the do-
main (carrying unknown information
from the exterior) or leaves it (export-
ing known information). (Courtesy
of the HYCOM Consortium on Data-
Assimilative Modeling)

If viscosity is taken into account, however, zero velocity must be imposed at a fixed
boundary, whereas along a moving boundary between two fluids, continuity of both velocity
and tangential stress is required. From the oceanic point ofview this requires

ρ0νE

(
∂u

∂z

)∣∣∣∣
at surface

= τx, ρ0νE

(
∂v

∂z

)∣∣∣∣
at surface

= τy (4.34)

whereτx andτy are the components of the wind stress exerted by the atmosphere onto the
sea. These are usually taken as quadratic functions of the wind velocityu10 10 meters above
the sea and parameterized using a drag coefficient:

τx = Cd ρair U10u10, τy = Cd ρair U10v10, (4.35)

whereu10 andv10 are thex andy components of the wind vectoru10, U10 =
√
u2

10 + v2
10 is

the wind speed, andCd is a drag coefficient with approximate value of 0.0015 for wind over
the sea.

Lastly, an edge of the model may be anopen boundary, by which we mean that the
model domain is terminated at some location that cuts acrossa broader natural domain. Such
a situation arises because computer resources or data availability restrict the attention to a
portion of a broader system. Examples are regional meteorological models and coastal ocean
models (Figure4-5). Ideally, the influence of the outside system onto the system of interest
should be specified along the open boundary, but this is most often impossible in practice, for
the obvious reason that the un-modeled part of the system is not known. Certain conditions,
however, can be applied. For example, waves may be allowed toexit but not enter through
the open boundary, or flow properties may be specified where the flow enters the domain but
not where it leaves the domain. In oceanic tidal models, the sea surface may be imposed as a
periodic function of time.

With increased computer power over the last decade, it has become common nowadays
to nestmodels into one another, that is, the regionally limited model of interest is embedded
in another model of lower spatial resolution but larger size, which itself may be embedded in
a yet larger model of yet lower resolution, all the way to a model that has no open boundary
(entire ocean basin or globe for the atmosphere). A good example is regional weather fore-
casting over a particular country: A grid covering this country and a few surrounding areas is
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nested into a grid that covers the continent, which itself isnested inside a grid that covers the
entire globe.

4.6.3 Heat, salt and tracer boundary conditions

For equations similar to those governing the evolution of temperature, salt or density,i.e.,
including advection and diffusion terms, we have the choiceof imposing the value of the
variable, its gradient, or a mixture of both. Prescribing the value of the variable (Dirichlet
condition) is natural in situations where it is known from observations (sea surface temper-
ature from satellite data, for example). Setting the gradient (Neumann condition) is done to
impose the diffusive flux of the quantity (e.g., heat flux) and is therefore often associated with
the prescription of turbulent air-sea exchanges. A mixed condition (Cauchy condition, Robin
condition) is typically used to prescribe a total, advective plus diffusive, flux. For a 1D heat
flux, for example, one sets the value ofuT − κT∂T/∂x at the boundary. For an insulating
boundary this flux is simply zero.

To choose the value of the variable or its gradient at the boundary, either observations
are invoked or exchange laws prescribed. The most complex exchange laws are those for
the air-sea interface, which involve calculation of fluxes depending on the sea surface water
temperatureTsea (often called SST), air temperatureTair, wind speedu10 at 10 meters above
the sea, cloudiness, moistureetc.Formally,

− κT
∂T

∂z

∣∣∣∣
z=η

= F (Tsea, Tair,u10, cloudiness,moisture, ...). (4.36)

For heat fluxes, imposing the condition atz = 0 rather than at the actual positionz = η of
the sea surface introduces an error much below the error in the heat flux estimate itself and is
a welcomed simplification.

If the density equation is used as a combination of both salinity and temperature equations
by invoking the linearized state equation,ρ = −αT+βS, and if it can be reasonably assumed
that all are dispersed with the turbulent diffusivity, the boundary condition on density can be
formulated as a weighted sum of prescribed temperature and salt fluxes:

νE
∂ρ

∂z
= − ανE

∂T

∂z
+ βνE

∂S

∂z
. (4.37)

For any tracer (a quantity advected and dispersed by the flow), a condition similar to those
on temperature and salinity can be imposed and, in particular, a zero total flux is common
when there is no tracer input at the boundary.

4.7 Numerical implementation of boundary conditions

Once mathematical boundary conditions are specified and values assigned at the boundaries,
we can tackle the task of implementing the boundary condition numerically. We illustrate the
process again with temperature as the example.

In addition to nodes forming the grid covering the domain being modeled, other nodes
are placed exactly at or slightly beyond the boundaries (Figure4-6). These additional nodes
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are introduced to facilitate the implementation of the boundary condition. If the condition is
to specify the valueTb of the numerical variablẽT , it is most natural to place a node at the
boundary (Figure4-6 right side) so that

T̃m = Tb, (4.38)

requires no interpolation and forms an exact implementation.

21 m

-� Domain of interest

6
Boundary inxb

6
Boundary with grid node

-� ∆x

Figure 4-6 Grid nodes cover the inte-
rior of the domain of interest. Addi-
tional nodes may be placedbeyonda
boundary as illustrated on the left side
or placedon the boundary as illustrated
on the right. The numerical implemen-
tation of the boundary condition de-
pends on the arrangement selected.

If instead the boundary condition is in the form of a flux, it ismore practical to have
two grid nodes straddling the boundary, with one slightly outside the domain and the other
slightly inside (Figure4-6 left side). In this manner, the derivative of the variable ismore
precisely formulated at the location of the boundary. With the index notation of Figure4-6,

T̃2 − T̃1

∆x
' ∂T

∂x

∣∣∣∣
xb

+
∆x2

24

∂3T

∂x3

∣∣∣∣
xb

(4.39)

yields a second-order approximation, and the flux boundary condition−κT (∂T/∂x) = qb

turns into

T̃1 = T̃2 + ∆x
qb

κT
. (4.40)

There are cases, however, when the situation is less ideal. This occurs when a total,
advective plus diffusive, flux boundary condition is specified (uT − κT (∂T/∂x) = qb).
Either the ending node isat the boundary, complicating the discretization of the derivative, or
it is placedbeyondthe boundary and the value ofT must be extrapolated. In the latter case,
extrapolation is performed with second-order accuracy,

T̃1 + T̃2

2
' T (xb) +

∆x2

8

∂2T

∂x2

∣∣∣∣
xb

, (4.41)

and the total flux condition becomes

ub
T̃1 + T̃2

2
− κT

T̃2 − T̃1

∆x
= qb (4.42)

yielding the following condition on the end valuẽT1:
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T̃1 =
2qb∆x+ (2κb − ub∆x)T̃2

2κT + ub∆x
. (4.43)

In the former case, when the ending grid node lies exactly at the boundary, the straight-
foward difference

∂T

∂x
' T̃m − T̃m−1

∆x
(4.44)

provides only first-order accuracy at pointxm, and to recover second-order accuracy with this
node placement we need a numerical stencil that extends further into the domain (see Exercise
4-8). Therefore, to implement a flux condition, the preferred placement of the ending node is
half a grid step beyond the boundary. With this configurationthe accuracy is greater than with
the ending point placed at the boundary itself. The same conclusion is reached for the finite-
volume approach, since imposing a flux condition consists ofreplacing the flux calculation
at the boundary by the imposed value. We immediately realizethat in this case the natural
placement of the boundary is at the interface between grid points, because it is the location
where fluxes are calculated in the finite-volume approach.

The question that comes to mind at this point is whether or notthe level of truncation er-
ror in the boundary-condition implementation is adequate.To answer the question, we have
to compare this truncation error to other errors, particularly the truncation error within the
domain. Since there is no advantage in having a more accuratemethod at the relatively few
boundary points than at the many interior points, the sensible choice is to use the same trun-
cation order at the boundary as within the domain. The model then possesses a uniform level
of approximation. Sometimes, however, a lower order near the boundary may be tolerated
because there are many fewer boundary points than interior points, and a locally higher error
level should not penalize the overall accuracy of the solution. In the limit of∆x → 0, the
ratio of boundary points to the total number of grid points tends to zero, and the effect of less
accurate approximations at the boundaries disappears.

In (4.43), we used the boundary condition to calculate a value at a point outside of the
domain so that when applying the numerical scheme at the firstinterior point, the boundary
condition is automatically satisfied. The same approach canalso be used to implement the
artificial boundary conditions that are sometimes requiredby the numerical scheme. Con-
sider for example the fourth-order discretization (1.26) now applied to spatial derivatives in
the domain interior coupled with the need to impose a single boundary condition atxm of
Dirichlet type. The discrete operator in the interior

∂T

∂x

∣∣∣∣
xi

' 4

3

(
T̃i+1 − T̃i−1

2∆x

)
− 1

3

(
T̃i+2 − T̃i−2

4∆x

)
(4.45)

can be applied up toi = m − 2. At i = m − 1, the formula can no longer be applied,
unless we provide a value at a virtual pointT̃m+1 (Figure4-7). This can be accomplished by
requiring that a skewed fourth-order discretization near the boundary have the same effect as
the centered version using the virtual value.
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Figure 4-7 An operator spanning 2
points on each side of the calculation
point can be applied only up tom − 2
if a single Dirichlet condition is pre-
scribed. When applying the same op-
erator atm − 1 we face the problem
that the value atm+ 1 does not exist.

4.8 Accuracy and errors

Errors in a numerical model can be of several types. Following Ferziger and Perić (1999) we
classify them according to their origin.

• Modeling errors: This error is caused by the imperfections of the mathematical model
in representing the physical system. It is thus the difference between the evolution
of the real system and that of the exact solution of its mathematical representation.
Earlier in this chapter we introduced simplifications to theequations and added pa-
rameterizations of unresolved processes, which all introduce errors of representation.
Furthermore, even if the model formulation had been ideal, coefficients remain imper-
fecly known. Uncertainties in the accompanying boundary conditions also contribute
to modeling errors.

• Discretization errors: This error is introduced when the original equations are approx-
imated to transform them into a computer code. It is thus the difference between the
exact solution of the continuous problem and the exact numerical solution of the dis-
cretized equations. Examples are the replacement of derivatives by finite differences
and the use of guesses in predictor-corrector schemes.

• Iteration errors: This error originates with the use of iterative methods to perform
intermediate steps in the algorithm and is thus measured as the difference between the
exact solution of the discrete equations and the numerical solution actually obtained.
An example is the use of the so-called Jacobi method to inverta matrix at some stage
of the calculations: for the sake of time, the iterative process is interrupted before full
convergence is reached.

• Rounding errors: These errors are due to the fact that only a finite number of digits are
used in the computer to represent real numbers.

A well constructed model should ensure that

rounding errors� iteration errors� discretization errors� modeling errors.
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The order of these inequalities is easily understood: If thediscretization error were larger
than the modeling error, there would be no way to tell whetherthe mathematical model is
an adequate approximation of the physical system we are trying to describe. If the iteration
error were larger than the discretization error, the claim could not be made that the algorithm
generates a numerical solution that satisfies the discretized equations, etc.

In the following, we will deal neither with rounding errors (generally controlled by ap-
propriate compiler options, loop arrangements and double precision instructions), nor with
iteration errors (generally controlled by sensitivity analysis ora priori knowledge of accept-
able error levels for the convergence of the iterations). Modeling errors are discussed when
performing scale analysis and additional modeling hypotheses or simplifications (see for ex-
ample the Boussinesq and hydrostatic approximations), so that we may restrict our attention
here to the discretization error associated with the transformation of a continuous mathemat-
ical model into a discrete numerical scheme.

The concepts of consistence, convergence and stability mentioned in Chapter1 only pro-
vide information on the discretization error behavior when∆t tends to zero. In practice,
however, time steps (and spatial steps as well) are never tending towards zero but are kept at
fixed values, and the question arises about how accurate is the numerical solution compared
to the exact solution. In that case, convergence is only marginally interesting, and even in-
consistent schemes, if clever, may be able to provide results that cause lower actual errors
than consistent and convergent methods.

By definition, the discretization errorεu on a variableu is the difference between the
exact numerical solutioñu of the discretized equation and the mathematical solutionu of the
continuous equation:

εu = ũ − u. (4.46)

4.8.1 Discretization error estimates

In the case of explicit discretization (2.24) of inertial oscillations, we can obtain differential
equations for the errors by subtracting the modified equations (2.28) from the exact continu-
ous equation (2.23), to the leading order:

dεu
dt
− fεv = f2 ∆t

2
ũ +O(∆t2)

dεv
dt

+ fεu = f2 ∆t

2
ṽ +O(∆t2).

Obviously, we are not going to solve these equations to calculate the error because it would
be tantamount to solving the exact problem directly. What wenotice, however, is that the
error equations have source terms on the order of∆t (which vanish as∆t → 0 because the
scheme is consistent) and we anticipate that these will giverise to a proportional solution for
εu andεv. The truncation error of the solution should therefore be offirst order:

εu = O(∆t) ∼ f∆t

2
‖ ũ‖ . (4.47)

We can verify that the actual error is indeed divided by a factor two when the time step is
halved (Figure4-8).
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Figure 4-8 Relative discretization errorε = εu/ ‖ ũ‖ as a function of the dimensionless variablef∆t
in the case of inertial oscillations. The log-log graphs show the real errors (dots) and estimated values
of the error (circles) for an explicit scheme (left panel) and semi-explicit scheme (right panel). The
slope of the theoretical convergence rates (m = 1 on the left panel andm = 2 on the right panel) are
shown as well as the next orderm + 1. Actual errors after a Richardson extrapolation (crosses)prove
that the order is increased by 1 after extrapolation.

This is to be expected, since the equivalence theorem also states that for a linear problem,
the numerical solution and its truncation error share the same order, saym. The difficulty with
this approach is that for nonlinear problems, no guarantee can be made that this property
continues to hold or that the actual error can be estimated byinspection of the modified
equation.

To quantify the discretization error in nonlinear systems,we can resort to a sensitivity
analysis. Suppose the leading error of the solution is

εu = ũ− u = a∆tm, (4.48)

where the coefficienta is unknown and the ordermmay or may not be known. Ifm is known,
the parametera can be determined by comparing the solutionũ2∆t obtained with a double
step2∆t with the solutioñu∆t obtained with the original time step∆t:

ũ2∆t − u = a2m∆tm, ũ∆t − u = a∆tm (4.49)

from which7 falls the value ofa:

a =
ũ2∆t − ũ∆t

(2m − 1)∆tm
. (4.50)

The error estimate associated with the higher-resolution solution ũ∆t is

εu = ũ∆t − u = a∆tm =
ũ2∆t − ũ∆t

(2m − 1)
, (4.51)

7Notice that the difference must be doneat the same momentt, not the same time stepn.
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with which we can improve our solution by using (4.48)

ũ = ũ∆t −
ũ2∆t − ũ∆t

(2m − 1)
. (4.52)

This suggests that the two-time-step approach may yield theexact answer because it deter-
mines the error. Unfortunately, this cannot be the case because we are working with a discrete
representation of a continuous function. The paradox is resolved by realizing that, by using
(4.50), we discarded higher-order terms and therefore did not calculate the exact value ofa
but only an estimate of it. What our manipulation accomplished was the elimination of the
leading error term. This procedure is called aRichardson extrapolation:

u = ũ∆t −
ũ2∆t − ũ∆t

(2m − 1)
+O

(
∆tm+1

)
. (4.53)

Numerical calculations of the real error and error estimates according to (4.51) show good
performance of the estimators in the context of inertial oscillations (Figure4-8). Also, the
Richardson extrapolation increases the order by 1, except for the semi-implicit scheme at high
resolution, when no gain is achieved because saturation occurs (Figure4-8, right panel). This
asymptote corresponds to the inevitable rounding errors, and we can claim to have solved the
discrete equations “exactly”.

When considering the error estimate (4.51), we observe that the error estimate of a first-
order scheme (m = 1), is simply the difference between two solutions obtained with differ-
ent time steps. This is the basic justification for performing resolution sensitivity analysis
on more complicated models: Differences in model results due to a variation in resolution
may be taken as estimates of the discretization error. By extension, performing multiple
simulations with different model parameter values leads todifferences that are indicators of
modeling errors.

When the truncation orderm is not known, a third evaluation of the numerical solution,
with a quadruple time step4∆t, yields an estimate of both the orderm and the coefficienta
of the discretization error:

m =
1

log 2
log

(
ũ4∆t − ũ2∆t

ũ2∆t − ũ∆t

)
(4.54)

a = − ũ2∆t − ũ∆t

(2m − 1)∆tm
.

As we can see in practice (Figure4-9), this estimate provides a good estimate ofm when
resolution is sufficiently fine. This method can thus be used to determine the truncation order
of discretizations numerically, which can be useful to assess convergence rates of nonlinear
discretized systems or to verify the proper numerical implementation of a discretization (for
which the value ofm is known). In the latter case, if a method should be of second order but
the numerical estimate ofm according to (4.54) reveals only first-order convergence on well
behaved problems, a programming or implementation error isvery likely to blame.

Having access now to an error estimate, we can think of choosing the time step so as to
keep discretization errors below a prescribed level. If thetime step is prescribeda priori, the
error estimate allows us to verify that the solution remainswithin error bounds. The use of
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a fixed time step is common but might not be the most appropriate choice when the process
exhibits a mix of slower and faster processes (Figure4-10). Then, it may be preferable that
the time step be adjusted over time so as to follow the time scale of the system. In this case,
we speak aboutadaptive time stepping.
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Short time scales

∆t∆t



Figure 4-10 Use of different time steps∆t in function of the local error and time scales. The time step
is decreased until the local error estimate is smaller than aprescribed value. When estimated errors are
much smaller than allowed, the time step is increased.

Adaptive time stepping can be implemented by decreasing thetime step whenever the
error estimate starts to be excessive. Vice versa, when the error estimate indicates an unnec-
essarily short time step, it should be allowed to increase again. Adaptive time stepping seems
appealing, but the additional work required to track the error estimate (doubling/halving the
time step and recomputing the solution) can exceed the gain obtained by maintaining a fixed
time step, which is occasionally too short. Also, multi-step methods are not easily generalized
to adaptive time steps.
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Analytical Problems

4-1. From the weather chart in today’s edition of your newspaper,identify the horizontal
extent of a major atmospheric feature and find the forecast wind speed. From these
numbers, estimate the Rossby number of the weather pattern.What do you conclude
about the importance of the Coriolis force? (Hint: When converting latitudinal and
longitudinal differences in kilometers, use the earth’s mean radius, 6371 km.)

4-2. Using the scale given in (4.16), compare the dynamic pressure induced by the Gulf
Stream (speed = 1 m/s, width = 40 km, and depth = 500 m) to the main hydrostatic
pressure due to the weight of the same water depth. Also, convert the dynamic-pressure
scale in equivalent height of hydrostatic pressure (head).What can you infer about the
possibility of measuring oceanic dynamic pressures by a pressure gauge?

4-3. Consider a two-dimensional periodic fluctuation of the type(u′ = U sin(φ+ αu), v′ =
V sin(φ + αv), w′ = 0) with φ(x, y, t) = kxx + kyy − ωt and all other quantities
constant. Calculate the Reynolds stresses, such as−〈u′v′〉, by taking the average over
a 2π-period of the phaseφ. Show that these stresses are not zero in general (proving
that traveling waves may exert a finite stress and therefore accelerate or slow down a
background flow on which they are superimposed). Under whichrelation betweenαu
andαv does the shear stress−〈u′v′〉 vanish?

4-4. Show that the horizontal eddy viscosity defined in (4.10) vanishes for a vortex flow with
velocity components (u = −Ωy, v = +Ωx) with Ω being a constant. Is this a desirable
property?

4-5. Why do we need to know the surface pressure distribution whenusing the hydrostatic
approximation?

4-6. Theory tells us that in a pure advection problem for temperatureT , a single boundary
condition should be imposed at the inflow and none at the outflow, but, when diffusion
is present, a boundary condition must be imposed at both ends. What do you expect to
happen at the outflow boundary when diffusion is very small? How would you measure
the “smallness” of diffusion?

4-7. In forming energy budgets, the momentum equations are multiplied by their respective
velocity components (i.e., the∂u/∂t equation is multiplied byu and so forth), and
the results are added. Show that in this manipulation, the Coriolis terms inf andf∗
cancel one another out. What would be your reaction if someone presented you with a
model in which thef∗w term were dropped from Equation (4.7a) becausew is small
compared tou and the termf∗u was retained in Equation (4.7c) for the same reason?
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Numerical Exercises

4-1. When air and sea surface temperatures,Tair andTsea, are close to each other, it is
acceptable to use a linearized form to express the heat flux across the air-sea heat
interface, such as

− κT
∂Tsea

∂z
=

h

ρ0Cv
(Tsea − Tair) (4.55)

whereh is an exchange coefficient in W/(m2·K). The coefficient multiplying the tem-
perature differenceTsea − Tair has the units of a velocity and, for this reason, is some-
times calledpiston velocityin the context of gas exchange between air and water. Im-
plement this boundary condition for a finite-volume ocean model. How would you
calculateTsea involved in the flux in order to maintain second-order accuracy of the
standard second derivative within the ocean domain?

4-2. In some cases, particularly analytical and theoretical studies, the unknown field can be
assumed to be periodic in space. How can periodic boundary conditions be imple-
mented in a numerical one-dimensional model, for which the discretization scheme
uses one point on each side of every calculation point? How would you adapt the
scheme if the interior discretization needs two points on each side instead? Can you
imagine what the expressionhaloused in this context refers to?

4-3. How do you generalize periodic boundary conditions (see preceding problem) to two
dimensions? Is there an efficient scheme that ensures periodicity without particular
treatment of corner points? (Hint: Think about a method of copying rows/columns that
ensure proper values in corners.)

4-4. Assume you implemented a Dirichlet condition for temperature along a boundary on
which a grid node exists but would like to diagnose the heat flux across the boundary.
How would you determine the turbulent flux at that point with third-order accuracy?

4-5. Models can be used on parallel machines by distributing workamong different proces-
sors. One of the possibilities is the so-calleddomain decompositionin which each pro-
cessor is dedicated to a portion of the total domain. The model of each sub-domain can
be interpreted as an open-boundary model. Assuming that thenumerical scheme for a
single variable usesq points on each side of the local node, how would you subdivide
a one-dimensional domain into sub-domains and design data exchange between these
subdomains to avoid the introduction of new errors? Can you imagine the problems
you are likely to encounter in two dimensions? (Hint: Think how periodic boundary
conditions were handled in the halo approach of the preceding two problems.)

4-6. Develop a MATLAB  program to automatically calculate finite-difference weighting
coefficientsai for an arbitrary derivative of orderp using l points to the left andm
points to the right of the point of interest:
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dpũ

dtp

∣∣∣∣
tn

' a−lũn−l + ...+ a−1ũ
n−1 + a0ũ

n + a1ũ
n+1 + ...+ amũ

n+m. (4.56)

The step is taken constant. Test your program on the fourth-order approximation of the
first derivative. (Hint: Construct the linear system to be solved by observing that∆t
should cancel out in all terms except for the relevant derivative so that∆tpai can be
chosen as the unknowns.)

4-7. Imagine that you perform a series of simulations of the same model with time steps of
8∆t, 4∆t, 2∆t and∆t. The numerical discretization scheme is of orderm. Which
combination of the different solutions would best approximate the exact solution, and
what truncation order would the combined solution have?

4-8. For a grid node placed on the boundary, show that using the value

T̃m =
2

3

(
−∆x

qb

κT
− 1

2
T̃m−2 + 2T̃m−1

)
. (4.57)

allows us to impose a flux condition inm with second-order accuracy.



Osborne Reynolds
1842 – 1912

Osborne Reynolds was taught mathematics and mechanics by his father. While a teenager,
he worked as an apprentice in the workshop of a mechanical engineer and inventor, where he
realized that mathematics was essential for the explanation of certain mechanical phenom-
ena. This motivated him to study mathematics at Cambridge, where he brilliantly graduated
in 1867. Later, as a professor of engineering at the University of Manchester, his teaching
philosophy was to subject engineering to mathematical description while also stressing the
contribution of engineering to human welfare. His best known work is that on fluid turbu-
lence, famous for the idea of separating flow fluctuations from the mean velocity and for his
study of the transition from laminar to turbulent flow, leading to the dimensionless ratio that
now bears his name. He made other significant contributions to lubrication, friction, heat
transfer and hydraulic modeling. Books on fluid mechanics are peppered with the expres-
sions Reynolds number, Reynolds equations, Reynolds stress, and Reynolds analogy. (Photo
courtesy of Manchester School of Engineering)
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Carl-Gustaf Arvid Rossby
1898 – 1957

A Swedish meteorologist, Carl-Gustav Rossby is credited with most of the fundamental
principles on which geophysical fluid dynamics rests. Amongother contributions, he left
us the concepts of radius of deformation (Section9.2), planetary waves (Section9.4), and
geostrophic adjustment (Section15.2). However, the dimensionless number that bears his
name was first introduced by the Soviet scientist I. A. Kibel’in 1940.

Inspiring to young scientists, whose company he constantlysought, Rossby viewed sci-
entific research as an adventure and a challenge. His accomplishments are marked by a broad
scope and what he liked to call theheuristic approach, that is, the search for a useful answer
without unnecessary complications. During a number of years spent in the United States,
he established the meteorology departments at MIT and the University of Chicago. He later
returned to his native Sweden to become the director of the Institute of Meteorology in Stock-
holm. (Photo courtesy of Harriet Woodcock)
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Chapter 5

Diffusive Processes

(October 18, 2006)SUMMARY : All geophysical motions are diffusive because of turbu-
lence. Here, we consider a relatively crude way of representing turbulent diffusion, by means
of an eddy diffusivity. Although the theory is straightforward, numerical handling of diffu-
sion terms requires care, and the main objective of this chapter is to treat the related numerical
issues, leading to the fundamental concept of numerical stability.

5.1 Isotropic, homogeneous turbulence

It was mentioned in Sections3.4 and3.5 that fluid properties such as heat, salt and humid-
ity diffuse, that is, they are exchanged between neighboring particles. In laminar flow, this
is accomplished by random (so-called Brownian) motion of the colliding molecules, but in
large-scale geophysical systems turbulent eddies accomplish a similar effect far more effi-
ciently. The situation is analoguous to mixing milk in coffee or tea: Left alone, the milk
diffuses very slowly through the beverage, but the action ofa stirrer generates turbulent ed-
dies that mix the two liquids far more effectively and createa homogeneous mixture in a
short time. The difference is that eddying in geophysical fluids is generally not induced by a
stirring mechanism but is self-generated by hydrodynamic instabilities.

In Section4.1, we introduced turbulent fluctuations without saying anything specific
about them; we now begin to elucidate some of their properties. At a very basic level, turbu-
lent motion can be interpreted as a population of many eddies(vortices), of different sizes and
strengths, embedded within one another and forever changing, giving a random appearance
to the flow (Figure5-1). Two variables then play a fundamental role:d, the characteristic
diameter of the eddies, and̊u, their characteristic orbital velocity. Since the turbulent flow
consists of many eddies, of varying sizes and speeds,ů andd do not each assume a single
value but vary within a certain range. In stationary, homogeneous and isotropic turbulence,
that is, a turbulent flow that statistically appears unchanging in time, uniform in space and
without preferential direction, all eddies of a given size (samed) behave more or less in the
same way and can be assumed to share the same characteristic velocity ů. In other words, we

119



120 CHAPTER 5. DIFFUSIVE PROCESSES

Figure 5-1 Drawing of a turbulent
flow by Leonardo da Vinci circa 1507–
1509, who recognized that turbulence
involves a multitude of eddies at vari-
ous scales.

make the assumption thatů is a function ofd (Figure5-2).

Figure 5-2 Eddy orbital velocity versus eddy length scale in homogeneous and isotropic turbulence.
The largest eddies spin the fastest.

5.1.1 Length and velocity scales

In the view of Kolmogorov (1941), turbulent motions span a wide range of scales, from a
macroscale at which the energy is supplied, to a microscale at which energy is dissipated by
viscosity. The interaction among the eddies of various scales passes energy gradually from
the larger eddies to the smaller ones. This process is known as theturbulent energy cascade
(Figure5-3).

If the state of turbulence is statistically steady (statistically unchanging turbulence inten-
sity), then the rate of energy transfer from one scale to the next must be the same for all
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Figure 5-3 The turbulent energy cascade. According to this theory, theenergy fed by external forces
excites the largest possible eddies and is gradually passedto ever smaller eddies, all the way to a
minimum scale where this energy is ultimately dissipated byviscosity.

scales, so that no group of eddies sharing the same scale seesits total energy level increase or
decrease over time. It follows that the rate at which energy is supplied at the largest possible
scale (dmax) is equal to that dissipated at the shortest scale (dmin). Let us denote byε this
rate of energy supply/dissipation, per unit mass of fluid:

ε = energy supplied to fluid per unit mass and time

= energy cascading from scale to scale, per unit mass and time

= energy dissipated by viscosity, per unit mass and time.

The dimensions ofε are:

[ε] =
ML2T−2

MT
= L2T−3. (5.1)

With Kolmogorov, we further assume that the characteristics of the turbulent eddies of
scaled depend solely ond and on the energy cascade rateε. This is to say that the eddies
know how large they are, at what rate energy is supplied to them and at what rate they must
supply it to the next smaller eddies in the cascade. Mathematically, ů depends only ond
andε. Since[̊u] = LT−1, [d] = L and [ε] = L2T−3, the only dimensionally acceptable
possibility is:

ů(d) = A(εd)1/3, (5.2)

in whichA is a dimensionless constant.
Thus, the largerε, the larger̊u. This makes sense, for a greater energy supply to the system

generates stronger eddies. Equation (5.2) further tells us that the smallerd, the weaker̊u, and
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the implication is that the smallest eddies have the lowest speeds, while the largest eddies
have the highest speeds and thus contribute most of the kinetic energy.

Typically, the largest possible eddies in the turbulent floware those that extend across the
entire system, from boundary to opposite boundary, and therefore

dmax = L, (5.3)

whereL is the geometrical dimension of the system (such as the widthof the domain or the
cubic root of its volume). In geophysical flows, there is a noticeable scale disparity between
the relatively short vertical extent (depth, height) and the comparatively long horizontal extent
(distance, length) of the system. We must therefore clearlydistinguish eddies that rotate in
the vertical plane (about a horizontal axis) from those thatrotate horizontally (about a vertical
axis).

The shortest eddy scale is set by viscosity and can be defined as the length scale at which
molecular viscosity becomes dominant. Molecular viscosity, denoted byν, has for dimen-
sions1:

[ν] = L2T−1.

If we assume thatdmin depends only onε, the rate at which energy is supplied to that scale,
and onν, because these eddies feel viscosity, then the only dimensionally acceptable relation
is:

dmin ∼ ν3/4ε−1/4. (5.4)

The quantityν3/4ε−1/4, called theKolmogorov scale, is typically on the order of a few mil-
limeters or shorter.

The span of length scales in a turbulent flow is related to its Reynolds number. Indeed,
in terms of the largest velocity scale, which is the orbital velocity of the largest eddies,U =
ů(dmax) = A(εL)1/3, the energy supply/dissipation rate is

ε =
U3

A3L
∼ U3

L
, (5.5)

and the length scale ratio can be expressed as

L

dmin
∼ L

ν3/4ε−1/4

∼ LU3/4

ν3/4L1/4

∼ Re3/4, (5.6)

whereRe = UL/ν is the Reynolds number of the flow. As we could have expected, aflow
with a higher Reynolds number contains a broader range of eddies.

1Values for ambient air and water are:νair = 1.51 × 10−5 m2/s andνwater = 1.01 × 10−6 m2/s.
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5.1.2 Energy spectrum

In turbulence theory, it is customary to consider the so-called power spectrum, which is the
distribution of kinetic energy per mass across the various length scales. For this, we need
to define a wavenumber. Because velocity reverses across thediameter of an eddy, the eddy
diameter should properly be considered as half of the wavelength:

k =
2π

wavelength
=

π

d
. (5.7)

The lowest and highest wavenumber values arekmin = π/L andkmax ∼ ε1/4ν−3/4.
The kinetic energyE per mass of fluid has dimensions ML2T−2/M = L2T−2. The portion

dE contained in the eddies with wavenumbers ranging fromk to k + dk is defined as

dE = Ek(k) dk.

It follows that the dimension ofEk is L3T−2, and dimensional analysis prescribes:

Ek(k) = B ε2/3 k−5/3, (5.8)

whereB is a second dimensionless constant. It can be related toA of Equation (5.2) because
the integration ofEk(k) from kmin = π/L to kmax ∼ ∞ is the total energy per mass in the
system, which in good approximation is that contained in thelargest eddies, namelyU2/2.
Thus,

∫ ∞

kmin

Ek(k) dy =
U2

2
, (5.9)

from which follows

3

2π2/3
B =

1

2
A2. (5.10)

The value ofB has been determined experimentally and found to be about 1.5(Pope, 2000,
page 231). From this, we estimateA to be 1.45.

The−5/3 power law of the energy spectrum has been observed to hold well in the inertial
range, that is, for those intermediate eddy diameters that are remote from both largest and
shortest scales. Figure5-4 shows the superposition of a large number of longitudinal power
spectra2. The straight line where most data overlap in the range10−4 < kν3/4/ε1/4 < 10−1

corresponds to the−5/3 decay law predicted by the Kolmogorov turbulent cascade theory.
The higher the Reynolds number of the flow, the broader the span of wavenumbers over which
the−5/3 law holds. Several crosses visible at the top of the plot, which extend from a set of
crosses buried in the accumulation of data below, correspond to data in a tidal channel (Grant
et al., 1962), for which the Reynolds number was the highest.

There is, however, some controversy over the−5/3 power law forEk. Some investigators
(Saffman, 1968; Long, 1997 and 2003) have proposed alternative theories that predict a−2
power law.

2The longitudinal power spectrum is the spectrum of the kinetic energy associated with the velocity component
in the direction of the wavenumber.



124 CHAPTER 5. DIFFUSIVE PROCESSES

Figure 5-4 Longitudinal power spectrum of turbulence calculated fromnumerous observations taken
outdoors and in the laboratory. [From Saddoughi and Veeravalli, 1994]

5.2 Turbulent diffusion

Our concern here is not to pursue the study of turbulence but to arrive at a heuristic way
to represent the dispersive effect of turbulence on those scales too short to be resolved in a
numerical model.

Turbulent diffusionor dispersionis the process by which a substance is moved from one
place to another under the action of random turbulent fluctuations in the flow. Given the
complex nature of these fluctuations, it is impossible to describe the dispersion process in an
exact manner but some general remarks can be made that lead toa useful parameterization.

Consider the two adjacent cells of Figure5-5 exchanging fluid between each other. The
fluid in the left cell contains a concentration (mass per volume)c1 of some substance whereas
the fluid in the right cell contains a different concentration c2. Think of c1 being less than
c2, although this does not necessarily have to be the case. Further assume, in order to focus
exclusively on diffusion, that there is no net flow from one cell to the other but that the
only exchange velocity is due to a single eddy moving fluid at velocity ů on one flank and at
velocity−ů on its opposite flank. The amount of substance carried per unit area perpendicular
to thex–axis and per time, called theflux, is equal to the product of the concentration with
the velocity,c1ů from left to right andc2ů in the opposite direction. The net fluxq in the
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Figure 5-5 Exchange between two ad-
jacent cells illustrating turbulent diffu-
sion. Because of the difference be-
tween concentrations, the exchange be-
tween cells is uneven. The cell with the
least concentration loses less than it re-
ceives.

x–direction is the flux from 1 to 2 minus the flux from 2 to 1:

q = c1 ů − c2 ů

= − ů ∆c,

where∆c = c2−c1 is the concentration difference. Multiplying and dividingby the distance
∆x between cell centers, we may write:

q = − (̊u∆x)
∆c

∆x
.

When considering the variation ofc over larger scales, those for which the eddy-size∆x
appears to be small, we may approximate the previous equation to

q = − D
dc

dx
, (5.11)

whereD is equal to the product̊u∆x and is called the turbulent diffusion coefficient or
diffusivity. Its dimension is[D] = L2T−1.

The diffusive flux is proportional to the gradient of the concentration of the substance.
In retrospect, this makes sense; if there were no differencein concentrations between cells,
the flux from one into the other would be exactly compensated by the flux in the opposite
direction. It is the concentration difference (the gradient) that matters.

Diffusion is ‘down-gradient’, that is, the transport is from high to low concentrations, just
as heat conduction moves heat from the warmer side to the colder side. (In the preceding
example withc1 < c2, q is negative, and the net flux is from cell 2 to cell 1.) This implies
that the concentration increases on the low side and decreases on the high side, and the two
concentrations gradually become closer to each other. Oncethey are equal (dc/dx = 0),
diffusion stops, although turbulent fluctuations never do.Diffusion acts to homogenize the
substance across the system.

The pace at which diffusion proceeds depends critically on the value of the diffusion
coefficientD. This coefficient is inherently the product of two quantities, a velocity (̊u) and
a length scale (∆x), representing respectively the magnitude of fluctuating motions and their
range. Since the numerical model resolves scales down to thegrid scale∆x, the turbulent
diffusion that remains to represent is that due to the all shorter scales, starting withd = ∆x.
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As seen in the previous section, to shorter scalesd correspond slower eddy velocities̊u and
thus lower diffusivities. It follows that diffusion is chiefly accomplished by eddies at the
largest unresolved scale,∆x, because these generate the greatest value ofů∆x:

D = ů(∆x) ∆x

= A ε1/3 ∆x4/3. (5.12)

The manner by which the dissipation rateε is related to local flow characteristics, such as a
velocity gradient, opens the way to a multitude of possible parameterizations.

The preceding considerations in one dimension were genericin the sense that the direction
x could stand for any of the three directions of space,x, y or z. Because of the typical
disparity in mesh size between the horizontal and vertical directions in GFD models (∆x ≈
∆y � ∆z), care must be taken to use two distinct diffusivities, which we denoteA for the
horizontal directions andκ for the vertical direction3. While κ must be constructed from the
length scale∆z, A must be formed from a length scale that is hybrid between∆x and∆y.
The Smagorinsky formulation presented in (4.10) is a good example.

The components of the three-dimensional flux vector are

qx = −A ∂c

∂x
(5.13a)

qy = −A ∂c

∂y
(5.13b)

qz = −κ ∂c

∂z
. (5.13c)

And, we are in a position to write a budget for the concentrationc(x, y, z, t) of the substance
in the flow, by taking an elementary volume of fluid of sizedx, dy anddz, as illustrated in
Figure5-6. The net import in thex–direction is the difference inx–fluxes times the area
dy dz they cross,i.e., [qx(x, y, z) − qx(x + dx, y, z)] dy dz, and similarly in they– and
z–directions. The net import from all directions is then

Figure 5-6 An infinitesimal piece of
fluid for the local budget of a substance
of concentrationc in the fluid.

3GFD models generally use the same horizontal diffusivity for all variables, including momentum and density –
see (4.21) – but distinguish between various diffusivitiesin the vertical.
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Net import indx dy dz = [qx(x, y, z)− qx(x + dx, y, z)] dy dz

+ [qy(x, y, z)− qy(x, y + dy, z)] dx dz

+ [qz(x, y, z)− qz(x, y, z + dz)] dx dy,

on a per-time basis. This net import contributes to increasing the amountc dx dy dz inside
the volume:

d

dt
(c dx dy dz) = Net import.

In the limit of an infinitesimal volume (vanishingdx, dy anddz), we have

∂c

∂t
= − ∂qx

∂x
− ∂qy

∂y
− ∂qz

∂z
, (5.14)

and, after replacement of the flux components by their expressions (5.13),

∂c

∂t
=

∂

∂x

(
A ∂c
∂x

)
+

∂

∂y

(
A ∂c
∂y

)
+

∂

∂z

(
κ
∂c

∂z

)
, (5.15)

whereA andκ are respectively the horizontal and vertical eddy diffusivities. Note the simi-
larity with the dissipation terms in the momentum and energyequations (4.21) of the previous
chapter.

For a comprehensive exposition of diffusion and some of its applications, the reader is
referred to Ito (1992) and Okubo and Levin (2002).

5.3 One-dimensional numerical scheme

We now illustrate discretization methods for the diffusionequation and begin with a protyp-
ical one-dimensional system, representing a horizontallyhomogeneous piece of ocean or
atmosphere, containing a certain substance, such as a pollutant or tracer, which is not ex-
changed across either bottom or top boundaries. To simplifythe analysis further we begin
by taking the vertical diffusivityκ as constant until further notice. We then have to solve the
following equation

∂c

∂t
= κ

∂2c

∂z2
, (5.16)

with no-flux boundary conditions at both bottom and top:

qz = − κ ∂c
∂z

= 0 at z = 0 andz = h, (5.17)

whereh is the thickness of the domain.
To complete the problem, we also prescribe an initial condition. Suppose for now that

this initial condition is a constantC0 plus a cosine function of amplitudeC1 (C1 ≤ C0):
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c(z, t = 0) = C0 + C1 cos
(
jπ
z

h

)
, (5.18)

with j being an integer. Then, it is easily verified that

c = C0 + C1 cos
(
jπ
z

h

)
exp

(
−j2π2 κt

h2

)
(5.19)

satisfies the partial differential equation (5.16), both boundary conditions (5.17), and initial
condition (5.18). It is thus the exact solution of the problem. As we can expect from the
dissipative nature of diffusion, this solution representsa temporal attenuation of the non-
constant portion ofc, which is more rapid under stronger diffusion (greaterκ) and shorter
scales (higherj).

?
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6k

k = 2

k = 3

k = m− 1

?6∆z

c

c̃2

c̃3

c̃m−1

k = 1

k = m

Figure 5-7 Gridding of a vertical in-
terval withm nodes, of which the first
and last lie beyond the bottom and top
boundaries, respectively. Such points
are calledghost points. With m nodes
and m − 1 intervals between nodes
among which two are only half long,
it follows that(m− 2) segments cover
the domain and the grid spacing is thus
∆z = h/(m − 2). Neumann condi-
tions (zero derivatives) at both bound-
aries are implemented by assigning the
valuesc̃1 = c̃2 andc̃m = c̃m−1 to the
end points, which implies zero deriva-
tives in the middle of the first and last
intervals. The calculations using the
discretized form of the equation then
proceed fromk = 2 to k = m − 1.

Let us now design a numerical method to solve the problem and check its solution against
the preceding, exact solution. First, we discretize the spatial derivative by applying a standard
finite-difference technique. With a Neumann boundary condition applied at each end, we
locate the end grid points not at, but surrounding the boundaries (see Section4.7) and place
the grid nodes at the following locations:

zk = (k − 3
2
)∆z for k = 1, 2, ...., m, (5.20)

with ∆z = h/(m− 2) so that we usem grid points, among which the first and last are ghost
points lying a distance∆z/2 beyond the boundaries (Figure5-7).

Discretizing the second spatial derivative with a three-point centered scheme and before
performing time discretization, we have

∂c̃k
∂t

=
κ

∆z2
(c̃k+1 − 2c̃k + c̃k−1) for k = 2, ..., m− 1. (5.21)
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We thus havem−2 ordinary, coupled, differential equations for them−2 unknown time de-
pendent functions̃ck. We can determine the numerical error introduced in thissemi-discrete
set of equations by trying a solution similar to the exact solution:

c̃k = C0 + C1 cos
(
jπ
zk
h

)
a(t). (5.22)

Trigonometric formulas provide the following equation forthe temporal evolution of the
amplitudea(t):

da

dt
= − 4a

κ

∆z2
sin2 φ with φ = jπ

∆z

2h
, (5.23)

of which the solution is

a(t) = exp

(
−4 sin2 φ

κt

∆z2

)
. (5.24)

With this spatial discretization, we thus obtain an exponential decrease of amplitudea,
like in the exact equation (5.19) but with a different damping rate. The ratioτ of the numerical
damping rate4κ sin2 φ/∆z2 to the true damping ratej2π2κ/h2 is τ = φ−2 sin2 φ. For small
∆z compared to the length scaleh/j of thec distribution,φ is small, and the correct damping
is nearly obtained with the semi-discrete numerical scheme. Nothing anomalous is therefore
expected from the approach thusfar as long as the discretization of the domain is sufficiently
dense to capture adequately the spatial variations inc. Also, the boundary conditions cause no
problem because the mathematical requirement of one boundary condition on each side of the
domain matches exactly what we need to calculate the discrete values̃ck for k = 2, ...,m−1.
An initial condition is also needed at each node to start the time integration. This is all
consistent with the mathematical problem.

We now proceed with the time discretization. First, let us try the simplest of all methods,
the explicit Euler scheme:

c̃n+1
k − c̃nk

∆t
=

κ

∆z2

(
c̃nk+1 − 2c̃nk + c̃nk−1

)
for k = 2, ..., m− 1 (5.25)

in whichn ≥ 1 stands for the time level. For convenience, we define a dimensionless number
that will play a central role in the discretization and solution:

D =
κ∆t

∆z2
. (5.26)

This definition allows us to write the discretized equation more conveniently as

c̃n+1
k = c̃nk + D

(
c̃nk+1 − 2c̃nk + c̃nk−1

)
for k = 2, ..., m− 1. (5.27)

The scheme updates the discretec̃k values from their initial values and with the aforemen-
tioned boundary conditions (Figure5-8). Obviously, the algorithm is easily programmed
(e.g., firstdiffusion.m ) and can be tested rapidly.

For simplicity, we start with a gentle profile (j = 1, half a wavelength across the domain)
and, equipped with our insight in scale analysis, we use a sufficiently small grid spacing



130 CHAPTER 5. DIFFUSIVE PROCESSES

n n+ 1

k

k + 1

k − 1

Boundary condition

Boundary condition

Initial condition time

space

1

m

Figure 5-8 Initialized for each grid point, algorithm (5.27) advances the value at nodek to the next
time step (fromn to n+ 1) using the previous values on a stencil spanning pointsk − 1, k andk + 1.
A boundary condition is thus needed on each side of the domain, as the original mathematical problem
requires. The calculations for the discretized governing equations proceed fromk = 2 to k = m− 1.

∆z � h to resolve the cosine function well. To be sure, we take 20 grid points. For the time
scaleT of the physical process, we use the scale provided by the original equation:

∂c

∂t
= κ

∂2c

∂z2

∆c

T
κ

∆c

h2

to find T = h2/κ. Dividing this time scale in 20 steps, we take∆t = T/20 = h2/20κ
and begin to march algorithm (5.27) forward. Surprisingly, it is not working. After only
20 time steps, thẽck values do not show attenuation but have instead increased bya factor
1020! Furthermore, increasing the spatial resolution to 100 points and reducing the time
step proportionally does not help but worsens the situation(Figure5-9). Yet, there has been
no programming error infirstdiffusion.m . The problem is more serious: We have
stumbled on a crucial aspect of numerical integration, by falling prey tonumerical instability.
The symptoms of numerical instability are explosive behavior and worsening of the problem
with increased spatial resolution. At best, the scheme is used outside of a certain domain of
validity or, at worst, it is hopeless and in need of replacement by a better, stable scheme. What
makes a scheme stable and another unstable is the objective of numerical stability analysis.
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Figure 5-9 Profile of c̃ after 20 time steps of the Euler scheme (5.27). Left panel: 20grid points and
∆t = T/20. Right panel: 100 grid points and∆t = T/100. Note the vast difference in values between
the two solutions (1019 and 1035, respectively), the second solution being much more explosive than
the first. Conclusion: Increasing resolution worsens the problem.

5.4 Numerical stability analysis

The most widely used method to investigate the stability of agiven numerical scheme is due
to John von Neumann4. The basic idea of the method is to consider the temporal evolution
of simple numerical solutions. As continuous signals and distributions can be expressed as
Fourier series of sines and cosines, discrete functions can, too, be decomposed in elementary
functions. If one or several of these elementary functions increase without bound over time
(‘explode’), the reconstructed solution, too, will increase without bound, and the scheme is
unstable. Put the other way: A scheme is stable if none among all elementary functions grows
without bound over time.

As for Fourier series and simple wave propagation, the elementary functions are periodic.
In analogy with the continuous function

c(z, t) = A ei (kzz−ωt), (5.28)

we use the discrete functioñcnk formed by replacingz by k∆z andt by n∆t:

c̃nk = A ei (kz k∆z−ω n∆t), (5.29)

wherekz is a vertical wavenumber andω a frequency. To consider periodic behavior in
space and possibly explosive behavior in time,kz is restricted to be real positive whereas
ω = ωr + iωi may be complex. Growth without bound occurs ifωi > 0. (If ωi < 0, the
function decreases exponentially and raises no concern). The origins ofz andt do not matter,
for they can be adjusted by changing the complex amplitudeA.

The range ofkz values is restricted. The lowest value iskz = 0 corresponding to the
constant component in (5.22). At the other extreme, the shortest wave is the ‘2∆x mode’ or
‘saw-tooth’ (+1, −1, +1, −1, etc.) with kz = π/∆z. It is most often with this last value

4See biography at the end of this chapter.
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that trouble occurs, as seen in the rapidly oscillating values generated by the ill-fated Euler
scheme (Figure5-9) and, earlier, aliasing (Section1.12).

The elementary function, or trial solution, can be recast inthe following form to distin-
guish the temporal growth (or decay) from the propagating part:

c̃nk = A e+ωi∆t n ei (kz∆z k−nωr∆t n). (5.30)

An alternative way of expressing the elementary function isby introducing a complex number
% called theamplification factorsuch that:

c̃nk = A %n ei (kz∆z) k (5.31a)

% = |%| ei arg(%) (5.31b)

ωi =
1

∆t
ln |%|, ωr = − 1

∆t
arg(%). (5.31c)

The choice of expression among (5.29), (5.30) and (5.31a) is a matter of ease and conven-
cience.

Stability requires a non-growing numerical solution, withωi ≤ 0 or equivalently|%| ≤
1. Allowing for physicalexponential growth – such as the growth of a physically unstable
wave – we should entertain the possibility thatc(t) may grow asexp(ωit), in which case
c(t+∆t) = c(t) exp(ωi∆t) = c(t) [1+O(∆t)] and% = 1+O(∆t). In other words, instead
of |%| ≤ 1, we should adopt the slightly less demanding criterion

|%| ≤ 1 +O(∆t). (5.32)

Since there is no exponential growth associated with diffusion, the criterion|%| ≤ 1 applies.
We can now try (5.29) as a solution of the discretized diffusion equation (5.27). After

division by the factorA%n exp [i (kz∆z)k] common to all terms, the discretized equation
reduces to

% = 1 + D
[
e+i kz∆z − 2 + e−ikz∆z

]
, (5.33)

which is satisfied when the amplification factor equals

% = 1 − 2D [1− cos(kz∆z)]

= 1 − 4D sin2

(
kz∆z

2

)
. (5.34)

Since in this case% happens to be real, the stability criterion stipulates−1 ≤ % ≤ 1, i.e.,
4D sin2(kz∆z/2) ≤ 2, for all possiblekz values. The most dangerous value is the one that
makessin2(kz∆z/2) = 1, which iskz = π/∆z, the wavenumber of the saw-tooth mode.
For this mode,% violates−1 ≤ % unless

D =
κ∆t

∆z2
≤ 1

2
. (5.35)

In other words, the Euler scheme is stable only if the time step is shorter than∆z2/2κ. We
are in the presence of aconditional stability, and (5.35) is called thestability conditionof the
scheme.
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Generally, criterion (5.35) or a similar one in another case is neither necessary nor suf-
ficient since it neglects any effect due to boundary conditions, which can either stabilize an
unstable mode or destabilize a stable one. In most situations, however, the criterion obtained
by this method turns out to be a necessary condition since it is unlikely that in the middle of
the domain boundaries could stabilize an unstable solution, especially the shorter waves that
are most prone to instability. On the other hand, boundariescan occasionally destabilize a
stable mode in their vicinity. For the preceding scheme applied to the diffusion equation, this
is not the case, and (5.35) is both necessary and sufficient.

In addition to stability information, the amplification-factor method also enables a com-
parison between a numerical property and its physical counterpart. In the case of the diffusion
equation, it is the damping rate, but, should the initial equation have described wave propa-
gation, it would have been the dispersion relation. The general solution (5.19) of the exact
equation (5.16) leads to the relation

ωi = − κ k2
z , (5.36)

which we can compare to the numerical damping rate

ω̃i =
1

∆t
ln |%|

=
1

∆t
ln

∣∣∣∣1− 4D sin2

(
kz∆z

2

)∣∣∣∣ . (5.37)

The ratioτ of the numerical damping to the actual damping rate is then given by

τ =
ω̃i
ωi

= − ln |1− 4D sin2(kz∆z/2)|
Dk2

z∆z
2

, (5.38)

which for smallkz∆z, i.e., numerically well resolved modes, behaves as

τ = 1 +

(
2D− 1

3

) (
kz∆z

2

)2

+ O(k4
z∆z

4). (5.39)

ForD < 1/6, the numerical scheme dampens less fast than the physical process (τ < 1),
while for larger values1/6 < D < 1/2 (i.e., relatively large but still stable time steps),
overdamping occurs (τ > 1). In practice, whenD > 1/4 (leading to% < 0 for the higher
kz values), this overdamping can be unrealistically large andunphysical. The shortest wave
resolved by the spatial grid withkz∆z = π exhibits not only a saw-tooth pattern in space
(as it should) but also a flip-flop behavior in time. This is because, for real negative%, the
sequence%1, %2, %3, ... alternates in sign. For−1 < % < 0, the solution vanishes not by
monotonically decreasing toward zero but instead by oscillating around zero. Though the
scheme is stable, the numerical solution behaves unlike theexact solution, and this should be
avoided. It is therefore prudent to keepD ≤ 1/4 to guarantee a realistic solution.

Let us now give a physical interpretation of the stability condition2∆t ≤ ∆z2/κ. First,
we observe that the instability appears most strongly for the component with the largest
wavenumber according to (5.34). Since the length scale of this signal is∆z, the associ-
ated diffusion time scale is∆z2/κ, and the stability criterion expresses the requirement that
∆t be set shorter than a fraction of this time scale. It is equivalent to ensuring that the time
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Figure 5-10 Root mean square of error
c− c̃ scaled by the initial variation∆c
at timeT = h2/κ for a fixed space grid
(m = 50) and decreasing time step
(going from right to left). AboveD =
1/2, the scheme is unstable and the er-
ror extremely large (not plotted). For
shorter time steps, the scheme is sta-
ble and the error first decreases linearly
with D. BelowD = 1/6 = 0.167, the
error increases again.

step provides an adequate representation of theshortestcomponent resolved by the spatial
grid. Even when this shortest component is absent from the mathematical solution (in our
initial problem only a single length scale,h, was present), it does occur in the numerical so-
lution because of computer round-off errors, and stabilityis thus conditioned by thepossible
presence of the shortest resolved component. The stabilitycondition ensures that all possible
solution components are treated with an adequate time step.

As the preceding simple example shows, the amplification-factor method is easily applied
and provides a stability condition as well as other properties of the numerical solution. In
practice, however, non-constant coefficients (such as a spatially variable diffusivity κ) or
non-uniform spacing of grid points may render its application difficult. Since non-uniform
grids may be interpreted as a coordinate transformation, stretching and compressing grid node
positions (see also Section20.7), a non-uniform grid is equivalent to introducing non-constant
coefficients into the equation. The procedure is to ‘freeze’the coefficients at some value
before applying the amplification-factor method and then repeat the analysis with different
frozen values within the allotted ranges. Generally, this provides quite accurate estimates
of permissible time steps. For nonlinear problems the apprach is to perform a preliminary
linearization of the equation, but the quality of the stability condition is not always reliable.
Finally, it is important to remember that the amplification-factor method does not deal with
boundary conditions. To treat accurately cases with variable coefficients and non-uniform
grids and to take boundary conditions into account, the so-calledmatrix methodis available
(e.g., Kreiss, 1962; Richtmyer and Morton, 1967).

We now have some tools to guarantee stability. Since our diffusion scheme is also consis-
tent, we anticipate convergence by virtue of the Lax-Richtmyer Theorem (see Section2.7).
Let us then verify numerically whether the scheme leads to a linear decrease of the error
with decreasing time step. Leaning on the exact solution (5.19) for comparison, we observe
(Figure5-10) that the numerical solution does indeed exhibit a decreaseof the error with
decreasing time step, but only up to a point (forD decreasing from the stability limit of 0.5
to 1/6). The error increases again for smaller∆t. What happens?
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The fact is that two sources of errors (space and time discretization) are simultaneously
present and what we are measuring is thesumof these errors, not the temporal error in
isolation. This can be shown by looking at the modified equation obtained by using a Taylor-
series expansion of discrete valuesc̃nk+1 etc. aroundc̃nk in the difference equation (5.21).
Some algebra leads to

∂c̃

∂t
= κ

∂2c̃

∂z2
+
κ∆z2 (1− 6D)

12

∂4c̃

∂z4
+O(∆t2,∆z4,∆t∆z2), (5.40)

which shows that the scheme is first order in time (throughD) and second order in space. The
rebounding error exhibited in Figure5-10when∆t is gradually reduced (changingD alone)
is readily explained in view of (5.40).

To check on convergence, we should consider the case when both parameters∆t and∆z
are reduced simultaneously (Figure5-11). This is most naturally performed by keeping fixed
the stability parameterD, which is a combination of both according to (5.26). The leading
error (second term on the right) decreases as∆z2, except whenD = 1/6 in which case the
scheme is then of fourth order. It can be shown5 that in that case the error is on the order
of ∆z4. This is consistent with (5.39), where the least error on the damping rate is obtained
with 2D = 1/3, i.e., D = 1/6, and with Figure5-10, where the error for fixed∆z is smallest
when the time step corresponds toD = 1/6.

5.5 Other one-dimensional schemes

A disadvantage of the simple scheme (5.25) is its fast increase in cost when a higher spatial
resolution is sought. For stability reasons∆t decreases as∆z2, forcing us not only to calcu-
late values at more grid points but also more frequently. Forintegration over a fixed length of
time, the number of calculations grows asm3. In other words, 1000 more calculations must
be performed if the grid size is divided by 10. Because this penalizing increase is rooted in
the stability condition, it is imperative to explore other schemes that may have more attractive
stability conditions. One such avenue is to consider implicit schemes. With afully implicit
scheme, the new values are used in the discretized derivative, and the algorithm is

c̃n+1
k = c̃nk + D

(
c̃n+1
k+1 − 2c̃n+1

k + c̃n+1
k−1

)
k = 2, ...,m− 1. (5.41)

The application of the stability analysis provides an amplification factor% given implicitely
by

% = 1 − % 2D [1− cos(kz∆z)] ,

of which the solution is

% =
1

1 + 4D sin2(kz∆z/2)
≤ 1. (5.42)

Because this amplification factor is always real and less than unity, there is no stability
condition to be met, and the scheme is stable for any time step. This is calledunconditional

5To show this, consider that forD = 1/6, ∆t = ∆z2/6κ and all contributions to the error term become
proportional to∆z4.



136 CHAPTER 5. DIFFUSIVE PROCESSES

∆z2

2κ∆t

Unstable region

Time oscillations

�

�

�

D = 1
2

D = 1
4

D = 1
6

Better space representation

B
et

te
r

tim
e

re
p

re
se

n
ta

tio
n

Decreasing global error

Figure 5-11 Different paths to convergence in the (∆z2, ∆t) plane for the explicit scheme. For
excessive values of∆t, D ≥ 1/2, the scheme is unstable. Convergence can only be obtained by
remaining within the stability region. When∆t alone is reduced (progressing vertically downward
in the graph), the error decreases and then increases again.If ∆z alone is decreased (progressing
horizontally to the left in the graph), the error similarly decreases first and then increases, until the
scheme becomes unstable. Reducing both∆t and∆z simultaneously at fixedD within the stability
sector leads to monotonic convergence. The convergence rate is highest along the lineD = 1/6 because
the scheme then happens to be fourth-order accurate.

stability. The implicit scheme therefore allows us in principle to usea time step as large as we
wish. We immediately sense, of course, that a large time stepcannot be acceptable. Should
the time step be too large, the calculated values would not ‘explode’ but would provide a very
inaccurate approximation to the true solution. This is confirmed by comparing the damping
of the numerical scheme against its true value:

τ =
ω̃i
ωi

=
ln |1 + 4D sin2(kz∆z/2)|

4D (kz∆z/2)2
. (5.43)

For smallD, the scheme behaves reasonably well, but for largerD, even for scales ten times
larger than the grid spacing, the error on the damping rate issimilar to the damping rate itself
(Figure5-12).

Setting aside the accuracy restriction, we still have another problem to solve. To calculate
the left hand side of (5.41) at grid nodek, we have to know the values of the yet-unknowns
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numerical damping rate of the implicit
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well resolved solution components, and
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c̃n+1
k+1 and c̃n+1

k−1 , which in turn depend on the unknown values at their adjacentnodes. This
creates a circular dependency. It is, however, a linear dependency, and all we need to do is to
formulate the problem as a set of simultaneous linear equations,i.e., to frame the problem as
a matrix to be inverted, once at each time step. Standard numerical techniques are available
for such problem, most of them based on the so-calledGaussian eliminationor lower-upper
decomposition(e.g., Riley et al. 1997). These methods are the most efficient ones for in-
verting arbitrary matrices of dimensionN , and their computational cost increases asN3. For
the one-dimensional6 case withN ∼ m, the matrix inversion requiresm3 operations to be
performed. Even if we executed only a single time step, the cost would be the same as for the
execution of the explicit scheme during the full simulation. We may wonder: Is there some
law of conservation of difficulty? Apparently there is, but we can exploit the particular form
of the system to reduce the cost.

Since the unknown value at one node depends only the unknown values at the adjacent
nodes and not those further away, the matrix of the system is not full but contains many
zeroes. All elements are zero except those on the diagonal and those immediately above
(corresponding to one neighbor) and immediately below (corresponding to the neighbor on
the other side). Such tridiagonal matrix, orbanded matrix, is quite common, and techniques
have been developed for their efficient inversion. The cost of inversion can be reduced to
only 5m operations7. This is comparable to the number of operations for one step of the
explicit scheme. And, since the implicit scheme can be run with a longer time step, it can be
more efficient than the explicit scheme. A trade off exists, however, between efficiency and
accuracy.

An alternative time stepping is theleapfrog method, which ‘leaps’ over the intermediate
values, that is, the solution is marched from stepn − 1 to stepn + 1 by using the values

6If we anticipate generalization to three dimensions withN ∼ 106 − 107 unknowns, a matrix inversion would
demand a number of operations proportional toN3 (at each time step!) and cannot be seriously considered as a
viable approach.

7See Appendix 22.6 for the formulation of the algorithm called upper-lower decomposition.
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at intermediate stepn for the terms on the right-hand side of the equation. Appliedto the
diffusion equation, the leapfrog scheme generates the following algorithm:

c̃n+1
k = c̃n−1

k + 2D
(
c̃nk+1 − 2c̃nk + c̃nk−1

)
. (5.44)

whereD = κ∆t/∆z2 once again.
Because by the time values at time leveln+ 1 are sought all values up to time leveln are

already known, this algorithm is explicit and does not require any matrix inversion. We can
analyze its stability by considering, as before, a single Fourier mode of the type (5.29). The
usual substitution into the discrete equation, this time (5.44), application of trigonometric
formulas and division by the Fourier mode itself then lead tothe following equation for the
amplification factor% of the leapfrog scheme:

% =
1

%
− 8D sin2

(
kz∆z

2

)
. (5.45)

This equation is quadratic and has therefore two solutions for %, corresponding to two tem-
poral modes. Only a single mode was expected because the original equation had only a
first-order time derivative in time, but, obviously, the scheme has introduced a second,spuri-
ous mode. With b = 4D sin2(kz∆z/2), the two solutions are

% = − b±
√
b2 + 1. (5.46)

The physical mode is% = −b+
√
b2 + 1 because for well resolved components (kz∆z � 1

and thusb� 1) it is approximately% ' 1− b ' 1−Dk2
z∆z

2, as it should be [see (5.34)]. Its
value is always less than one, and the physical mode is numerically stable. The other solution,
% = −b −

√
b2 + 1 corresponds to the spurious mode and, unfortunately, has a magnitude

always larger than one, jeopardizing the overall stabilityof the scheme. This is an example
of unconditional instability. Note, however, that although unstable in the diffusion case the
leapfrog scheme will be found to be stable when applied to other equations.

The spurious mode causes numerical instability and must therefore be suppressed. One
basic method isfiltering (see Section10.6). Because numerical instability is manifested by
flip-flop in time (due to the negative% value), averaging over two consecutive time steps or
taking some kind of running average, called filtering, eliminates the flip-flop mode. Filtering,
unfortunately, also alters the physical mode, and, as a rule, it is always prudent not to have a
large flip-flop mode in the first place. Its elimination shouldbe donea priori, nota posteriori.
In the case of models using leapfrog for the sake of other terms in the equation, such as
advection terms which it handles in a stable manner, the diffusion term is generally discretized
at time leveln−1 rather thann, rendering the scheme as far as the diffusion part is concerned
equivalent to the explicit Euler scheme with time step of2∆t.
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Figure 5-13 Arrangement of cells and
interfaces for the finite-volume tech-
nique. Concentration values are de-
fined at cell centers whereas flux values
are defined between cells. Cell lengths
do not have to be uniform.
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Finally, we can illustrate thefinite-volume techniquein the more general case of non-
uniform diffusion and variable grid spacing. In analogy with (3.37), we integrate the diffusion
equation over an interval between two consecutive cell boundaries and over one time step to
obtain the grid-cell averages̄c (Figure5-13)

c̄n+1
k − c̄nk

∆tn
+

q̂k+1/2 − q̂k−1/2

∆zk
= 0, (5.47)

assuming that the time-averaged flux at the interface between cells

q̂ =
1

∆tn

∫ tn+1

tn
−κ ∂c

∂z
dt (5.48)

is somehow known. Up to this point, the equations are exact. The variablec appearing in the
expression of the flux is the actual function, including all its subgrid-scale variations, whereas
(5.47) deals only with space-time averages. Discretization enters the formulation as we relate
the time-averaged flux to the space-averaged functionc̄ to close the problem. We can for
example estimate the flux using a factorα of implicitness and a gradient approximation:

q̂k−1/2 ' − (1− α) κk−1/2

c̃nk − c̃nk−1

zk − zk−1
− α κk−1/2

c̃n+1
k − c̃n+1

k−1

zk − zk−1
, (5.49)

wherec̃ is now interpreted as the numerical estimate of the spatial averages. The numerical
scheme reads

c̃n+1
k = c̃nk + (1− α)

κk+1/2∆tn
∆zk

c̃nk+1 − c̃nk
zk+1 − zk

− (1− α)
κk−1/2∆tn

∆zk

c̃nk − c̃nk−1

zk − zk−1

+ α
κk+1/2∆tn

∆zk

c̃n+1
k+1 − c̃n+1

k

zk+1 − zk
− α κk−1/2∆tn

∆zk

c̃n+1
k − c̃n+1

k−1

zk − zk−1
. (5.50)

With uniform grid spacing,κ constant andα = 0, we recover (5.25). Since the present
finite-volume scheme is by construction conservative (see Section3.9), we have incidentally
proven that (5.25) is conservative in the case of a uniform grid and constant diffusivity, a
property that can be verified numerically infirstdiffusion.m even in the unstable
case.

In practice, it is expedient to program the calculations with the flux values defined and
stored alongside the concentration values. The computations then entail two stages in every
step: first the computation of the flux values from the concentration values at the same time
level and then the update the concentration values from these most recent flux values. In
this manner, it is clear how to take into account variable parameters such as the local value
of the diffusivityκ (at cell edges rather than cell centers), local cell length,and momentary
time step. The approach is also naturally suited for the implementation of flux boundary
conditions.
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5.6 Multi-dimensional numerical schemes

Explicit schemes are readily generalized to two and three dimensions8 with indicesi, j and
k being grid positions in the respective directionsx, y andz:

c̃n+1 = c̃n +
A∆t

∆x2

(
c̃ni+1 − 2c̃n + c̃ni−1

)

+
A∆t

∆y2

(
c̃nj+1 − 2c̃n + c̃nj−1

)

+
κ∆t

∆z2

(
c̃nk+1 − 2c̃n + c̃nk−1

)
. (5.51)

The stability condition is readily obtained by using the amplification-factor analysis. Substi-
tuting the Fourier mode

c̃n = A%n ei (i kx∆x)ei (j ky∆y)ei (k kz∆z) (5.52)

in the discrete equation, we obtain the following generalization of (5.35):

A∆t

∆x2
+
A∆t

∆y2
+

κ∆t

∆z2
≤ 1

2
. (5.53)
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Figure 5-14 If the numerical state vector is constructed row by row in twodimensions,̃ci,j is the
element(j − 1)m+ i of x. Since the diffusion operator at pointi, j involves c̃i,j , c̃i+1,j , c̃i−1,j ,
c̃i,j−1 andc̃i,j+1, the matrix to be inverted has zero elements everywhere, except on the diagonal (the
point itself), the superdiagonal (pointi + 1, j), the subdiagonal (pointi − 1, k) and two lines situated
±m away from the diagonal (pointi, j ± 1).

The implicit version of the scheme is not much more complicated and, again, is uncondi-
tionally stable. However, the associated matrix is no longer tridiagonal but has a slightly more
complicated structure (Figure5-14). Unfortunately, there exists no direct solver for which the
cost remains proportional to the size of the problem. Several strategies can be developed to
keep the method “implicit” with affordable costs.

8In order not to overload the notation, indices are written here only if they differ from the local grid point index.
Therefore,̃c(tn, xi, yj , zk) is written c̃n whereas̃cn

j+1 stands for̃c(tn, xi, yj+1, zk).
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In any case, a direct solver is in some way an overkill. It inverts the matrix exactly up to
rounding errors, and such precision is not necessary in viewof the much larger errors associ-
ated with the discretization (see Section4.8). We can therefore afford to invert the matrix only
approximately, and this can be accomplished by the use of iterative methods, which deliver
solutions to any degree of approximation depending on the number of iterations performed.
A small number of iterations usually yields an acceptable solution because the starting guess
values may be taken as the values computed at the preceding time step. Two populariterative
solversof linear systems are the Gauss-Seidel method and the Jacobimethod, but there exist
many other iterative solvers, more or less optimized for different kinds of problems and com-
puters (e.g., Dongarraet al. 1998). In general, most program libraries offer a vast catalogue
of methods, and we will only mention a few general approaches, giving more detail on spe-
cific methods later when we need to solve a Poisson equation for a pressure or streamfunction
(Section7.6).

Any linear system of simultaneous equations can be cast as

Ax = b (5.54)

where the matrixA gathers all the coefficients, the vectorx all the unknowns, and the vector
b the boundary values and external forcing terms, if any. The objective of an iterative method
is to solve this system by generating a sequence ofx(p) that starts from a guess vectorx0 and
gradually converges toward the solution. The algorithm is arepeated application of

Bx(p+1) = Cx(p) + b (5.55)

whereB must be easy to invert, otherwise there is no gain, and is thustypically a diagonal or
triangular matrix (non-zero elements only on the diagonal or on the diagonal and one side of
it). At convergence,x(p+1) = x(p) and we must therefore haveB − C = A to have solved
(5.54). The closerB is to A, the faster the convergence since at the limit ofB = A a single
iteration would yield the exact answer. UsingC = B−A, we can rewrite the iterative step as

x(p+1) = x(p) + B−1
(
b− Ax(p)

)
(5.56)

which is reminiscent of a time stepping method. Here,B−1 denotes the inverse ofB. The
Jacobi method uses a diagonal matrixB, while the Gauss-Seidel method uses a triangular
matrix B. More advanced methods exist that converge faster than these two. Those will be
outlined in Section7.6.

In GFD applications, diffusion is rarely dominant (except for vertical diffusion in strong
turbulence), and stability restrictions associated with diffusion are rarely penalizing. There-
fore, it is advantageous to make the scheme implicit only in the direction of the strongest
diffusion (or largest variability of diffusion), usually the vertical, and to treat the horizontal
components explicitly:

c̃n+1 = c̃n +
A∆t

∆x2

(
c̃ni+1 − 2c̃n + c̃ni−1

)

+
A∆t

∆y2

(
c̃nj+1 − 2c̃n + c̃nj−1

)

+
κ∆t

∆z2

(
c̃n+1
k+1 − 2c̃n+1 + c̃n+1

k−1

)
. (5.57)
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Then, instead of inverting a matrix with multiple bands of non-zero elements, we only need
to invert a tridiagonal matrix at each point of the horizontal grid. Alternating direction im-
plicit (ADI) methods use the same approach, but change the direction of the implicit sweep
through the matrix at every time step. This helps when stability of the horizontal diffusion
discretization is a concern.

The biggest challenge associated with diffusion in GFD models is, however, not their
numerical stability but rather their physical basis because diffusion is often introduced as
a parameterization of unresolved processes. Occasionally, the unphysical behavior of the
discretization may create a problem (e.g., Beckerset al., 2000).

Analytical Problems

5-1. What would the energy spectrumEk(k) be in a turbulent flow where all length scales
were contributing equally to dissipation? Is this spectrumrealistic?

5-2. Knowing that the average atmospheric pressure on the earth’s surface is 1.013× 105

N/m2 and that the earth’s average radius is 6371 km, deduce the mass of the atmo-
sphere. Then, using this and the fact that the earth receives1.75× 1017 W from the
sun globally, and assuming that half of the energy received from the sun is being dissi-
pated in the atmosphere, estimate the rate of dissipationε in the atmosphere. Assuming
finally that turbulence in the atmosphere obeys the Kolmogorov theory, estimate the
smallest eddy scale in the air, its ratio to the largest scale(the earth’s radius), and the
large-scale wind velocity. Is this velocity scale realistic?

5-3. In a 15-m coastal zone, the water density is 1032 kg/m3 and the horizontal velocity scale
is 0.80 m/s. What are the Reynolds number and the diameter of the shortest eddies?
Approximately how many watts are dissipated per square meter of the ocean?

5-4. If you have to simulate the coastal ocean of the previous problem with a numerical
model that includes 20 grid points over the vertical, what would be a reasonable value
for the vertical eddy diffusivity?

5-5. Estimate the time it takes to reduce by a factor 2 a salinity variation in an ocean of depth
H = 1000 m in the presence of salt diffusion, with a diffusion coefficientκ. Compare
two solutions, one using the molecular diffusion (κ = 10−9 m2/s) and the other a
turbulent diffusion typical of the deep ocean (κ = 10−4 m2/s).

5-6. A deposition at the sea surface of a tracer (normalized and without units) can be modeled
by a constant fluxq = −10−4 m/s. At depthz = −99 m a strong current is present and
flushes the vertically diffused tracer so thatc = 0 is maintained at that level. Assuming
the diffusion coefficient has the profile of Figure5-15, calculate the steady solution for
the tracer distribution.
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Figure 5-15 Values of a non-uniform
eddy diffusion for analytical Problem
5-6. A flux condition is imposed at the
surface whilec = 0 at the base of the
domain.
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Figure 5-16 With a time step such
thatD = 0.1, the initial condition (sin-
gle line) of the 1D diffusion problem
has been damped after 500 time steps
and the numerical solution of the ex-
plicit scheme (open circles) is almost
indistinguishable from the exact solu-
tion (shown as a line crossing the cir-
cles), even with only 30 grid points
across the domain.

Numerical Exercises

5-1. Cure the unstable versionfirstdiffusion.m by adapting the time step and verify
that below the limit (5.35) the scheme is indeed stable and provides accurate solutions
(Figure5-16).

5-2. For a 1D Euler scheme with implicit factorα, constant grid size and constant diffusion
coefficient, prove that the stability condition is(1− 2α)D ≤ 1/2.

5-3. Implement periodic boundary conditions in the 1D diffusionproblem (i.e., ctop =
cbottom and qtop = qbottom). Then, search the internet for a tridiagonal matrix in-
version algorithm adapted to periodic boundary conditionsand implement it.

5-4. Implement the 1D finite-volume method with an implicit factor α and variable diffusion
coefficient. Set the problem with the same initial and boundary conditions as in the
beginning of Section5.3. Verify your solution against the exact solution (5.19).
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5-5. Apply the code developed in Section5.6 to the analytical problem 5-6. Start with an
arbitrary initial condition and march in time until the solution becomes stationary. Es-
timatea priori the permitted time step and the minimum total number of time steps,
depending on the implicit factor. Take∆z = 2, track convergence during the calcula-
tions and compare your final solution with the exact solutionfor ∆z = 2. Also try to
implement the naive discretization

∂

∂z

(
κ
∂c

∂z

)∣∣∣∣
zk

= κ
∂2c

∂z2

∣∣∣∣
zk

+
∂κ

∂z

∣∣∣∣
zk

∂c

∂z

∣∣∣∣
zk

∼ κk (c̃k+1 − 2c̃k + c̃k−1)

∆z2

+
(κk+1 − κk−1)

2∆z

(c̃k+1 − c̃k−1)

2∆z
. (5.58)

5-6. The Dufort-Frankel scheme approximates the diffusion equation by

c̃n+1
k = c̃n−1

k + 2D
[
c̃nk+1 − (c̃n+1

k + c̃n−1
k ) + c̃nk−1

]
. (5.59)

Verify the consistency of this scheme. What relation must beimposed between∆t
and∆z when each approaches zero to ensure consistency? Then, analyze numerical
stability using the amplification-factor method.



Andrey Nikolaevich Kolmogorov
1903 – 1987

Andrey Kolmogorov was attracted to mathematics from an early age and, at the time of his
studies at Moscow State University, sought the company of the most outstanding mathemati-
cians. While still an undergraduate student, he began research and published several papers
of international importance, chiefly on set theory. He had already 18 publications by the time
he completed his doctorate in 1929. Kolmogororov’s contributions to mathematics spanned
a variety of topics, and he is perhaps best known for his work on probability theory and
stochastic processes.

Research in stochastic processes led to a study of turbulentflow from a jet engine and,
from there, to two famous papers on isotropic turbulence in 1941. It has been remarked that
this pair of papers rank among the most important ones since Osborne Reynolds in the long
and unfinished history of turbulence theory.

Kolmogorov found much inspiration for his work during nature walks in the outskirts
of Moscow accompanied by colleagues and students. The brainstorming that had occurred
during the walk often concluded in serious work around the dinner table upon return home.
(Photo from American Mathematical Society)
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John Louis von Neumann
1903 – 1957

John von Neumann was a child prodigy. At age six, he could mentally divide eight-digit
numbers and memorize the entire page of a telephone book in a matter of minutes, to the
amazement of his parents’ guests at home. Shortly after obtaining his doctorate in 1928,
he left his native Hungary to take an appointment at Princeton University (USA). When the
Institute for Advanced Studies was founded there in 1933, hewas named one of the original
Professors of Mathematics.

Besides seminal contributions to ergodic theory, group theory and quantum mechanics,
his work included the application of electronic computers to applied mathematics. Together
with Jule Charney (see biography at end of Chapter 16) in the 1940s, he selected weather
forecasting as the first challenge for the emerging electronic computers, which he helped
assemble. Unlike Lewis Richardson before them, von Neumannand Charney started with
a single equation, the barotropic vorticity equation. The results exceeded expectations and
scientific computing was launched.

A famous quote attributed to von Neumann is: “If people do notbelieve that mathematics
is simple, it is only because they do not realize how complicated life is.” (Photo from Virginia
Polytechnic Institute and State University)
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Chapter 6

Transport and Fate

(October 18, 2006)SUMMARY : Here, we augment the diffusion equation of the preceding
chapter to include the effects of advection (transport by the moving fluid) and fate (diffusion,
plus possible source and decay along the way). The numericalsection begins with the design
of schemes for advection in a fixed (Eulerian) framework and then extends those to include the
discretization of diffusion and source/decay terms. Most of the developments are presented
in one dimension before generalization to multiple dimensions.

6.1 Combination of advection and diffusion

When considering the heat (3.25), salt (3.16), humidity (3.17) or density (4.8) equations of
Geophysical Fluid Dynamics, we note that they each include three types of terms. The first,
a time derivative, tells how the variable is changing over time. The second is a group of three
terms with velocity components and spatial derivatives, sometimes hidden in the material
derivatived/dt. Their effect is to transport the substance with the flow. Collectively, these
terms are calledadvection. Finally, the last group of terms, on the right-hand sides, includes
an assortment of diffusivities and second-order spatial derivatives. In the light of Chapter 5,
we identify these withdiffusion. Their effect is to spread the substance spatially along and
across the flow. Using a generic formulation, we are brought to study an equation of the type

∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
+ w

∂c

∂z
=

∂

∂x

(
A ∂c
∂x

)
+

∂

∂y

(
A ∂c
∂y

)
+

∂

∂z

(
κ
∂c

∂z

)
, (6.1)

where the variablec may stand for any of the aforementioned variables or represent a sub-
stance imbedded in the fluid, such as a pollutant in the atmosphere or in the sea. Note the
anisotropy between the horizontal and vertical directions(A generally� κ).

The examples in the following figures illustrate the combined effects of advection and
diffusion. Figure6-1shows the fate of the Rhône River waters as they enter the Mediterranean
Sea. Advection pulls the plume offshore while diffusion dilutes it. Figure6-2 is a remarkable
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Figure 6-1 Rhône River plume dis-
charging in the Gulf of Lions (circa
43◦N) and carrying sediments into
the Mediterranean Sea. This satel-
lite picture was taken on 26 February
1999. (Satellite image provided by
the SeaWiFS Project, NASA/Goddard
Space Flight Center)

satellite picture, showing wind advection of sand from the Sahara Desert westward from
Africa to Cape Verde (white band across the lower part of the picture) at the same time as,
and independently from, marine transport of suspended matter southwestward from the Cape
Verde islands (Von Kármán vortices in left of middle of thepicture). While sand is being
blown quickly and without much diffusion in the air, the sediments follow convoluted paths
in the water, pointing to a disparity between the relative effects of advection and diffusion in
the atmosphere and ocean.

Often, the substance being carried by the fluid is not simply moved and diffused by the
flow. It may also be created or lost along the way. Such is the case of particle matter, which
tends to settle at the bottom. Chemical species can be produced by reaction between parent
chemicals and be lost by participating in other reactions. An example of this is sulfuric
acid (H2SO4) in the atmosphere: It is produced by reaction of sulfur dioxide (SO2) from
combustion and lost by precipitation (acid rain or snow). Tritium, a naturally radioactive
form of hydrogen enters the ocean by contact with air at the surface and disintegrates along
its oceanic journey to become Helium. Dissolved oxygen in the sea is consumed by biological
activity and is replenished by contact with air at the surface.

To incorporate these processes, we augment the advection-diffusion equation (6.1) by
adding source and sink terms in the right-hand side:

∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
+ w

∂c

∂z
=

∂

∂x

(
A ∂c
∂x

)
+

∂

∂y

(
A ∂c
∂y

)
+

∂

∂z

(
κ
∂c

∂z

)
+ S − Kc, (6.2)

where the termS stands for the source, the formulation of which depends on the particular
process of formation of the substance, andK is a coefficient of decay, which affects how
quickly (largeK) or slowly (smallK) the substance is being lost.

At one-dimension, say in thex–direction, and with constant diffusivityA, the equation
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Figure 6-2 Sahara dust blown by the wind from the African continent overthe ocean toward Cape
Verde islands (15–17◦N), while suspended matter in the water is being transportedsouthwestward by
a series of Von Kármán vortices in the wake of the islands. Note in passing how these vortices in the
water affect the overlying cloud patterns. (Jacques Descloitres, MODIS Land Science Team)

reduces to:

∂c

∂t
+ u

∂c

∂x
= A ∂2c

∂x2
+ S − Kc. (6.3)

Several properties of the advection-diffusion equation are worth noting because they bear
on the numerical procedures that follow: In the absence of source and sink, the total amount
of the substance is conserved, and, in the further absence ofdiffusion, the variance of the
concentration distribution, too, is conserved over time.

When we integrate Equation (6.2) over the domain volumeV , we can readily integrate
the diffusion terms and, if the flux is zero at all boundaries,these vanish, and we obtain:

d
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∫

V
c dV = −

∫

V

(
u
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∂x
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∂c

∂y
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dV +

∫
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S dV −

∫

V
Kc dV .

After an integration by parts, the first set of terms on the right can be rewritten as

d

dt
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V
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∫
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dV +

∫
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S dV −

∫

V
Kc dV ,

as long as there is no flux or no advection at all boundaries. Invoking the continuity equation
(4.21d) reduces the first term on the right to zero, and we obtain simply:

d

dt

∫

V
c dV =

∫

V
S dV −

∫

V
Kc dV . (6.4)
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Since the concentrationc represents the amount of the substance per volume, its integral over
the volume is its total amount. Equation (6.4) simply states that this amount remains constant
over time when there is no source (S = 0) or sink (K = 0). Put another way, the substance
is moved around but conserved.

Now, if we multiply Equation (6.2) by c and then integrate over the domain, we can
integrate the diffusion terms by parts and, if the flux is again zero at all boundaries, we have:

1

2

d

dt
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(
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)2
]
dV

+

∫

V
Sc dV −

∫

V
Kc2 dV . (6.5)

With no diffusion, source or sink, the right-hand side is zero, andvarianceis conserved in
time. Diffusion and decay tend to reduce variance, whereas asource tends to increase it.

This conservation property can be extended, still in the absence of diffusion, source and
sink, to any powercp of c, by multiplying the equation bycp−1 before integration. The
conservation property even holds for any functionF (c). It goes without saying that numerical
methods cannot conserve all these quantities, but it is highly desirable that they conserve at
least the first two (total amount and variance).

There is one more property worth mentioning, which we will state without demonstra-
tion but justify in a few words. Because diffusion acts to smooth the distribution ofc, it
removes the substance from the areas of higher concentration and brings it into regions of
lower concentration. Hence, due to diffusion alone, the maximum ofc can only diminish and
its minimum can only increase. Advection only redistributes existing values, thus not chang-
ing either minimum and maximum. In the absence of source and sink, therefore, no future
value ofc can fall outside the initial range of values. This is called the max-min property.
Exceptions are the presence of a source or sink, and the import through one of the boundaries
of concentration values outside the initial range.

We call a numerical scheme that maintains the max-min property amonotonic schemeor
monotonicity preservingscheme1. Alternatively, the property ofboundednessis often used
to describe a physical solution that does not generate new extrema. Ifc is initially positive
everywhere, as it should be, the absence of new extrema keepsthe variable positive at all
future times, another property calledpositiveness. A monotonic scheme is thus positive but
the reverse is not necessarily true.

6.2 Relative importance of advection: The Peclet number

Since the preceding equations combine the effects of both advection and diffusion, it is im-
portant to compare the relative importance of one to the other. In a specific situation, could
it be that one dominates over the other or that both impact concentration values to the same
extent? To answer this question, we turn once again to scales. Introducing a length scaleL,
velocity scaleU , diffusivity scaleD, and a scale∆c to measure concentration differences,

1Some computational fluid dynamicists do make a difference between these two labels, but this minor point lies
beyond our present text.
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we note that advection scales likeU∆c/L and diffusion likeD∆c/L2. We can then compare
the two processes by forming the ratio of their scales:

advection
diffusion

=
U∆c/L

D∆c/L2
=

UL

D
.

This ratio is by construction dimensionless. It bears the name of Peclet number2 and is
denoted byPe:

Pe =
UL

D
, (6.6)

where the scalesU , L andD may stand for the scales of either horizontal (u, v, x, y and
A) or vertical (w, z andκ) variables but not a mix of them. The Peclet number leads to an
immediate criterion, as follows.

If Pe � 1 (in practice, ifPe < 0.1), the advection term is significantly smaller than
the diffusion term. Physically, diffusion dominates and advection is negligible. Diffusive
spreading occurs almost symmetrically despite the directional bias of the weak flow. If we
wish to simplify the problem, we may drop the advection term [u∂c/∂x in (6.3)], as ifuwere
zero. The relative error committed in the solution is expected to be on the order of the Peclet
number, and the smallerPe, the smaller the error. The methods developed in the preceding
chapter were based on such simplification and thus apply wheneverPe� 1.

If Pe � 1 (in practice, ifPe > 10), it is the reverse: the advection term is now sig-
nificantly larger than the diffusion term. Physically, advection dominates and diffusion is
negligible. Spreading is weak, and the patch of substance ismostly moved along, and pos-
sibly distorted by, the flow. If we wish to simplify the problem, we may drop the diffusion
term [D∂2c/∂x2 in (6.3)], as ifD were zero. The relative error committed in the solution by
so doing is expected to be on the order of the inverse of the Peclet number (1/Pe), and the
largerPe, the smaller the error.

6.3 Highly advective situations

When a system is highly advective in one direction (highPe number based on scalesU , L
andD corresponding to that direction), diffusion is negligiblein that same direction. This
is not to say that it is also negligible in the other directions. For example, high advection
in the horizontal does not preclude vertical diffusion, as this is often the case in the lower
atmosphere. In such a case, the governing equation is

∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
=

∂

∂z

(
κ
∂c

∂z

)
+ S − Kc. (6.7)

Because the diffusion terms are of higher order (second derivatives) than those of advec-
tion (first derivatives), the neglect of a diffusion term reduces the order of the equation and,
therefore, also reduces the need of boundary conditions by one in the respective direction.
The boundary condition at the downstream end of the domain must be dropped: The concen-
tration and flux there are whatever the flow brings to that point. A problem occurs when the

2In honor of Jean Claude Eugène Péclet (1793–1857), Frenchphysicist who wrote a treatise on heat transfer.
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situation is highly advective and the small diffusion term is not dropped. In that case, because
the order of the equation is not reduced, a boundary condition is enforced at the downstream
end, and a locally high gradient of concentration may occur.

To see this, consider the one-dimensional, steady situation with no source and sink, with
constant velocity and diffusivity in thex–direction. The equation is

u
dc

dx
= A d2c

dx2
, (6.8)

and its most general solution is

c(x) = C0 + C1 e
ux/A. (6.9)

For u > 0, the downstream end is to the right of the domain, and the solution increases
exponentially towards the right boundary. Rather, it couldbe said that the solution decays
away from this boundary asx decreases away from it. In other words, a boundary layer
exists at the donwstream end. Thee-folding length of this boundary layer isA/u, and it
can be very short in a highly advective situation (largeu and smallA). Put another way,
the Peclet number is the ratio of the domain length to this boundary-layer thickness, and the
larger the Peclet number, the smaller the fraction of the domain occupied by the boundary
layer. Why do we need to worry about this? Because in a numerical model it may happen
that the boundary-layer thickness falls below the grid size. It is therefore important to check
the Peclet number in relation to the spatial resolution. Should the ratio of the grid size to the
length scale of the system be comparable to, or larger than, the inverse of the Peclet number,
diffusion must be neglected in that direction, or, if it mustbe retained for some reason, special
care must be taken at the downstream boundary.

6.4 Centered and upwind advection schemes

In GFD, advection is generally dominant compared to diffusion, and we therefore begin with
the case of pure advection of a tracer concentrationc(x, t) along thex–direction. The aim is
to solve numerically the following equation:

∂c

∂t
+ u

∂c

∂x
= 0. (6.10)

For simplicity, we further take the velocityu as constant and positive so that advection carries
c in the positivex–direction. The exact solution of this equation is

c(x, t) = c0(x − ut), (6.11)

wherec0(x) is the initial concentration distribution (att = 0).
A spatial integration fromxi−1/2 to xi+1/2 across a grid cell (Figure6-3) leads to the

following budget

dc̄i
dt

+
qi+1/2 − qi−1/2

∆x
= 0, qi−1/2 = uc|i−1/2

, (6.12)
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xi−1/2 xi+1/2

c̄i
qi−1/2

c

x

qi+1/2
Figure 6-3 One-dimensional finite-
volume approach with fluxes at the
interfaces between grid cells for a
straightforward budget calculation.

which is the basis for the finite-volume technique, as in (3.35). To close the system, we need
to relate the local fluxesq to the cell-average concentrationsc̄. To do so we must introduce
an approximation, because we do not know the actual value ofc at the interfaces between
cells, but only the average value in the cell on each side of it. It appears reasonable to use the
following, consistent, numerical interpolation for the flux:

q̃i−1/2 = u

(
c̄i + c̄i−1

2

)
, (6.13)

which is tantamount to assuming that the local tracer concentration at the interface is equal
to the mean of the surrounding cell averages. Before proceeding with time discretization, we
can show that this centered approximation conserves not only the total amount of substance
but also its variance,

∑
i c̄i and

∑
i(c̄i)

2, respectively. Substitution of the flux approximation
into (6.12) leads to the following semi-discrete equation for cell-averaged concentrations:

dc̄i
dt

= − u c̄i+1 − c̄i−1

2∆x
. (6.14)

Sum over indexi leads to cancellation of terms by pairs on the right, leavingonly the first
and last̄c values. Then, multiplication of the same equation byci followed by the sum over
the domain provides the time-evolution equation of the discretized variance:

d

dt

(
∑

i

(c̄i)
2

)
= − u

∆x

∑

i

c̄ic̄i+1 +
u

∆x

∑

i

c̄ic̄i−1,

where the sum covers all grid cells. By shifting the index of the last term fromi to i + 1,
we note again cancellation of terms by pairs, leaving only contributions from the first and
last grid points. Thus, except for possible contributions from the boundaries, the numerical
scheme conserves both total amount and variance as the original equation does.

However, the conservation of global variance only holds forthe semi-discrete equations.
When time discretization is introduced as it must eventually be, conservation properties are
often lost. In the literature it is not always clearly statedwhether conservation properties hold
for the semi-discrete or fully-discretized equations. Thedistinction, however, is important:
The centered-space differencing conserves the variance ofthe semi-discrete solution, but a
simple explicit time discretization renders the scheme unconditionnaly unstable and certainly
does not conserve the variance. On the contrary, the latter quantity rapidly increases. Only a
scheme that is both stable and consistent leads in the limit of vanishing time step to a solution
that satisfies (6.12) and ensures conservation of the variance.
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We might wonder why place emphasis on such conservation properties of semi-discrete
equations, since by the time the algorithm is keyed into the computer it will always rely
on fully-discretized numerical approximations in both space and time. A reason to look at
semi-discrete conservation properties is that some special time discretizations maintain the
property in the fully-discretized case. We now show that in the case of variance conservation,
the trapezoidal time discretization does so. Consider the more general linear equation

dc̃i
dt

+L(c̃i) = 0, (6.15)

whereL stands for a linear discretization operator applied to the discrete fieldc̃i. For our
centered advection, the operator isL(c̃i) = u(c̃i+1−c̃i−1)/(2∆x). Suppose that the operator
is designed to satisfy conservation of variance, which demands that at any momentt and for
any discrete field̃ci the following relation holds:

∑

i

c̃iL(c̃i) = 0, (6.16)

because only then does
∑

i c̃i dc̃i/dt vanish according to (6.15) and (6.16). The trapezoidal
time discretization applied to (6.15) leads to

c̃n+1
i − c̃ni

∆t
= − L(c̃n+1

i ) +L(c̃ni )

2
= − 1

2
L(c̃n+1

i + c̃ni ), (6.17)

where the last equality follows from the linearity of operatorL. Multiplying this equation by
(c̃n+1
i + c̃ni ) and summing over the domain then yields

∑

i

(c̃n+1
i )2 − (c̃ni )2

∆t
= − 1

2

∑

i

(c̃n+1
i + c̃ni )L(c̃n+1

i + c̃ni ). (6.18)

The term on the right is zero by virtue of (6.16). Therefore, any spatial discretization scheme
that conserves variance continues to conserve variance if the trapezoidal scheme is used for
the time discretization. As an additional benefit, the resulting scheme is also unconditionally
stable. This does not mean, however, that the scheme is satisfactory, as Numerical Exercise
6-9 shows for the advection of the top-hat signal. Furthermore, there is a price to pay for
stability because a system of simultaneous linear equations needs to be solved at each time
step if the operatorL uses several neighbors of the local grid pointi.

To avoid solving simultaneous equations, alternative methods must be sought for time
differencing. Let us explore the leapfrog scheme on the finite-volume approach. Time inte-
gration of (6.12) from tn−1 to tn+1 yields

c̄n+1
i = c̄n−1

i − 2
∆t

∆x

(
q̂i+1/2 − q̂i−1/2

)
, (6.19)

wherêqi−1/2 is the time-average advective fluxuc across the cell interfaces between cellsi−1
andi during the time interval fromtn−1 to tn+1. Using centered operators, this flux can be
estimated as

q̂i−1/2 =
1

2∆t

∫ tn+1

tn−1

uc|i−1/2
dt → q̃i−1/2 = u

(
c̃ni + c̃ni−1

2

)
, (6.20)
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so that the ultimate scheme is:

c̃n+1
i = c̃n−1

i − C
(
c̃ni+1 − c̃ni−1

)
, (6.21)

where the coefficientC is defined as

C =
u∆t

∆x
. (6.22)

The same discretization could have been obtained by straightforward finite differencing of
(6.10).

The parameterC is a dimensionless ratio central to the numerical discretization of ad-
vective problems, called theCourant numberor CFL parameter(Courantet al., 1928). It
compares the displacementu∆t made by the fluid during one time step to the grid size∆x.
More generally, the Courant number for a process involving apropagation speed (such as a
wave speed) is defined as the ratio of the distance of propagation during one time step to the
grid spacing.

To use (6.21), two initial conditions are needed, one of which is physical and the other
artificial, The latter must be consistent with the former. Asusual, an explicit Euler step may
be used to start from the single initial conditionc̃0i :

c̃1i = c̃0i −
C

2

(
c̃0i+1 − c̃0i−1

)
. (6.23)
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Figure 6-4 The characteristic linex−
ut = a propagates information from
the initial condition or boundary con-
dition into the domain. If the bound-
ary is located atx = 0 and the ini-
tial condition given att = 0, the line
x = ut divides the space-time frame
into two distinct regions: Forx ≤ ut
the boundary condition defines the so-
lution whereas forx ≥ ut the initial
condition defines the solution.

In considering boundary conditions, we first observe that the exact solution of (6.10)
obeys the simple law

c(x− ut) = constant. (6.24)

By virtue of this property, a specified value ofc somewhere along the linex − ut = a,
called acharacteristic, determines the value ofc everywhere along that line. It is then easily
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seen (Figure6-4) that, in order to obtain a uniquely defined solution within the domain, a
boundary condition must be provided at the upstream boundary but no boundary condition is
required at the outflow boundary. The centered space differencing, however, needs a value of
c̃ given at each boundary. When discussing artificial boundaryconditions (Section4.7), we
argued that these are acceptable as long as they are consistent with the mathematically correct
boundary condition. But then, what requirement should the articifial boundary condition at
the outflow obey with since there is no physical boundary condition for it to be consistent
with? In practice a one-sided space differencing is used at the outflow for the last calculation
point i = m, so that its value is consistent with the local evolution equation:

c̃n+1
m = c̃n−1

m − 2C
(
c̃nm − c̃nm−1

)
. (6.25)

This provides the necessary value at the last grid cell.
For the inflow condition, the physical boundary condition isimposed, and algorithm

(6.21) can be used starting fromn = 1 and marching in time over all pointsi = 2, ...,m− 1.
Numerically we thus have sufficient information to calculate a solution that will be second-
order accurate in both space and time, except near the initial condition and at the outflow
boundary. In order to avoid any bad surprise when implementing the method, a stability
analysis is advised.

For convenience, we use the Von Neumann method written in Fourier-mode formalism
(5.31)

c̃ni = A ei (kx i∆x − ω̃ n∆t), (6.26)

where the frequencỹω may be complex. Substitution in the difference equation (6.21) pro-
vides the numerical dispersion relation

sin(ω̃∆t) = C sin(kx∆x). (6.27)

If |C| > 1 this equation admits complex solutionsω̃ = ω̃r + i ω̃i for the 4∆x wave with
ω̃r∆t = π/2 andω̃i such that

sin(ω̃r∆t+ i ω̃i∆t) = cosh(ω̃i∆t) = C, (6.28)

which admits two real solutions̃ωi of opposite signs. One of the two solutions, therefore,
corresponds to a growing amplitude, and the scheme is unstable.

For |C| ≤ 1, dispersion relation (6.27) has two real solutions̃ω, and the scheme is stable.
Therefore, numerical stability requires the condition|C| ≤ 1.

In the stable case, the numerical frequencyω̃ may be compared to the exact value written
in terms of discrete parameters

ω = u kx → ω∆t = C kx∆x. (6.29)

Obviously, forkx∆x→ 0 and∆t→ 0 the numerical relation (6.27) coincides with the exact
relation (6.29). However, wheñω is solution of (6.27) so is alsoπ/∆t − ω̃. The numerical
solution thus consists of the superposition of the physicalmodeexp[i (kx i∆x− ω̃ n∆t)] and
an numerical mode that can be expressed as

c̃ni = A ei (kx i∆x + ω̃ n∆t) einπ (6.30)
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which, by virtue ofeinπ = (−1)n, flip-flops in time, irrespectively of how small the time
step is or how well the spatial scale is resolved. This secondcomponent of the numerical
solution, calledspurious modeor computational mode, is traveling upstream, as indicated
by the change of sign in front of the frequency. For the linearcase discussed here, this
spurious mode can be controlled by careful initialization (see Numerical Exercise 6-2), but
for nonlinear equations, the mode may still be generated despite careful initialization and
boundary conditions. In this case, it might be necessary to use time-filtering (see Section
10.6) to eliminate unwanted signals even if the spurious mode is stable for|C| ≤ 1.

x

t stable

unstable

xi

tn

Figure 6-5 Numerical domain of dependence of the leapfrog scheme (in gray) covered by the points
(circled dots) that influence the calculation at pointi, n. This network of points is constructed re-
cursively by identifying the grid points involved in prior calculations. The physical solution is only
influenced by values along the characteristic. If the characteristic falls into the numerical domain of
dependence (one of the solid lines for example), this value can be captured by the numerical grid. On
the contrary, when the physical characteristic is not included in the numerical domain of dependence
(dashed line for example), the numerical scheme uses only information that is physically unrelated to
the advection process, and the scheme is unstable. Also notethat for the leapfrog scheme the domain
of dependence defines a checkerboard pattern and that the grid in (x, t) space includes two numerically
independent sets of values (circled and non-circled dots).

The leapfrog scheme is thus conditionally stable. The stability condition |C| ≤ 1 was
given a clear physical interpretation by Courant, Friedrichs and Lewy in their seminal 1928
paper. It is based on the fact that algorithm (6.21) defines a domain of dependence: Calcu-
lation of the value at pointi and momentn (at the top of the gray pyramid in Figure6-5)
implicates neighbor pointsi ± 1 at timen and the cell valuei at timen − 1. Those values
in turn depend on their two neighboring and past values, so that a network of points can be
constructed that influence the value at grid pointi and momentn. This network is the numer-
ical domain of dependence. Physically, however, the solution at pointi and timen depends
only on the value along the characteristicx − ut = xi − utn according to (6.24). It is clear
that, if this line does not fall into the domain of dependence, there is trouble, for an attempt
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Figure 6-6 Leapfrog scheme applied
to the advection of a “top-hat” signal
with C = 0.5 for 100 times steps.
The exact solution is a mere translation
from the initial position (dashed curve
on the left) by 50 grid points down-
stream (dash-dotted curve on the right).
The numerical method generates a so-
lution that is roughly similar to the ex-
act solution, with the solution varying
around the correct value.

is made to determine a value from an irrelevant set of other values. Numerical instability is
the symptom of this unsound approach. It is therefore necessary that the characteristic line
passing through(i, n) be included in the numerical domain of dependence.

Except for the undesirable spurious mode, the leapfrog scheme has desirable features,
because it is stable for|C| ≤ 1, conserves variance for sufficiently small time steps, and
leads to the correct dispersion relation for well-resolvedspatial scales. But, is it sufficient to
ensure a well-behaved solution? A standard test for advection schemes is the translation of a
“top-hat” signal. The use of (6.21) leads in this case to the result shown in Figure6-6, which
is somewhat disappointing. The odd behavior can be explained: In terms of Fourier modes,
the solution consists of a series of sine/cosine signals of different wavelength, each of which
by virtue of the numerical dispersion relation (6.27) travels at its own speed, thus unraveling
the signal over time. This also explains the unphysical appearance of both negative values
and values in excess of the initial maximum. The scheme does not possess the monotonicity
property but creates new extrema.

The cause of the poor performance of the leapfrog scheme is evident: The actual integra-
tion should be performed using upstream information exclusively whereas the scheme uses
a central average that disregards the origin of the information. In other words, it ignores the
physical bias of advection.

To remedy the situation, we now try to take into account the directional information of
advection and introduce the so-calledupwindor donor cellscheme. A simple Euler scheme
over a single time step∆t is chosen, and fluxes are integrated over this time interval.The
essence of this scheme is to calculate the inflow based solelyon the average value across
the grid cell from where the flow arrives (the donor cell). Forpositive velocity and a time
integration fromtn to tn+1, we obtain

c̄n+1
i = c̄ni −

∆t

∆x

(
q̂i+1/2 − q̂i−1/2

)
(6.31)

with
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q̂i−1/2 =
1

∆t

∫ tn+1

tn
qi−1/2 dt ' u c̃ni−1, (6.32)

so that the scheme is

c̃n+1
i = c̃ni − C

(
c̃ni − c̃ni−1

)
. (6.33)

Interestingly enough, the scheme can be used without need ofartificial boundary condi-
tions or special initialization, as we can see from algorithm (6.33) or the numerical domain
of dependence (Figure6-7). The CFL condition0 ≤ C ≤ 1 provides the necessary condition
for stability.

x

t stable

unstable

Figure 6-7 Domain of dependence of
the upwind scheme. If the characteris-
tic (dashed line) lies outside the numer-
ical domain of dependence, unphysical
behavior will be manifested as numeri-
cal instability. The necessary CFL sta-
bility condition therefore requires0 ≤
C ≤ 1 so that the characteristic lies
within the numerical domain of depen-
dence (cases of solid lines). One ini-
tial condition and one upstream bound-
ary condition are sufficient to deter-
mine the numerical solution.

The stability of the scheme could be analyzed with the Von Neumann method, but the
simplicity of the scheme permits another approach, the so-calledenergy method. The energy
method considers the sum of squares ofc̃ and determines whether it remains bounded over
time, providing a sufficient condition for stability. We start with (6.33), square it and sum
over the domain:

∑

i

(c̃n+1
i )2 =

∑

i

(1− C)2(c̃ni )
2 +

∑

i

2C(1− C)c̃ni c̃
n
i−1 +

∑

i

C2(c̃ni−1)
2. (6.34)

The first and last terms on the right can be grouped by shiftingthe indexi in the last sum and
invoking cyclic boundary conditions so that

∑

i

(c̃n+1
i )2 =

∑

i

[(1 − C)2 + C2](c̃ni )2 +
∑

i

2C(1− C)c̃ni c̃
n
i−1. (6.35)

We can find an upper bound for the last term by using the following inequality:

0 ≤
∑

i

(c̃ni − c̃ni−1)
2 = 2

∑

i

(c̃ni )
2 − 2

∑

i

c̃ni c̃
n
i−1, (6.36)

which can be proved by using again the cyclic condition. IfC(1 − C) > 0 the last term in
(6.35) may be replaced by the upper bound of (6.36) so that
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Figure 6-8 Upwind scheme withC =
0.5 applied to the advection of a “top-
hat” signal after 100 times steps. Ide-
ally the signal should be translated
without change in shape by 50 grid
points, but the solution is characterized
by a certain diffusion and a reduction in
gradient.

∑

i

(c̃n+1
i )2 ≤

∑

i

(c̃ni )
2, (6.37)

and the scheme is stable because the norm of the solution doesnot increase in time. Al-
though it is not related to a physical energy, the method derives its the name from its reliance
on a quadratic form that bears resemblance with kinetic energy. Methods that prove that a
quadratic form is conserved or bounded over time are similarto energy-budget methods used
to prove that the energy of a physical system is conserved.

The energy method provides only a sufficient stability condition because the upper bounds
used in the demonstration do not need to be reached. But, since in the present case the
sufficient stability condition was found to be identical to the necessary CFL condition, the
condition0 ≤ C ≤ 1 is both necessary and sufficient to guarantee the stability of the upwind
scheme.

Testing the upwind scheme on the “top-hat” problem (Figure6-8), we observe that, unlike
leapfrog, the scheme does not create new minima or maxima, but somehow diffuses the signal
by reducing the gradients. The fact that the scheme is monotonic is readily understood by
examining (6.33): The new value at pointi is a linear interpolation of previous values found
at i andi− 1, so that no new value can ever fall outside the range of these previous values as
long as the condition0 ≤ C ≤ 1 is satisfied.

The diffusive behavior can be explained by analyzing the modified equation associated
with (6.33). A Taylor expansion of the discrete solution around point(i, n) in (6.33) provides
the equation that the numerical scheme actually solves:

∂c̃

∂t
+

∆t

2

∂2c̃

∂t2
+O

(
∆t2

)
+ u

(
∂c̃

∂x
− ∆x

2

∂2c̃

∂x2
+O

(
∆x2

))
= 0. (6.38)

The scheme is only of first order as can be expected from the useof a one-sided finite
difference. To give a physical interpretation to the equation, the second time derivative should
be replaced by a spatial derivative. Taking the derivative of the modified equation with respect



6.4. ADVECTION SCHEMES 161

to t provides an equation for the second time derivative, which we would like to eliminate,
but it involves a cross derivative3. This cross derivative can be obtained by differentiating the
modified equation with respect tox. Some algebra then provides

∂2c̃

∂t2
= u2 ∂

2c̃

∂x2
+O

(
∆t,∆x2

)
,

which can finally be introduced into (6.38) to yield the following equation

∂c̃

∂t
+ u

∂c̃

∂x
=
u∆x

2
(1− C)

∂2c̃

∂x2
+O

(
∆t2,∆x2

)
. (6.39)

This is the equation that the upwind scheme actually solves.
Up toO

(
∆t2,∆x2

)
, therefore, the numerical scheme solves an advection-diffusionequa-

tion instead of the pure advection equation, with diffusivity equal to(1− C)u∆x/2. For ob-
vious reasons, this is called an artificial diffusion ornumerical diffusion. The effect is readily
seen in Figure6-8. To decide whether this level of artificial diffusion is acceptable or not, we
must compare its size to that of physical diffusion. For a diffusivity coefficientA, the ratio of
numerical to physical diffusion is(1− C)u∆x/2A. Since it would be an aberration to have
numerical diffusion equal or exceed physical diffusion (recall the error analysis of Section
4.8: Discretization errors should not be larger than modeling errors), thegrid Peclet number
U∆x/Amay not exceed a value ofO(1) for the upwind scheme to be valid.

When no physical diffusion is present, we must require that thenumericaldiffusion term
be small compared to thephysicaladvection term, a condition that can be associated with
another grid Peclet number:

P̃ e = 2
UL

U∆x (1− C)
∼ L

∆x
� 1, (6.40)

whereL stands for the length scale of any solution component worth resolving. Even for well
resolved signals in GFD flows, the Peclet number associated with numerical diffusion is often
insufficiently large, and numerical diffusion is a problem that plagues the upwind scheme.

The observation that the scheme introduces artificial diffusion is interesting and annoy-
ing, and the question is now to identify its origin in order toreduce it. Compared to the
centered scheme, which is symmetric and of second order, theupwind scheme uses exclu-
sively information form the upstream side, the donor cell, and is only of first order. Numerical
diffusion must, therefore, be associated with the asymmetry in the flux calculation, and to re-
duce numerical diffusion we must somehow take into account values of̃c on both sides of the
interface to calculate the flux and thereby seek a scheme thatis second-order accurate.

This can be accomplished with theLax-Wendroff scheme, which estimates the flux at the
cell interface not by assuming that the function is constantwithin the cell but varies linearly
across it:

3Note that using theoriginal equations, the physical solution satisfies∂2c/∂t2 = u2∂2c/∂x2, which is some-
times used as a shortcut to eliminate the second time derivative from the modified equation. This is, however,
incorrect becausẽc does not solve the original equation. In practice, this kindof shortcuts can lead to correct leading
truncation errors, but without being sure that no essentialterm is overlooked.
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Figure 6-9 Second-order Lax-
Wendroff scheme applied to the
advection of a “top-hat” signal with
C = 0.5 after 100 times steps. Disper-
sion and non-monotonic behavior are
noted.

q̃i−1/2 = u

[
c̃ni + c̃ni−1

2
− C

2

(
c̃ni − c̃ni−1

)]

= u c̃ni−1 + (1− C)
u∆x

2

c̃ni − c̃ni−1

∆x︸ ︷︷ ︸
'(1−C) u∆x

2
∂c̃
∂x

.
(6.41)

The last term is in addition to the upwind fluxuc̃ni−1 and serves to negate numerical diffusion
by adding an anti-diffusion flux with negative diffusion coefficient−u∆x(1− C)/2, i.e., the
precise opposite of numerical diffusion.

Substitution of this flux into the finite-volume scheme leadsto the following scheme:

c̃n+1
i = c̃ni − C

(
c̃ni − c̃ni−1

)
− ∆t

∆x2
(1− C)

u∆x

2

(
c̃ni+1 − 2c̃ni + c̃ni−1

)
(6.42)

which, compared to the upwind scheme, includes an additional anti-diffusion term with co-
efficient constructed to negate the numerical diffusion of the upwind scheme. The effect of
this higher-order approach on the solution of our test case is a reduced overall error but the
appearance of dispersion (Figure6-9). This is due to the fact that we eliminated the trun-
cation error proportional to the second spatial derivative(an even derivative associated with
dissipation) and now have a truncation error proportional to the third spatial derivative (an
odd derivative associated with dispersion, see theoretical Numerical Exercise 6-8).

The same dispersive behavior is observed with theBeam-Warming scheme, in which the
anti-diffusion term is shifted upstream so as to anticipatethe gradient that will arrive later at
the interface:

q̃i−1/2 = u c̃ni−1 + (1− C)
u

2
(c̃ni−1 − c̃ni−2). (6.43)
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This scheme is still of second order, since the correction term is only shifted upstream by
∆x. The effect of anticipating the incoming gradients enhances stability but does not reduce
dispersion (see Numerical Exercise 6-8).

Other methods spanning more grid points can be constructed to obtain higher-order in-
tegration of fluxes, implicit methods to increase stability, predictor-corrector methods, or
combinations of all these schemes. Here, we only outline some of the approaches and refer
the reader to more specialized literature for details (e.g., Durran, 1999; Chung, 2002).

A popularpredictor-corrector methodis the second-order MacCormack scheme: The
predictor uses a forward spatial difference (anti-diffusion)

c̃?i = c̃ni − C
(
c̃ni+1 − c̃ni

)
(6.44)

and the corrector a backward spatial difference on the predicted field (diffusion):

c̃n+1
i = c̃n+1/2

i − C

2

(
c̃?i − c̃?i−1

)
with c̃n+1/2

i =
c̃?i + c̃ni

2
. (6.45)

The elimination of the intermediate valuec̃n+1/2

i from which starts the corrector step provides
the expanded corrector step:

c̃n+1
i =

1

2

[
c̃ni + c̃?i − C

(
c̃?i − c̃?i−1

)]
, (6.46)

assuming as usualu > 0. Substitution of the predictor step into the corrector stepshows
that the MacCormack scheme is identical to the Lax-Wendroffscheme in the linear case, but
differences may arise in nonlinear problems.

An implicit schemecan handle centered space differencing and approximates the flux as

q̃i−1/2 = αu
c̃n+1
i + c̃n+1

i−1

2
+ (1− α)u

c̃ni + c̃ni−1

2
. (6.47)

Forα = 1, the scheme is fully implicit, whereas forα = 1/2 it becomes a semi-implicit or
trapezoidal scheme (also calledCrank-Nicholson scheme). The latter has already been shown
to be unconditionnaly stable (see variance conservation and the trapezoidal scheme (6.17)).
The price to pay for this stability is the need to solve a linear algebraic system at every step.
As for the diffusion problem, the system is tridiagonal in the 1D case and more complicated
in higher dimensions. The advantage of the implicit approach is a robust scheme whenC
occasionally happens to exceed unity in a known dimension4. It should be noted, however,
that for too large a Courant number accuracy degrades.

All of the previous schemes can be mixed in alinear combination, as long as the sum
of the weights attributed to each scheme is unity for the sakeof consistency. An example of
combining two schemes consists in averaging the flux calculated with a lower-order scheme
q̃Li−1/2

with that of a higher-order schemeq̃Hi−1/2
:

q̃i−1/2 = (1− Φ) q̃
L
i−1/2 + Φ q̃

H
i−1/2,

4Typically the vertical Courant number may be so variable that it becomes difficult to ensure that the local vertical
C value remains below one. In particular, it is prudent to use an implicit scheme in the vertical when the model has
non-uniform grid spacing and when the vertical velocity is weak except on rare occasions.
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in which the weightΦ (0 ≤ Φ ≤ 1) acts as a tradeoff between the undesirable numerical
diffusion of the lower-order scheme and numerical dispersion and loss of monotonicity of the
higher-order scheme.

All these methods lead to sufficiently accurate solutions, but none except the upwind
scheme ensures monotonic behavior. The reason for this disappointing fact can be found in
the frustrating theorem by Godunov (1959) regarding the discretized advection equation:

A consistent linear numerical scheme that is monotonic can at most be first-order
accurate.

Therefore, the upwind scheme is the inevitable choice if no over- or under-shoot is permitted.
To circumvent the Godunov theorem, state-of-the-art advection schemes relax the linear na-
ture of the discretization and adjust the parameterΦ locally, depending on the behavior of the
solution. The function that defines the wayΦ is adapted locally is called alimiter. Such an
approach is able to capture large gradients (fronts). Because of its advanced nature, we delay
its presentation until Section15.7. An example of a nonlinear scheme called TVD, however,
is already included in the computer codes provided for the analysis of advection schemes in
several dimensions.

6.5 Advection-diffusion with sources and sinks

Having considered separately advection schemes (this chapter), diffusion schemes (Chapter
5) and time discretizations with arbitrary forcing terms (Chapter2), we can now combine
them to tackle the general advection-diffusion equation with sources and sinks. For a linear
sink, the 1D equation to be discretized is

∂c

∂t
+ u

∂c

∂x
= −K c+

∂

∂x

(
A ∂c
∂x

)
. (6.48)

Since we already have a series of discretization possibilities for each individual process,
the combination of these provides an even greater number of possible schemes which we
cannot describe exhaustively here. We simply show one example to illustrate two important
facts that should not be forgotten when combining schemes: The properties of the combined
scheme are not simply the sum of the properties of the individual schemes nor is its stability
condition the most stringent condition of the separate schemes.

To prove the first statement, we consider (6.48) with zero diffusion (A = 0) and solve by
applying the second-order Lax-Wendroff advection scheme with the second-order trapezoidal
scheme applied to the decay term. The discretization, aftersome rearrangement of terms, is:

c̃n+1
i = c̃ni −

B

2
(c̃ni + c̃n+1

i )− C

2
(c̃ni+1 − c̃ni−1) +

C2

2
(c̃ni+1 − 2c̃ni + c̃ni−1), (6.49)

whereB = K∆t andC = u∆t/∆x. This scheme actually solves the following modified
equation:



6.5. ADVECTION-DIFFUSION WITH SOURCES AND SINKS 165

∂c̃

∂t
+ u

∂c̃

∂x
+K c̃ = −∆t

2

∂2c̃

∂t2
−K∆t

2

∂c̃

∂t
+
u2∆t

2

∂2c̃

∂x2
+O(∆t2,∆x2)

= −uK∆t

2

∂c̃

∂x
+O(∆t2,∆x2) (6.50)

where the last equality was obtained by a similar procedure as the one used to find the mod-
ified equation (6.39). It is not possible to make the terms on the right-hand side cancel each
other unlessK = 0 or u = 0, in which case we recover respectively the second-order Lax-
Wendroff or the second-order trapezoidal scheme. In all other cases, the combined scheme is
only of first order though the individual schemes are of second order.

For the purpose of illustrating the second statement on stability, we combine the second-
order Lax-Wendroff advection scheme (stability condition|C| ≤ 1) with the explicit Euler
diffusion scheme (stability condition0 ≤ D ≤ 1/2) and an explicit scheme for the sink term
with rateK (stability conditionK ∆t ≤ 2). The discretization, after some rearrangement of
the terms, is:

c̃n+1
i = c̃ni − B c̃ni −

C

2
(c̃ni+1 − c̃ni−1) +

(
D +

C2

2

)
(c̃ni+1 − 2c̃ni + c̃ni−1), (6.51)

whereD = A∆t/∆x2. Application of the Von Neumann stability analysis yields the ampli-
fication factor

% = 1− B− 4

(
D +

C2

2

)
sin2 θ − i 2C sin θ cos θ, (6.52)

whereθ = kx∆x/2, so that

|%|2 =

[
1− B− 4

(
D +

C2

2

)
ξ

]2
+ 4C2ξ(1− ξ), (6.53)

where0 ≤ ξ = sin2 θ ≤ 1. For ξ ' 0 (long waves), we obtain the necessary stability
conditionB ≤ 2, corresponding to the stability condition of the sink term alone. Forξ ' 1
(short waves) we find the more demanding necessary stabilitycondition

B + 2C2 + 4D ≤ 2. (6.54)

We can show that the latter condition is also sufficient (Numerical Exercise 6-13), which
proves that the stability condition of the combined schemesis more stringent than the most
severe stability condition of each individual scheme. Onlywhen two processes are neg-
ligible does the stability condition revert to the stability condition of the single remaining
process. This seems evident but is not always the case. In some situations, adding even an
infinitesimally-small stable process can require a discontinuous reduction in time step (e.g.,
Beckers and Deleersnijder, 1993). In other situations, adding a process can stabilize an oth-
erwise unconditionally unstable scheme (Numerical Exercise 6-14). Therefore, in theory,
the stability of the full scheme should be investigated in every individual case. In practice
however, if a complete scheme is too difficult to analyze, sub-schemes (i.e., including only
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Figure 6-10 Simulation using (6.51)
with B = 0.05, C = 0.5 and D =
0.25, after convergence to a station-
ary solution (solid line). With decreas-
ing diffusion, the scheme eventually
fails to resolve adequately the outflow
boundary layer, and undershoot ap-
pears (D = 0.05, dot-dash line). This
corresponds to a situation in which
one of the coefficients in the numeri-
cal scheme has become negative. The
programadvdiffsource.m can be
used to test other combinations of the
parameter values.

a few processes) are isolated with the hope that the full scheme does not demand a drasti-
cally shorter time step than the one required by the most stringent stability condition of all
sub-schemes taken separately.

Stability is an important property of any scheme as is, at least for tracers, monotonic
behavior. If we assume the scheme to be explicit, linear and covering a stencil spanningp
grid points upstream andq downstream (for a total ofp + q + 1 points), it can be written in
the general form:

c̃n+1
i = a−pc̃

n
i−p + ...+ a−1c̃

n
i−1 + a0c̃

n
i + a1c̃

n
i+1 + ...+ aq c̃

n
i+q. (6.55)

To be consistent with (6.48), we need at least to ensurea−p+ ...+a−1 +a0 +a1 + ...+aq =
1− B, otherwise, not even a spatially uniform field would be represented correctly.

If there is a negative coefficientak, the scheme will not be monotonic, for indeed, if
the function is positive at pointi + k but zero everywhere else, it will take on a negative
value c̃n+1

i . On the other hand, if all coefficients are positive, the sum of the total weights
is obviously positive but less than one because it is equal to(1 − B). The scheme thus
interpolates while damping, in agreement with physical decay. And, since damping does not
create new extrema, we conclude that positive coefficients ensure a monotonic behavior in
all situations. For our example (6.51), this demandsB + C2 + 2D ≤ 1 andC ≤ C2 + 2D.
The former condition is a slightly more constraining version of the stability condition (6.54),
while the latter condition imposes a constraint on the grid Peclet number:

Pe∆x =
u∆x

A =
C

D
≤ u2∆t

A + 2. (6.56)

For short time steps, this imposes a maximum value of 2 on the grid Peclet number. This
condition is not a stability condition but a necessary condition for monotonic behavior.

The scheme is now tested on a physical problem. Because of thesecond derivative,
we impose boundary conditions at both upstreamanddownstream, and for simplicity hold
c̃ = 1 steady at these locations. We then iterate from a zero initial condition until the scheme
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converges to a stationary solution. This solution (Figure6-10) exhibits a boundary layer
at the downstream end because of weak diffusion, in agreement with the remark made in
Section6.3. For weak diffusion, the grid Peclet numberPe∆x is too large and violates
(6.56). Undershooting appears, although the solution remains stable. In conclusion, besides
the parametersB, C andD that control stability, the grid Peclet numberC/D appears as a
parameter controlling monotonic behavior.

6.6 Multi-dimensional approach

In addition to the various combinations already encountered in the 1D case, generalization to
more dimensions allows further choices and different methods. Here we concentrate on the
2D case because generalizations to 3D do not generally causemore fundamental complica-
tions.

c̃i,jq̃x,i−1/2,j

q̃y,i,j−1/2

∆x

∆y
Figure 6-11 Finite volume in 2D with
fluxes at the interfaces. The budget in-
volves the total balance of inflowing
and outflowing fluxes during one time
step.

The finite-volume approach can be easily extended to a 2D gridcell with the normal
fluxes defined along the interfaces (Figure6-11):

c̃n+1
i,j − c̃ni,j

∆t
+

q̃x,i+1/2,j − q̃x,i−1/2,j

∆x
+

q̃y,i,j+1/2 − q̃y,i,j−1/2

∆y
= 0, (6.57)

whereq̃x,i±1/2,j andq̃y,i,j±1/2 are approximations of the actual fluxesuc andvc, respectively.
For any flux calculation, the least we require is that it be able to represent correctly a

uniform tracer fieldC. All of our 1D flux calculations do so and should do so. When (6.57)
is applied to the case of a uniform concentration distribution c̃ = C, we obtain

c̃n+1
i,j − C

∆t
+

ũi+1/2,j − ũi−1/2,j

∆x
C +

ṽi,j+1/2 − ṽi,j−1/2

∆y
C = 0.

This can only lead tõcn+1 = C at the next time step if the discrete velocity field satisfies the
condition

ũi+1/2,j − ũi−1/2,j

∆x
+

ṽi,j+1/2 − ṽi,j−1/2

∆y
= 0. (6.58)

Since this requirement is an obvious discretization of∂u/∂x+∂v/∂y = 0, the 2D form of
the continuity equation (see (4.21d)), it follows that a prerequisite to solving the concentration
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equation by the finite-volume approach is a non-divergent flow field in its discretized form.
Ensuring that (6.58) holds is the role of the discretization of the dynamical equations, those
governing velocity and pressure.

Here, in order to test numerical advection schemes, we take the flow field as known and
obeying (6.58). We can easily generate such a discrete velocity distribution by invoking a
discretizedstreamfunctionψ:

ũi−1/2,j = −ψi−1/2,j+1/2 − ψi−1/2,j−1/2

∆y
(6.59)

ṽi,j−1/2 =
ψi+1/2,j−1/2 − ψi−1/2,j−1/2

∆x
. (6.60)

It is straighforward to show that theseũ andṽ values satisfy (6.58) for any set of streamfunc-
tion values.

Note that if we had discretized directly the continuous equation

∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
= 0, (6.61)

we would have obtained

∂c̃i,j
∂t

+ ui,j
∂c̃

∂x

∣∣∣∣
i,j

+ vi,j
∂c̃

∂y

∣∣∣∣
i,j

= 0,

which guarantees that an initially uniform tracer distribution remains uniform at all later times
regardless of the structure of the discretized velocity distribution as long as the discretized
form of the spatial derivatives return zeroes for a uniform distribution (a mere requirement
of consistency). Such a scheme could appear to offer a distinct advantage, but it is easy to
show that it has a major drawback. It looses important conservation properties, including
conservation of the quantity of tracer (heat for temperature, salt for salinity, etc.).

flow

1D advection along x

1D advection along y

Figure 6-12 Naive 2D generalization
using 1D methods along each coordi-
nate line to approximate the advection
operator as the sum of∂(uc)/∂x and
∂(vc)/∂y.

Assuming the discrete velocity field to be divergence free inthe sense of (6.58), the first
method that comes to mind to calculate the flux components is to use the discretizations
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Figure 6-13 Oblique advection of a cone-shaped distribution using the upwind scheme generalized to
2D (left panel) and a TVD scheme (right panel) withCx = Cy = 0.12. The upwind scheme severely
dampens the signal, to less then 20% of its initial amplitude, while the TVD scheme used as a double
1D problem greatly distorts the solution.

developed in 1D along each coordinate line separately (Figure 6-12). The upwind scheme is
then easily generalized as follows:

q̃x,i−1/2,j = ũi−1/2,j c̃
n
i−1,j if ũi−1/2,j > 0, ũi−1/2,j c̃

n
i,j otherwise(6.62a)

q̃y,i,j−1/2 = ṽi,j−1/2 c̃
n
i,j−1 if ṽi,j−1/2 > 0, ṽi,j−1/2 c̃

n
i,j otherwise.(6.62b)

The other 1D schemes can be generalized similarly. Applyingsuch schemes to the advec-
tion of an initially cone-shaped distribution (single peakwith same linear drop in all radial
directions) embedded in a uniform flow field crossing the domain at 45◦, we observe that the
upwing scheme is plagued by a very strong numerical diffusion (left panel of Figure6-13).
Using the TVD scheme keeps the signal to a higher amplitude but strongly distorts the distri-
bution (right panel of Figure6-13).

This distortion is readily understood in terms of the advection process: The information
should be carried by the oblique flow, but the flux calculationrelies on information strictly
along thex or y axes. In the case of a flow oriented at 45◦ from thex–axis, this ignores
that grid point(i, j) is primarily influenced by point(i− 1, j − 1) whereas points(i− 1, j)
and(i, j − 1) are used in the flux calculations. In conclusion, the double 1D approach is
unsatisfactory and rarely used.

TheCorner Transport Upstreamscheme (CTU) (e.g., Colella, 1990) takes into account
the different contributions of the four grid cells involvedin the displacement (Figure6-14).
Assuming uniform positive velocities to illustrate the approach, the following discretization
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Figure 6-14 2D generalization designed to advect the field obliquely along streamlines. The associated
numerical diffusion can then be interpreted as the necessary grid averaging (i.e., mixing) used in the
finite-volume technique after displacement of the donor cells. The flux calculations (thick arrows) need
to integrate the inflow ofc along the flow instead of along the grid lines.

ensures that a diagonal flow brings to the interface a correctmixing of two donor cells:

q̃x,i−1/2,j =

(
1− Cy

2

)
ũ c̃ni−1,j +

Cy

2
ũ c̃ni−1,j−1 (6.63a)

q̃y,i,j−1/2 =

(
1− Cx

2

)
ṽ c̃ni,j−1 +

Cx

2
ṽ c̃ni−1,j−1, (6.63b)

leading to the expanded scheme

c̃n+1
i,j = c̃ni,j − Cx

(
c̃ni,j − c̃ni−1,j

)
− Cy

(
c̃ni,j − c̃ni,j−1

)

+ CxCy
(
c̃ni,j − c̃ni−1,j − c̃ni,j−1 + c̃ni−1,j−1

)
,

(6.64)

where the last term is an additional term compared to the double 1D approach. Two distinct
Courant numbers arise, one for each direction:

Cx =
u∆t

∆x
, Cy =

v∆t

∆y
. (6.65)

ForCx = Cy = 1, the scheme provides̃cn+1
i,j = c̃ni−1,j−1, with obvious physical interpre-

tation. The scheme may also be written as

c̃n+1
i,j = (1− Cx)(1 − Cy) c̃

n
i,j

+ (1− Cy)Cx c̃
n
i−1,j + (1 − Cx)Cy c̃

n
i,j−1 + CxCy c̃

n
i−1,j−1

(6.66)

highligthing the relative weights attached to the four gridpoints involved in the calculation
(Figure6-14). This expression proves that the method is monotonic for Courant numbers
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Figure 6-15 2D oblique advection us-
ing the CTU scheme (6.66). The so-
lution’s asymmetric deformation is re-
duced, but numerical diffusion still re-
duces the amplitude significantly.

smaller than one (ensuring that all coefficients on the right-hand side are positive). The
method is only of first order according to the Godunov theorem, but it causes less distortion of
the solution (Figure6-15) than the previous approach. It still dampens excessively,however.

Other generalizations of the various 1D schemes to integrate along the current directions
are possible but become rapidly complicated. We will therefore introduce a method that is
almost as simple as solving a 1D problem but yet takes into account the multidimensional
essence of the problem.

The method shown here is a special case of so-calledoperator splittingmethods orfrac-
tional steps. To show the approach, we start from the semi-discrete equation

dc̃i
dt

+L1(c̃i) +L2(c̃i) = 0, (6.67)

whereL1 andL2 are two discrete operators, which in the present case are advection operators
alongx andy. Temporal discretization by time splitting executes:

c̃?i − c̃ni
∆t

+ L1(c̃
n
i ) = 0 (6.68a)

c̃n+1
i − c̃?i

∆t
+ L2(c̃

?
i ) = 0, (6.68b)

where the second operator is marched forward with a value already updated by the first oper-
ator.

In this manner, we solve two sequential one-dimensional problems, which isa priori not
more complicated than before, but enjoy a major improvementcompared to the naive double
1D approach used in (6.62): The initial (predictor) step creates a field that is already advected
in the direction of theL1 operator, and the second (corrector) step advects in the remaining
direction the partially displaced field. In this way, point(i, j) is influenced by the upstream
value, point(i− 1, j − 1) in the case of positive velocities (Figure6-16).
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Figure 6-16 The splitting method uses two sequential 1D advection schemes. First the signal is trans-
ported along thex-direction and then the intermediate solution is advected along they-direction. In this
way, the information at upstream point(i − 1, j − 1) is involved in the evolution of the value at(i, j)
(case of positive velocity components).

To verify this, we can see how the splitting works with the 1D upwind scheme for positive
and uniform velocities:

c̃?i,j = c̃ni,j − Cx(c̃
n
i,j − c̃ni−1,j) (6.69a)

c̃n+1
i,j = c̃?i,j − Cy(c̃

?
i,j − c̃?i,j−1). (6.69b)

Substitution of the intermediate valuesc̃?i,j into the final step then proves that the scheme is
identical to the CTU scheme (6.64) for uniform velocities. Such elimination, however, is not
done in practice, and the sequence (6.69) is used. This is particularly convenient because, in
the computer program,̃c? may be stored during the first step in the future place ofc̃n+1 and
then moved to the place of̃cn for the second step;̃cn+1 can then be calculated and stored
without need of additional storage.
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Figure 6-17 Advection at 45◦ of an
initially conical distribution using the
splitting method and the TVD scheme.

Using always the same operator with current values and the other with “predicted” values
is unsatisfactory because it breaks the symmetry between the two spatial dimensions. Hence,
it is recommended to alternate the order in which operators are applied, depending on whether
the time step is even or odd. Following a time step using (6.68) we then switch the order of
operators by performing

c̃?i − c̃n+1
i

∆t
+L2(c̃

n+1
i ) = 0 (6.70a)

c̃n+2
i − c̃?i

∆t
+ L1(c̃

∗
i ) = 0. (6.70b)

This approach, alternating the order of the directional splitting, is a special case of the more
generalStrang splittingmethod designed to maintain second-order time accuracy when using
time splitting (Strang, 1968).

The splitting approach thus seems attractive. It is not morecomplicated than applying two
successive one-dimensional schemes. In the general case, however, attention must be given
to the direction of the local flow so that “upwinding” consistently draws the information
from upstream, whatever that direction may be. There is no other complication, and we now
proceed with a test of the method with the TVD scheme. As Figure6-17reveals, the result is
a significant improvement with no increase of computationalburden.

A more complicated case of advection can now be tried. For this we choose an initially
square distribution of tracer and place it in a narrow sheared flow (Figure6-18). We expect
that the distribution will be distorted by the shear flow. To assess the quality of the advection
scheme, we could try to obtain an analytical solution by calculating trajectories from the
known velocity field, but a much simpler approach is to flip thesign of the velocity field
after some time and continue the integration for an equal amount time. If the scheme were
perfect, the patch would return to its original position andshape (without diffusion the system
is reversible and trajectories integrated forward and thenbackward should bring all particles
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Figure 6-18 Advection of a square signal along a sheared boundary-layercurrent.Left panel: Initial
distribution and streamlines.Right panel: After some advection. The distortion of the distribution is
mostly due to the sheared current, which causes cross-stream squeezing and downstream stretching as
the tracer enters the boundary layer.

back to their original position), but this won’t be the case and the difference between initial
and final states is a measure of the error. Because some of the error generated during the flow
in one direction may be negated during the return flow, we alsoneed to consider the result at
the moment of current reversal,i.e., the moment of farthest displacement.

For the method developed up to now, some degradation occurs and bizarre results happen,
even in regions of almost uniform flow. To discern the cause ofthis degradation we first have
to realize that the oblique advection test case is special inthe sense that during a 1D step, the
corresponding velocity is uniform. In the present case, thevelocity during a sub-step is no
longer uniform, and application of the first sub-step on a uniform field c̃ = C yields

c̃?i,j − C
∆t

+
ũi+1/2,j − ũi−1/2,j

∆x
C = 0,

which provides a value of̃c?i,j different from the constantC. The next step is unable to correct
this by returning the distribution back to a constant. The problem arises because the sub-step
is not characterized by zero divergence of the 1D velocity field, and conservation of the tracer
is not met. Conservation in the presence of a converging/divergingvelocity in 1D is, however,
encountered in another, physical problem: compressible flow. Mimicking this problem, we
introduce apseudo-compressible approach, which introduces a density-like variableρ, to
calculate the pseudo-mass conservation written as

∂

∂t
(ρ) +

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0 (6.71)

and the tracer budget as

∂

∂t
(ρc) +

∂

∂x
(ρuc) +

∂

∂y
(ρvc) = 0. (6.72)
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The splitting method starts with a constantρ during the first sub-step yields for the pseudo-
mass equation

ρ? − ρ
∆t

+
ũi+1/2,j − ũi−1/2,j

∆x
ρ = 0

and for the tracer concentration

ρ?c̃?i − ρc̃ni
∆t

+ ρL1(c̃
n
i ) = 0. (6.73)

In each calculation the constantρ is a multiplicative constant and, it can be taken out of the
advection operatorL1. The second sub-step follows with

ρn+1 − ρ?
∆t

+
ṽi,j+1/2 − ṽi,j−1/2

∆y
ρ = 0,

ρn+1c̃n+1
i − ρ?c̃?i
∆t

+ ρL2(c̃
?
i ) = 0, (6.74)

with the constantρ used in both spatial operators. Setting the pseudo-densityρn+1 equal to
its previous valueρ, so that it disappears from the equations after a full time-step, leads to
the constraint that velocity is divergence-free in the sense of (6.58). If this is the case, when
c̃n = C, it also guarantees̃cn+1 = C.

Other splitting techniques have been devised (e.g., Pietrzak, 1998), but the approach re-
mains essentially the same: pseudo-compression in one direction during the first sub-step,
followed by a compensating amount of decompression during the second sub-step in the
other direction.

With pseudo-compressibility, the sheared flow advection simulated with a flux limiter
indicates that the scheme is quite accurate (Figure6-19), being both less diffusive than the
upwind scheme (Figure6-20) and less dispersive than the Lax-Wendroff method (Figure
6-21). The Matlab codetvdadv2D.m allows the reader to experiment with various strate-
gies, by turning pseudo-compressibility on or off, enabling and disabling time splitting, and
using different limiters in sheared and unsheared flow fields(Numerical Exercise 6-15).

Analytical Problems

6-1. Show that

c(x, y, t) =
M

4πAt e
−[(x−ut)2+(y−vt)2]/4At (6.75)

is the solution of the two-dimensional advection-diffusion equation with uniform ve-
locity componentsu andv. Plot the solution for decreasing values oft and infer the
type of physical problem the initial condition is supposed to represent. Provide an
interpretation ofM . Hint: Integrate over the infinite domain.
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Figure 6-19 Advection with TVD scheme, Strang splitting and pseudo-compressibility. The initial
condition is as shown in the left panel of Figure 6-18.Left panel: The patch of tracer at its furthest
distance from the point of release, at the time of flow reversal. Its deformation is mostly physical
and should ideally be undone during the return travel.Right panel: End state after return travel. The
patch has nearly returned to its original location and shape, indicative of the scheme’s good level of
performance.
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Figure 6-20 Same as Figure 6-19 but with advection by the upwind scheme, using Strang splitting
and including pseudo-compressibility. The situation at time of flow reversal (left panel) and after return
(right panel) shows that numerical diffusion is clearly stronger than with the TVD scheme. The final
distribution is hardly identifiable with the initial condition. The contour values are the same as in Figure
6-19.
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Figure 6-21 Same as Figure 6-19 but with advection by the Lax-Wendroff scheme, using Strang split-
ting and including pseudo-compressibility. The situationat flow reversal (left panel) shows much dis-
persion, which is partly undone during the return travel (right panel). At the end, the distribution has
been fairly well reconstructed but there is some undershooting around the edges and overshooting in
the center. Dashed lines indicate values outside the initial range.

6-2. Extend solution (6.75) to a radioactive tracer with decay constantK. Hint: Look for a
solution of similar structure but with one more exponentialfactor.

6-3. Assuming a highly advective situation (high Peclet number), construct the 2D solution
corresponding to the continuous release of a substance (S, in mass per time) from a
punctual source (located atx = y = 0 in the presence of velocityu in thex-direction
and diffusionA in they-direction.

6-4. An unreported ship accident results in an instantaneous release of a conservative pol-
lutant. This substance floats along the sea surface and disperses for some time until
it is eventually detected and measured. The maximum concentration, then equal to
c = 0.1µg/m3, is found just West of the Azores at 38◦30′N 30◦00′W. A month later,
the maximum concentration has decreased to0.05µg/m3 and is located 200 km further
South. Assuming a fixed diffusivityA = 1000 m2/s and uniform steady flow, can you
infer the amount of substance that was released from the ship, and the time and location
of the accident? Finally, how long will it be before the concentration no longer exceeds
0.01µg/m3 anywhere?

6-5. Study the dispersion relation of the equation

∂c

∂t
= κ

∂pc

∂xp
(6.76)

wherep is a positive integer. Distinguish between even and odd values ofp. What
should be the sign of the coefficientκ for the solution to be well behaved? Then
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compare the casesp = 2 (standard diffusion) andp = 4 (biharmonic diffusion). Show
that the latter generates a more scale-selective damping behavior than the former.

6-6. Explain the behavior found in Figure6-10 by deriving the analytical solution of the
corresponding physical problem (6.48).

6-7. In the interior of the Pacific Ocean, a slow upwelling compensating the deep convection
of the high latitudes creates an average upward motion of about 5 m/year between
depth of 4 km to 1 km. The average background turbulent diffusion in this region
is estimated to be of the order of 10−4 m2/s. From the deep region, Radium226Ra
found in the sediments, is brought up, while Tritium3H of atmospheric origin occurs in
surface waters. Radium has a half-life (time for 50% decay) of 1620 years, and Tritium
a half-life of 12.43 years. Determine the steady-state solution using a one-dimensional
vertical advection-diffusion model, assuming fixed and unit value of Tritium at the
surface and zero at 4 km depth. For Radium, assume a unit valueat depth of 4 km
and zero value at the surface. Compare solutions with and without advection. Which
tracer is more influenced by advection? Analyze the relativeimportance of advective
and diffusive fluxes for each tracer at 4 km depth and 1 km depth.

6-8. If you intend to use a numerical scheme with an upwind advection to solve the preceding
problem for Carbon-1414C (half-life of 5730 years), what vertical resolution would
be needed so that the numerical calculation does not introduce an excessively large
numerical diffusion?

Numerical Exercises

6-1. Prove the assertion that a forward-in-time, central-in-space approximation to the advec-
tion equation is unconditionnaly unstable.

6-2. Useadvleap.m with different initialization techniques for the first timestep of the
leapfrog scheme. What happens if an inconsistent approach is used (for example zero
values)? Can you eliminate the spurious mode totally by a clever initialization of the
auxiliary initial conditionc1 when a pure sinusoidal signal is being advected?

6-3. Use the stability analysis under the form (5.31) using an amplification factor. Verify that
the stability condition is|C| ≤ 1.

6-4. Verify numerically that the leapfrog scheme conserves variance of the concentration
distribution when∆t → 0. Compare with the Lax-Wendroff scheme behavior for the
same time steps.

6-5. Analyze the numerical phase speed of the upwind scheme. Whathappens forC = 1/2?
Which particular behavior is observed whenC = 1?
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Figure 6-22 Standard test case with
the trapezoidal scheme and centered
spatial derivatives.

6-6. Design a fourth-order spatial difference and explicit timestepping for the 1D advection
problem. What is the CFL condition of this scheme? Compare tothe Von Neumann
stability condition. Simulate the standard advection testcase.

6-7. Design a higher-order finite-volume approach by using higher-order polynomials to
calculate the flux integrals. Instead of a linear interpolation as in the Lax-Wendroff
scheme, use a parabolic interpolation.

6-8. Show that the Von Neumann stability condition of the Beam-Warming scheme is0 ≤
C ≤ 2.

6-9. Implement the trapezoidal scheme with centered space difference using the tridiagonal
algorithmthomas.m . Apply it to the standard problem of the top-hat signal advection
and verify that you find the result shown in Figure6-22. Provide an interpretation of
the result in terms of the numerical dispersion relation. Verify numerically that the
variance is conserved exactly.

6-10. Show that the higher-order method for flux calculation at an interface using a linear
interpolation on a non-uniform grid with spacing∆xi between interfaces of celli leads
to the following flux, irrespective of the sign of the velocity

q̃i−1/2 = u
(∆xi−1 − u∆t)c̃ni + (∆xi + u∆t)c̃ni−1

∆xi + ∆xi−1
. (6.77)

6-11. Use a leapfrog centered scheme for advection with diffusion. Apply it to the standard
top-hat for different values of the diffusion parameter andinterpret your results.

6-12. Find an explanation for why the2∆x mode is stationary in all discretizations of ad-
vection.Hint: Use a sinusoidal signal of wavelength2∆x and zero phase, then sample
it. Change the phase (corresponding to a displacement) by different values less thanπ
and resample. What do you observe?
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6-13. Prove that (6.54) is the sufficient stability condition of (6.51). Hint: Rewrite |%|2 as
(φ− 2C2ξ)2 +4C2ξ(1− ξ) and observe that as a function ofφ the amplification factor
reaches its maxima at the locations of the extrema ofφ, itself constrained by (6.54).

6-14. Consider the one-dimensional advection-diffusion equation with Euler time discretiza-
tion. For advection, use a centered difference with implicit factorα, and for diffusion
the standard second-order difference with implicit factorβ . Show that stability re-
quires(1 − 2α)C2 ≤ 2D and(1 − 2β)D ≤ 1/2. Verify that, without diffusion, the
explicit centered advection scheme is unstable.

6-15. Use tvdadv2D.m with different parameters (splitting or not, pseudo-mass conser-
vation or not) under different conditions (sheared velocity field or solid rotation) and
initial conditions (smooth field or strong gradients) with different flux limiters (upwind,
Lax-Wendroff, TVD,etc.) to get a feeling of the range of different numerical solutions
an advection scheme can provide compared to the analytical solution.



Richard Courant
1888 – 1972

Born in Upper Silesia, now in Poland but then part of Germany,Richard Courant was a
precocious child and, because of economic difficulties at home, started to support himself
by tutoring at an early age. His talents in mathematics led him to study in Göttingen, a
magnet of mathematicians at the time, and Courant studied under David Hilbert with whom
he eventually published in 1924 a famous treatise on methodsof mathematical physics. In
the foreword, Courant insists on the need for mathematics tobe related to physical problems
and warns against the trend of that time to loosen that link.

In 1928, well before the invention of computers, Richard Courant published with Kurt
Friedrichs and Hans Lewy a most famous paper on the solution of partial difference equations,
in which the now-called CFL stability condition was derivedfor the first time.

Courant left Germany for the United States, where he was offered a position at New
York University. The Courant Institute of Mathematical Sciences at that institution is named
after him. (Photo from the MacTutor History of Mathematics archive at the University of St.
Andrews)
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Peter Lax
1926 –

Born in Budapest (Hungary), Peter Lax quickly attracted attention for his mathematical
prowess. Almost as soon as his parents and he moved to United States, in November 1941,
and while he was still in high school, Peter was visited in hishome by John von Neumann
(see biography at end of Chapter 5), who had heard about this outstanding Hungarian math-
ematician. After working on the top-secret Mahattan atomic-bomb project in 1945–46, he
completed his first university degree in 1947 and obtained his doctorate in 1949, both at
New York University (NYU). In his own words, “these were years of explosive growth in
computing”. Lax quickly gained a reputation for his work in numerical analysis.

Lax served as director of Courant Institute at NYU from 1972-1980 and was instrumental
in getting the U.S. Government to provide supercomputers for scientific research. (Photo
from the MacTutor History of Mathematics archive at the University of St. Andrews)
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Chapter 7

Geostrophic Flows and Vorticity
Dynamics

(October 18, 2006)SUMMARY : This chapter treats homogeneous flows with small Rossby
and Ekman numbers. It is shown that such flows have a tendency to display vertical rigidity.
The concept of potential vorticity is then introduced. The solution of vertically homoge-
neous flows often involves a Poisson equation for the pressure distribution, and numerical
techniques are presented to accomplish this.

7.1 Homogeneous geostrophic flows

Let us consider rapidly rotating fluids by restricting our attention to situations where the Cori-
olis acceleration strongly dominates the various acceleration terms. Let us further consider
homogeneous fluids and ignore frictional effects, by assuming

RoT � 1, Ro � 1, Ek � 1, (7.1)

together withρ = 0 (no density variation). The lowest-order equations governing such homo-
geneous, frictionless, rapidly rotating fluids are the following simplified forms of equations
of motion, (4.21):

− fv = − 1

ρ0

∂p

∂x
(7.2)

+fu = − 1

ρ0

∂p

∂y
(7.3)

0 = − 1

ρ0

∂p

∂z
(7.4)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (7.5)
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wheref is the Coriolis parameter.
This reduced set of equations has a number of surprising properties. First, if we take the

vertical derivative of the first equation, (7.2), we obtain, successively,

−f ∂v
∂z

= − 1

ρ0

∂

∂z

(
∂p

∂x

)
= − 1

ρ0

∂

∂x

(
∂p

∂z

)
= 0,

where the right-hand side vanishes because of (7.4). The other horizontal momentum equa-
tion, (7.3), succumbs to the same fate, bringing us to conclude that thevertical derivative of
the horizontal velocity must be identically zero:

∂u

∂z
=

∂v

∂z
= 0. (7.6)

This result is known as theTaylor–Proudman theorem(Taylor, 1923; Proudman, 1953).
Physically, it means that the horizontal velocity field has no vertical shear and that all particles
on the same vertical move in concert. Such vertical rigidityis a fundamental property of
rotating homogeneous fluids.

Next, let us solve the momentum equations in terms of the velocity components, a trivial
task:

u =
−1

ρ0f

∂p

∂y
, v =

+1

ρ0f

∂p

∂x
, (7.7)

with the corollary that the vector velocity (u, v) is perpendicular to the vector (∂p/∂x,
∂p/∂y). Since the latter vector is none other than the pressure gradient, we conclude that
the flow is not down-gradient but rather across-gradient. The fluid particles are not cascading
from high to low pressures, as they would in a nonrotating viscous flow but, instead, are nav-
igating along lines of constant pressure, calledisobars(Figure7-1). The flow is said to be
isobaric, and isobars are streamlines. It also implies thatno pressure work is performed either
on the fluid or by the fluid. Hence, once initiated, the flow can persist without a continuous
source of energy.

High

Low
u ∇p

.......
......
.....
......
............

..............................................................................
f
2p = p1

p = p2 > p1

Low

Figure 7-1 Example of geostrophic
flow. The velocity vector is everywhere
parallel to the lines of equal pressure.
Thus, pressure contours act as stream-
lines. In the Northern Hemisphere (as
pictured here), the fluid circulates with
the high pressure on its right. The op-
posite holds for the Southern Hemi-
sphere.

Such a flow field, where a balance is struck between the Coriolis and pressure forces,
is calledgeostrophic(from the Greek,γη = Earth andστρoϕη = turning). The property is
calledgeostrophy. Hence, by definition, all geostrophic flows are isobaric.
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A remaining question concerns the direction of flow along pressure lines. A quick ex-
amination of the signs in expressions (7.7) reveals that, wheref is positive (Northern Hemi-
sphere, counterclockwise ambient rotation), the currents/winds flow with the high pressures
on their right. Wheref is negative (Southern Hemisphere, clockwise ambient rotation), they
flow with the high pressures on their left. Physically, the pressure force is directed from the
high pressure toward the low pressure initiating a flow in that direction, but on the rotating
planet, this flow is deflected to the right (left) in the Northern (Southern) Hemisphere. Figure
7-2provides a meteorological example from the Northern Hemisphere.

If the flow field extends over a meridional span that is not too wide, the variation of the
Coriolis parameter with latitude is negligible, andf can be taken as a constant. The frame of
reference is then called thef-plane. In this case, the horizontal divergence of the geostrophic
flow vanishes:

∂u

∂x
+

∂v

∂y
= − ∂

∂x

(
1

ρ0f

∂p

∂y

)
+

∂

∂y

(
1

ρ0f

∂p

∂x

)
= 0. (7.8)

Hence, geostrophic flows are naturally nondivergent on thef-plane. This leaves no room for
vertical convergence or divergence, as the continuity equation (7.5) implies:

∂w

∂z
= 0. (7.9)

A corollary is that the vertical velocity, too, is independent of height. If the fluid is limited
in the vertical by a flat bottom (horizontal ground or sea for the atmosphere) or by a flat lid
(sea surface for the ocean), this vertical velocity must simply vanish, and the flow is strictly
two-dimensional.

7.2 Homogeneous geostrophic flows over an irregular bot-
tom

Let us still consider a rapidly rotating fluid, so that the flowis geostrophic, but now over an
irregular bottom. We neglect the possible surface displacements, assuming that they remain
modest in comparison with the bottom irregularities (Figure 7-3). An example would be the
flow in a shallow sea (homogeneous waters) with depth rangingfrom 20 to 50 m and under
surface waves a few centimeters high.

As shown in the development of kinematic boundary conditions (4.28), if the flow were to
climb up or down the bottom, it would undergo a vertical velocity proportional to the slope:

w = u
∂b

∂x
+ v

∂b

∂y
, (7.10)

whereb is the bottom elevation above the reference level. The analysis of the previous section
implies that the vertical velocity is constant across the entire depth of the fluid. Since it must
be zero at the top, it must be so at the bottom as well; that is,

u
∂b

∂x
+ v

∂b

∂y
= 0, (7.11)
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Figure 7-2 A meteorological example showing the high degree of parallelism between wind velocities
and pressure contours (isobars), indicative of geostrophic balance. The solid lines are actually height
contours of a given pressure (500 mb in this case) and not pressure at a given height. However, because
atmospheric pressure variations are large in the vertical and weak in the horizontal, the two sets of con-
tours are nearly identical by virtue of the hydrostatic balance. According to meteorological convention,
wind vectors are depicted by arrows with flags and barbs: on each tail, a flag indicates a speed of 50
knots, a barb 10 knots and a half-barb 5 knots (1 knot = 1 nautical mile per hour = 0.5144 m/s). The
wind is directed toward the bare end of the arrow, because meteorologists emphasize where the wind
comes from, not where it is blowing. The dashed lines are isotherms. (Chart by the National Weather
Service, Department of Commerce, Washington, D.C.)
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Figure 7-3 Schematic view of a flow
over a sloping bottom. A vertical ve-
locity must accompany flow across iso-
baths.

and the flow is prevented from climbing up or down the bottom slope. This property has
profound implications. In particular, if the topography consists of an isolated bump (or dip) in
an otherwise flat bottom, the fluid on the flat bottom cannot rise onto the bump, even partially,
but must instead go around it. Because of the vertical rigidity of the flow, the fluid parcels at
all levels – including levels above the bump elevation – mustlikewise go around. Similarly,
the fluid over the bump cannot leave the bump but must remain there. Such permanent tubes
of fluids trapped above bumps or cavities are calledTaylor columns(Taylor, 1923).

In flat-bottomed regions a geostrophic flow can assume arbitrary patterns, and the actual
pattern reflects the initial conditions. But, over a bottom where the slope is non-zero almost
everywhere (Figure7-4), the geostrophic flow has no choice but to follow the depth contours
(calledisobaths). Pressure contours are then aligned with topographic contours, and isobars
coincide with isobaths. These lines are sometimes also called geostrophic contours. Note
that a relation between pressure and fluid thickness exists but cannot be determined without
additional information on the flow.

Open isobaths that start and end on a side boundary cannot support any flow, otherwise
fluid would be required to enter or leave through lateral boundaries. The flow is simply
blocked along the entire length of these lines. In other words, geostrophic flow can occur
only along closed isobaths.

f
2

No flow
Wall

Figure 7-4 Geostrophic flow in a
closed domain and over irregular to-
pography. Solid lines are isobaths (con-
tours of equal depth). Flow is permitted
only along closed isobaths

The preceding conclusions hold true as long as the upper boundary is horizontal. If this
is not the case, it can then be shown that geostrophic flows areconstrained to be directed
along lines of constant fluid depth. (See Analytical Problem7-3.) Thus, the fluid is allowed
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to move up and down, but only as long as it is not being vertically squeezed or stretched.
This property is a direct consequence of the inability of geostrophic flows to undergo any
two-dimensional divergence.

7.3 Generalization to non-geostrophic flows

Let us now suppose that the fluid is not rotating as rapidly, sothat the Coriolis acceleration
no longer dwarfs other acceleration terms. We still continue to suppose that the fluid is
homogeneous and frictionless. The momentum equations are now augmented to include the
relative acceleration terms:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv = − 1

ρ0

∂p

∂x
(7.12a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu = − 1

ρ0

∂p

∂y
. (7.12b)

Pressure still obeys (7.4), and continuity equation (7.5) has not changed.
If the horizontal flow field is initially independent of depth, it will remain so at all fu-

ture times. Indeed, the nonlinear advection terms and the Coriolis terms are initiallyz-
independent, and the pressure terms are, too,z-independent by virtue of (7.4). Thus,∂u/∂t
and∂v/∂t must bez-independent, which implies thatu andv tend not to become depth-
varying and thus remainz-independent at all subsequent times. Let us restrict our attention
to such flows, which in the jargon of geophysical fluid dynamics are calledbarotropic. Equa-
tions (7.12) then reduce to

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = − 1

ρ0

∂p

∂x
(7.13a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = − 1

ρ0

∂p

∂y
. (7.13b)

Although the flow has no vertical structure, the similarity to geostrophic flow ends here.
In particular, the flow is not required to be aligned with the isobars, nor is it devoid of vertical
velocity. To determine the vertical velocity, we turn to continuity equation (7.5),

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0,

in which we note that the first two terms are independent ofz but do not necessarily add up
to zero. A vertical velocity varying linearly with depth canexist, enabling the flow to support
two-dimensional divergence and thus allowing a flow across isobaths.

An integration of the preceding equation over the entire fluid depth yields

(
∂u

∂x
+

∂v

∂y

) ∫ b+h

b

dz + [w]b+hb = 0, (7.14)
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Figure 7-5 Schematic diagram of un-
steady flow of a homogeneous fluid
over an irregular bottom and the attend-
ing notation.

whereb is the bottom elevation above a reference level andh is the local and instantaneous
fluid layer thickness (Figure7-5). Because fluid particles on the surface cannot leave the sur-
face and particles on the bottom cannot penetrate through the bottom, the vertical velocities
at these levels are given by (4.28) and (4.31)

w(z = b + h) =
∂

∂t
(b+ h) + u

∂

∂x
(b+ h) + v

∂

∂y
(b+ h) (7.15)

=
∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y

w(z = b) = u
∂b

∂x
+ v

∂b

∂y
. (7.16)

Equation (7.14) then becomes, using the surface elevationη = b+ h−H :

∂η

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0, (7.17)

which supersedes (7.5) and eliminates the vertical velocity from the formalism.
Finally, since the fluid is homogeneous, the dynamic pressure,p, is independent of depth.

In the absence of a pressure variation above the fluid surface(e.g., uniform atmospheric
pressure over the ocean), this dynamic pressure is

p = ρ0gη, (7.18)

whereg is the gravitational acceleration according to (4.33). With p replaced by the preceding
expression, equations (7.13) and (7.17) form a 3-by-3 system for the variablesu, v andη. The
vertical variable no longer appears, and the independent variables arex, y andt. This system
is

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = − g ∂η

∂x
(7.19a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = − g ∂η

∂y
(7.19b)

∂η

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0. (7.19c)
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Although this system of equations is applied as frequently to the atmosphere as to the ocean,
it bears the nameshallow-water model1. If the bottom is flat, the equations become

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = − g ∂h

∂x
(7.20a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = − g ∂h

∂y
(7.20b)

∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0. (7.20c)

This is a formulation that we will encounter in layered models (Chapter12).

7.4 Vorticity dynamics

In the study of geostrophic flows (Section7.1), it was noted that the pressure terms cancel
in the expression of the two-dimensional divergence. Let usnow repeat this operation while
keeping the added acceleration terms by subtracting they-derivative of (7.13a) from thex-
derivative of (7.13b). After some manipulations, the result can be cast as follows:

d

dt

(
f +

∂v

∂x
− ∂u

∂y

)
+

(
∂u

∂x
+

∂v

∂y

)(
f +

∂v

∂x
− ∂u

∂y

)
= 0, (7.21)

where the material time derivative is defined as

d

dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
.

In the derivation, care was taken to allow for the possibility of a variable Coriolis parameter
(which on a sphere varies with latitude and thus with position). The grouping

f +
∂v

∂x
− ∂u

∂y
= f + ζ (7.22)

is interpreted as the sum of the ambient vorticity (f ) with the relative vorticity (ζ = ∂v/∂x−
∂u/∂y). To be precise, the vorticity is a vector, but since the horizontal flow field has no
depth-dependence, there is no vertical shear and no eddies with horizontal axes. The vorticity
vector is strictly vertical, and the preceding expression merely shows that vertical component.

Similarly, terms in the continuity equation, (7.17), can be regrouped as

d

dt
h +

(
∂u

∂x
+

∂v

∂y

)
h = 0. (7.23)

1In the absence of rotation, these equations also bear the name ofSaint-Venant equations, in honor of Jean Claude
Saint-Venant (1797–1886) who first derived them in the context of river hydraulics.
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If we now consider a narrow fluid column of horizontal cross-sectionds, its volume ishds
and, by virtue of conservation of volume in an incompressible fluid, the following equation
holds:

d

dt
(h ds) = 0, (7.24)

This implies, as intuition suggests, that if the parcel is squeezed vertically (decreasingh), it
stretches horizontally (increasingds), and vice versa (Figure7-6). Combining (7.23) for h
with (7.24) for hds yields an equation fords:

d

dt
ds =

(
∂u

∂x
+

∂v

∂y

)
ds, (7.25)

which simply says that horizontal divergence (∂u/∂x+ ∂v/∂y > 0) causes widening of the
cross-sectional areads, and convergence (∂u/∂x + ∂v/∂y < 0) a narrowing of the cross-
section. It could have been derived from first principles (see Analytical Problem 7-4).

Now, combining (7.21) and (7.25) yields

d

dt
[(f + ζ) ds] = 0 (7.26)

and implies that the product(f + ζ)ds is conserved by the fluid parcel. This product can
be interpreted as the vorticity flux (vorticity integrated over the cross-section) and is there-
fore thecirculation of the parcel. Equation (7.26) is the particular expression for rotating,
two-dimensional flows of Kelvin’s theorem, which guarantees conservation of circulation in
inviscid fluids (Kundu, 1990, pages 124–128).
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ds

Figure 7-6 Conservation of volume and circulation of a fluid parcel undergoing vertical squeezing or
stretching. The productsh ds and(f + ζ) ds are conserved during the transformation. As a corollary,
the ratio(f + ζ)/h, called the potential vorticity, is also conserved.

This conservation principle is akin to that of angular momentum for an isolated system.
The best example is that of a ballerina spinning on her toes; with her arms stretched out, she
spins slowly, but with her arms brought against her body, shespins more rapidly. Likewise in
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homogeneous geophysical flows, when a parcel of fluid is squeezed laterally (ds decreasing),
its vorticity must increase (f + ζ increasing) to conserve circulation.

Now, if both circulation and volume are conserved, so is their ratio. This ratio is par-
ticularly helpful, for it eliminates the parcel’s cross-section and thus depends only on local
variables of the flow field:

d

dt

(
f + ζ

h

)
= 0, (7.27)

where

q =
f + ζ

h
=

f + ∂v/∂x − ∂u/∂y

h
(7.28)

is called thepotential vorticity. The preceding analysis interprets potential vorticity ascircu-
lation per volume. This quantity, as will be shown on numerous occasions in this book, plays
a fundamental role in geophysical flows. Note that equation (7.27) could have been derived
directly from (7.21) and (7.23) without recourse to the introduction of the variableds.

Let us now go full circle and return to rapidly rotating flows,those in which the Coriolis
force dominates. In this case, the Rossby number is much lessthan unity (Ro = U/ΩL� 1),
which implies that the relative vorticity (ζ = ∂v/∂x− ∂u/∂y, scaling asU/L) is negligible
in front of the ambient vorticity (f , scaling asΩ). The potential vorticity reduces to

q =
f

h
(7.29)

which, if f is constant – such as in a rotating laboratory tank or for geophysical patterns of
modest meridional extent – implies that each fluid column must conserve its heighth. In
particular, if the upper boundary is horizontal, fluid parcels must follow isobaths, consistent
with the existence of Taylor columns (Section7.2).

Before closing this section, let us derive a germane result,which will be useful later.
Consider the dimensionless expression

σ =
z − b
h

, (7.30)

which is the fraction of the local height above the bottom to the full depth of the fluid, or, in
short, the relative height above bottom (0 ≤ σ ≤ 1). Its material time derivative is

dσ

dt
=

1

h

d

dt
(z − b) − z − b

h2

dh

dt
. (7.31)

Sincedz/dt = w by definition of the vertical velocity and becausew varies linearly from
db/dt at the bottom (z = b) to d(b + h)/dt at the top (z = b+ h), we have

dz

dt
= w =

db

dt
+

z − b
h

dh

dt
. (7.32)

Use of this last expression to eliminatedz/dt from (7.31) cancels all terms on the right,
leaving only:
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dσ

dt
= 0. (7.33)

Thus, a fluid parcel retains its the relative position withinthe fluid column.

7.5 Rigid-lid approximation

Except in the case when fast surface waves are of interest (Section9.1), we can exploit the fact
that large-scale motions in the ocean are relatively slow and introduce the so-calledrigid-lid
approximation. Large-scale movements with small Rossby numbers are closeto geostrophic
equilibrium, and their dynamic pressure thus scales asp ∼ ρ0ΩUL (see (4.16)), and, since
p = ρ0gη in a homogeneous fluid, the scale∆H of surface-height displacements is∆H ∼
ΩUL/g. Using the latter in the vertically-integrated volume-conservation equation, we can
then compare the sizes of the different terms. Assuming thatthe time scale is not shorter than
the inertial time scale1/Ω, we have:

∂η

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0

Ω∆H
HU

L

HU

L
,

in which Ω∆H ∼ Ω2UL/g, and the scale ratio of the first term to the other terms is
Ω2L2/gH . In many situations, this ratio is very small,

Ω2L2

gH
� 1, (7.34)

and the time derivative in the volume-conservation equation may be neglected:

∂

∂x
(hu) +

∂

∂y
(hv) = 0. (7.35)

This is called therigid-lid approximation(Figure7-7).

This approximation, however, has a major implication when we solve the equations nu-
merically, because now, instead of using the time-derivative of the continuity equation to
marchη forward in time and determine the hydrostatic pressurep from it, we somehow need
to find a pressure field that ensures that at any moment thetransportfield (U,V) = (hu, hv)
is nondivergent.
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b

k

b

k

Rigid lid
Free surface

Figure 7-7 A free-surface formulation (left panel) allows the surfaceto move with the flow, whereas
a rigid-lid formulation assumes a fixed surface, under whichpressure is not uniform because the “lid”
resists any local upward or downward force.

The momentum equations of the shallow-water model can be recast in transport form:

∂

∂t
(hu) = − h

ρ0

∂p

∂x
+ Fx (7.36a)

with Fx = − ∂

∂x
(huu) − ∂

∂y
(hvu) + f hv

∂

∂t
(hv) = − h

ρ0

∂p

∂y
+ Fy (7.36b)

with Fy = − ∂

∂x
(huv) − ∂

∂y
(hvv) − f hu.

Since we have neglected the variationη in surface elevation, we can take in the preceding
equationsh = H − b, a known function of the coordinatesx andy. The task ahead of us
is to find a way to calculate from the preceding two equations (7.36a) and (7.36b) a pressure
field p that leads to satisfaction of constraint (7.35). To do so, we have two approaches at our
disposal. The first one is based on a diagnostic equation for pressure (Section7.6), and the
second one on a streamfunction formulation (Section7.7).

7.6 Numerical solution of the rigid-lid pressure equation

The pressure method uses equations (7.36a) and (7.36b) to construct an equation for pressure
while enforcing the no-divergence constraint. This is accomplishes by adding thex-derivative
of (7.36a) to they-derivative of (7.36b) and exploiting (7.35) to eliminate the time derivatives.
Placing the pressure terms on the left then yields:

∂

∂x

(
h

ρ0

∂p

∂x

)
+

∂

∂y

(
h

ρ0

∂p

∂y

)
=
∂Fx
∂x

+
∂Fy
∂y

= Q.

(7.37)

This equation for pressure is the archetype of a so-calledelliptic equation.
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To complement it, appropriate boundary conditions must be provided. These pressure
conditions are deduced from the impermeability of solid lateral boundaries or from the in-
flow/outflow conditions at open boundaries (see Section4.6). For example, if the boundary
is parallel to they-axis (sayx = x0) and is impermeable, we need to imposehu = 0 (no
normal transport), and thex-momentum equation in transport form reduces there to

h

ρ0

∂p

∂x
= Fx, (7.38)

while along an impermeable boundary parallel to thex-axis (sayy = y0), we need to impose
hv = 0 and obtain from they-momentum equation

h

ρ0

∂p

∂y
= Fy . (7.39)

In other words, the normal pressure gradient is given along impermeable boundaries. At in-
flow/ouflow boundaries, the expression is more complicated but it is still the normal pressure
gradient that is imposed. An elliptic equation with the normal derivative prescribed all along
the perimeter of the domain is called a Neumann problem2.

One and only one condition at every point along all boundaries of the domain is necessary
and sufficient to determine the solution of the elliptic equation (7.37). Since the pressure
appears only through its derivatives in both the elliptic equation (7.37) and the boundary
condition (7.38)–(7.39), the solution is only defined within an additional arbitrary constant,
the value of which may be chosen freely without affecting theresulting velocity field. There
is a natural choice, however, which is to select the constantso that the pressure has a zero
average over the domain. By virtue ofp = ρ0gη, this corresponds to stating thatη has a zero
average over the domain.

Numerically, the solution can be sought by discretizing theelliptic equation for pressure
across a rectangular box:

1

∆x

(
hi+1/2

p̃i+1,j − p̃i,j
∆x

− hi−1/2

p̃i,j − p̃i−1,j

∆x

)
+

1

∆y

(
hj+1/2

p̃i,j+1 − p̃i,j
∆y

− hj−1/2

p̃i,j − p̃i,j−1

∆y

)
= ρ0Qij .

(7.40)

This form a set of linear equations for thẽpi,j values across the grid, connecting five un-
knowns at each grid point (Figure7-8), a situation already encountered in the treatment of
two-dimensional implicit diffusion (Section5.6). But there is a circular dependence: The
right-hand sideρ0Qij is not known until the velocity components are determined and the de-
termination of these requires the knowledge of the pressuregradient. Because the momentum
equations are nonlinear, this is a nonlinear dependence, and the method for constructing and
solving a linear system cannot be applied.

2If the pressure itself had been imposed all along the perimeter of the domain, the problem would have been
called a Dirichlet problem.
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x

y

Figure 7-8 Discretization of the two-
dimensional elliptic equation. The
stencil is a five-point array consist-
ing of the point where the calcula-
tion is performed and its four neigh-
bors. These neighboring points are
in turn dependent on their respective
neighbors, and so on until boundary
points are reached. In other words, the
value at every point inside the domain
is influenced by all other interior and
boundary values. Simple accounting
indicates that one and only one bound-
ary condition is needed at all boundary
points.

The natural way to proceed is to progress incrementally. If we assume that at time leveln
we have a divergent-free velocity field (ũn, ṽn), we can use (7.40) to calculate the pressure at
the same time leveln and use its gradient in the momentum equations to update the velocity
components for time leveln + 1. But, this offers no guarantee that the updated velocity
components will be divergence-free, despite the fact that the pressure distribution corresponds
to a divergent-free flow field at the previous time level.

Once again, we face a situation in which discretized equations do not inherit certain math-
ematical properties of the continuous equations. In this case, we used properties of divergence
and gradient operators to build a diagnostic pressure equation from the original equations, but
these properties are not transferable to the numerical space unless special care is taken.

The design of adequate discrete equations, however, can be inspired by the mathematical
operations used to reach the pressure equation (7.37): We started with the velocity equation
and applied the divergence operator to make appear the divergence of the transport that we
then set to zero, and we should perform the same operations inthe discrete domain to ensure
that at any moment the discrete transport field is nondivergent in a finite volume. This is
expressed by discrete volume conservation as:

hi+1/2ũi+1/2 − hi−1/2ũi−1/2

∆x
+

hj+1/2ṽj+1/2 − hj−1/2ũj−1/2

∆y
= 0. (7.41)

- -

6

6

p̃ p̃i+1

ũi+1/2ũi−1/2

ṽj−1/2

Figure 7-9 Arrangement of numer-
ical unknowns for easy enforcement
of numerical volume conservation and
pressure-gradient calculations.

Anticipating astaggered gridconfiguration (Figure7-9), we realize that it would be nat-



7.6. PRESSURE EQUATION 199

ural to calculate for each cell the velocitỹu at the middle of the left and right interfaces
(i±1/2, j) and the other velocity componentṽ at the middle of the top and bottom interfaces
(i, j ± 1/2) so that the divergence may be calculated most naturally in (7.41). In contrast,̃p
values are calculated at cell centers. Leapfrog time discretization applied to (7.36a)–(7.36b)
then provides:

hi+1/2ũ
n+1
i+1/2

= hi+1/2ũ
n−1
i+1/2

+ 2∆t Fxi+1/2 − 2∆t hi+1/2

p̃i+1 − p̃
ρ0∆x

(7.42a)

hj+1/2ṽ
n+1
j+1/2

= hj+1/2ṽ
n−1
j+1/2

+ 2∆t Fyj+1/2
− 2∆t hj+1/2

p̃j+1 − p̃
ρ0∆y

, (7.42b)

in which we omitted for clarity the obvious indicesi, j andn.
Requesting now that the discretized version (7.41) of the non-divergence constraint hold

at time leveln + 1, we can eliminate the velocity values at that time level by combining
the equations (7.42) so that these terms cancel out. The result is the sought-after discretized
equation for pressure:

1

∆x

(
hi+1/2

p̃i+1 − p̃
∆x

− hi−1/2

p̃− p̃i−1

∆x

)
+

1

∆y

(
hj+1/2

p̃j+1 − p̃
∆y

− hj−1/2

p̃− p̃j−1

∆y

)

= ρ0

(
Fxi+1/2 − Fxi−1/2

∆x
+

Fyj+1/2
− Fyj−1/2

∆y

)

+
ρ0

2∆t

(
hi+1/2ũ

n−1
i+1/2

− hi−1/2ũ
n−1
i−1/2

∆x
+
hj+1/2ṽ

n−1
j+1/2

− hj−1/2ũ
n−1
j−1/2

∆y

)
,

(7.43)

where once again the obvious indices have been omitted.
It is clear that, up to the last term, this equation is a discrete version of (7.37) and re-

sembles (7.40). The difference lies in the last term, which would vanish ifthe transport field
were divergence free at time leveln − 1. We kept that term should the numerical solution
of the discrete equation not be exact. Keeping the non-zero discrete divergence atn − 1 in
the equation is a way of applying an automatic correction to the discrete equation in order to
insure the non-divergence of the transport at the new time leveln+1. Neglecting this correc-
tion term would result in a gradual accumulation of errors and thus an eventually divergent
transport field.

To summarize, the algorithm works as follows: Knowing velocity values at time levelsn
andn− 1, we solve (7.43) iteratively for pressure, which is then used to advance velocity in
time using (7.42a) and (7.42b). For quickly converging iterations, the pressure calculations
can be initialized with the values from the previous time step. This iterative procedure is one
of the sources of numerical errors against which the last term of (7.43) is kept as a precaution.

The discretization shown here is relatively simple, but in the more general case of higher-
order methods or other grid configurations, the same approach can be used. We must ensure
that the divergence operator applied to the transport field is discretized in the same way as the
divergence operator is applied to the pressure gradient. Furthermore, the pressure gradient
needs be discretized in the same way in both the velocity equation and the elliptic pressure
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equation. In summary, the derivatives similarly labeled inthe equations below must be dis-
cretized in identical ways to procure a mathematically coherent scheme:

∂

∂x︸︷︷︸
(1)

(hu) +
∂

∂y︸︷︷︸
(2)

(hv) = 0

∂

∂t
(hu) = − h

ρ0

∂p

∂x︸︷︷︸
(3)

+ Fx

∂

∂t
(hv) = − h

ρ0

∂p

∂y︸︷︷︸
(4)

+ Fy

∂

∂x︸︷︷︸
(1)

(
h

ρ0

∂p

∂x︸︷︷︸
(3)

)
+

∂

∂y︸︷︷︸
(2)

(
h

ρ0

∂p

∂y︸︷︷︸
(4)

)
=

∂

∂x︸︷︷︸
(1)

Fx +
∂

∂y︸︷︷︸
(2)

Fy.

It also means one can generally not resort to a “black box” elliptic-equation solver to obtain
a pressure field that is used in “hand made” discrete velocityequations.

7.7 Numerical solution of the streamfunction equation

Instead of calculating pressure, a second method in use withthe rigid-lid approximation is a
generalization of the velocity streamfunctionψ to thevolume transport streamfunctionΨ:

hu = −∂(hψ)

∂y
= − ∂Ψ

∂y
(7.45a)

hv = +
∂(hψ)

∂x
= +

∂Ψ

∂x
. (7.45b)

The difference between two isolines ofΨ can be interpreted as the volume transport between
those lines, directed with the higherΨ values to its right.

When transport components are calculated according to (7.45), volume conservation
(7.35) is automatically satisfied and, as shown in Section6.6, the numerical counterpart can
also be divergence-free. We may therefore discretize the equation governingΨ without hesi-
tation, sure that its discrete solution will lead to a well behaved discrete velocity field.

To obtain a mathematical equation for the streamfunction, all we have to do is to elimi-
nate the pressure from the momentum equations. This is accomplished by dividing (7.36a)
and (7.36b) by h, differentiating the former byy and the latter byx, and finally subtracting
one from the other. Replacement of the transport componentshu andhv in terms of the
streamfunction then yields:

∂

∂t

[
∂

∂x

(
1

h

∂Ψ

∂x

)
+

∂

∂y

(
1

h

∂Ψ

∂y

)]
=

∂

∂x

(
Fy
h

)
− ∂

∂y

(
Fx
h

)

= Q.

(7.46)
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The right-hand side could be further expanded in terms of thestreamfunction, but for the sake
of the following discussion it is sufficient to lump all its terms into a single “forcing” termQ.

We now consider a leapfrog time discretization or any other time discretization that allows
us to write


 ∂

∂x

(
1

h

∂Ψ̃

∂x

)n+1

+
∂

∂y

(
1

h

∂Ψ̃

∂y

)n+1

 = F (Ψ̃n, Ψ̃n−1, ...). (7.47)

In the case of a leapfrog discretization the right-hand sideis

F (Ψ̃n, Ψ̃n−1, ...) =


 ∂

∂x

(
1

h

∂Ψ̃

∂x

)n−1

+
∂

∂y

(
1

h

∂Ψ̃

∂y

)n−1



+ 2∆t Qn,

(7.48)

which can be evaluated numerically knowing̃Ψn and Ψ̃n−1. The problem then amounts
to solving (7.47) for Ψ̃n+1. Again, an elliptic equation must be solved, as for the pressure
equation in the previous section, and the same method can be applied.

Differences, others than the terms in the right-hand side, are noteworthy. First, instead
of h appearing inside the derivatives,1/h is involved, which increases the role played by
the streamfunction derivatives in shallow regions (h→ 0, usually near boundaries), possibly
amplifying errors on boundary conditions. This is in contrast to the pressure formulation,
in which the influence of the vertically integrated pressuregradient decreases in shallow
regions. Applications indeed reveal that the solution of the Poisson equation (7.43) is better
conditioned and converges better than (7.47).

A second difference is related to the formulation of boundary conditions. While in the
pressure approach imposing zero normal velocity leads to a condition on the normal derivative
of pressure, a Neumann condition, the streamfunction formulation has the apparent advantage
of only demanding that the streamfunction be constant alonga solid boundary, a Dirichlet
condition. A problem arises for ocean models when islands are present within the domain
(Figure7-10). Knowing that the streamfunction is constant on an impermeable boundary
does not tell us what the value of the constant ought to be. This is no small matter because
the difference of streamfunction values across a channel defines the volume transport in that
channel. Such volume transport should be determined by the dynamics of the flow and not
by the modeler’s choice.

The streamfunction equation being linear with known right-hand side allows superposi-
tion of solutions, and we take one island at a time:

∂

∂x

(
1

h

∂ψk
∂x

)
+

∂

∂y

(
1

h

∂ψk
∂y

)
= 0 (7.49)

with ψk set to zero on all boundaries exceptψk = 1 on the boundary for thek-th island. Each
island thus engenders a dimensionless streamfunctionψk(x, y) that can be used to construct
the overall solution

Ψ(x, y, t) = Ψf (x, y, t) +
∑

k

Ψk(t)ψk(x, y), (7.50)
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Ψ2

Ψ3

BoundaryΓ1

Figure 7-10 Boundary conditions on
the streamfunction in an ocean model
with islands. The streamfunction value
must be prescribed constant along im-
permeable boundaries. SettingΨ1 and
Ψ2 for the outer boundaries is reason-
able and amounts to imposing the to-
tal flow across the domain, but set-
ting a priori the value ofΨ3 along the
perimeter of an island is in principle
not permitted, because the flow around
the island should depend on the inte-
rior solution and its temporal evolu-
tion. Clearly, a prognostic equation for
the streamfunction value on islands is
needed.

whereΨf is the particular solution of Equation (7.47) with streamfunction set to zero along
all island boundaries and prescribed values along the outerboundaries and wherever the vol-
ume flow is known (for example at the inflow boundary as depicted in Figure7-10). The
Ψk(t) coefficients are the time-dependent factors by which the island contributions must be
multiplied to construct the full solution. What should these factors be is the question.

One possibility is to project the momentum equations onto the direction locally normal
to the island boundary, as was done to determine the boundaryconditions in the pressure
formulation. Invoking Stokes theorem on the closed contourformed by the perimeter of
the k-th island then provides an equation for the time derivativedΨk/dt. Repeating the
procedure for each island leads to a linear set ofN equations, whereN is the number of
islands. These equations can then be integrated in time (e.g., Bryan and Cox, 1972). This
approach has become less popular over the years for several reasons, among which is the non-
local nature of the equations. Indeed, each island equationinvolves both area and contour
integrals all over the domain, causing serious difficultieswhen the domain is fragmented for
calculation on separate computers working in parallel. Synchronization of the information
exchange of different integral pieces across computers canbe very challenging. Nevertheless,
the streamfunction formulation is still available in most large-scale ocean models.

7.8 Laplacian inversion

Because the inversion of a Poisson-type equation is a recurrent task in numerical models, we
now outline some of the methods designed to invert the discrete Poisson equation

ψ̃i+1,j − 2ψ̃i,j + ψ̃i−1,j

∆x2
+

ψ̃i,j+1 − 2ψ̃i,j + ψ̃i,j−1

∆y2
= q̃i,j (7.51)
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where the right-hand side is given andψ̃ is the unknown field3. Iterative methods outlined in
Section5.6using pseudo-time iterations were the first methods used to solve a linear system
for ψ̃i,j . The Jacobi method with over-relaxation reads

ψ̃
(k+1)
i,j = ψ̃

(k)
i,j + ω ε

(k)
i,j(

2

∆x2
+

2

∆y2

)
ε
(k)
i,j =

ψ̃
(k)
i+1,j − 2ψ̃

(k)
i,j + ψ̃

(k)
i−1,j

∆x2
+

ψ̃
(k)
i,j+1 − 2ψ̃

(k)
i,j + ψ̃

(k)
i,j−1

∆y2
− q̃i,j , (7.52)

in which the residualε is used to correct the previous estimate at iteration(k). Taking the re-
laxation parameterω > 1 (i.e., performing over-relaxation) accelerates convergence towards
the solution, at the risk of instability. By considering iterations as evolution in pseudo-time,
we can assimilate the parameterω to a pseudo-time step and perform a numerical stability
analysis. The outcome is that iterations are stable (i.e., they converge) provided0 ≤ ω < 2.
In terms of the general iterative solvers of Section5.6, matrix B in (5.56) is diagonal. The
algorithm requires at least as many iterations to propagatethe information once through the
domain as they are grid points across the domain. IfM is the total number of grid points
in the 2D model, then

√
M is an estimate of the “width” of the grid, and it takes

√
M itera-

tions to propagate information once from side to side. Usually, M iterations are needed for
convergence, and the cost rapidly becomes prohibitive withincreased resolution.

The finite speed at which information is propagated during numerical iterations does not
reflect the actual nature of elliptic equation, the interconnectness of which theoretically im-
plies instantaneous adjustment to any change anywhere, andwe sense that we should be able
to better. Because in practice the iterations are only necessary to arrive at the converged solu-
tion, we do not need to mimic the process of a time-dependent equation and can tamper with
the pseudo-time.

The Gauss-Seidel method with over-relaxation calculates the residual instead as

(
2

∆x2
+

2

∆y2

)
ε
(k)
i,j =

ψ̃
(k)
i+1,j − 2ψ̃

(k)
i,j + ψ̃

(k+1)
i−1,j

∆x2
+

ψ̃
(k)
i,j+1 − 2ψ̃

(k)
i,j + ψ̃

(k+1)
i,j−1

∆y2
− q̃i,j (7.53)

in which the updated values at the previous neighbors (i−1, j) and (i, j−1) are immediately
used (assuming that we loop across the domain with increasing i andj). In other words, the
algorithm (7.53) does not delay using the most updated values. With this timesaving also
comes a saving of storage as old values can be replaced by new values as soon as these are
calculated. MatrixB of equation (5.56) is triangular, and the Gauss-Seidel loop (7.53) is the
matrix inversion performed by backward substitution. The method is calledSOR, successive
over-relaxation.

3Generalization to equations with variable coefficients such ash or 1/h, as encounterd in the preceding two
sections for example, is relatively straightforward, and we keep the notation simple here by assuming constant
coefficients.
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The use of the most recentψ̃ values during the iterations accelerates convergence but not
in a drastic way. Only when the relaxation parameterω is set at a very particular value can the
number of iterations be reduced significantly, fromO(M) down toO(

√
M) (see Numerical

Exercise 7-6). Unfortunately, the optimal value ofω depends on the geometry and type of
boundary conditions, and a small departure from the optimalvalue quickly deteriorates the
convergence rate. As a guideline, the optimal value behavesas

ω ∼ 2 − α
2π

m
(7.54)

for a square and isotropic grid withm grid points in each direction, and with parameter
α = O(1) depending on the nature of the boundary conditions.

Because of its easy implementation, the SOR method was very popular in the early days
of numerical modeling, but when vector and, later, parallelcomputers appeared, some adap-
tation was required. The recurrence relationships that appear in the loops do not allow to
calculateψ̃(k+1)

i,j before the calculations of̃ψ(k+1)
i−1,j andψ̃(k+1)

i,j−1 are finished, and this prevents
independent calculations on parallel processors or vectormachines. In response, the so-called
red-blackmethods were developed. These perform two Jacobi iterations on two interlaced
grids, nicknamed “red” and “black” (Figure7-11).

i

j

Figure 7-11 To avoid recurrence rela-
tionships, the discrete domain is swept
by two loops, working on white and
gray dots separately. During the loop
updating white nodes, only values of
the gray nodes are used, so that all
white nodes can be updated indepen-
dently and immediately. The reverse
holds for the gray nodes in the second
loop, and all calculations may be per-
formed in parallel. Because the origi-
nal algorithm (reference here) used red
and black colored nodes, the name red-
black is the one given to the two-stage
sweep mechanism.

If we want to reduce further the computational burden associated with the inversion of the
Poisson equation, we must exploit the very special nature of(7.51) and the resulting linear
system to be solved. For the discrete version (7.51) of the Poisson equation, the matrixA re-
lating the unknowns, now stored in an arrayx, is symmetric and positive definite (Numerical
Exercise 7-10). In this case, the solution ofAx = b is equivalent to solving the minimization
of

J =
1

2
xTAx− xTb (7.55)

∇xJ = Ax− b (7.56)
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with respect tox. We then have to search for minima rather than to solve a linear equation
and, though apparently more complicated, the task can also be tackled by iterative methods.
The minimum ofJ is reached when the gradient with respect tox is zero:∇xJ = 0. This is
the case when the residualr = Ax− b is zero,i.e., when the linear problem is solved.

The use of a minimization approach (e.g., Golub and van Loan, 1990) instead of a linear-
system solver relies on the possibility of using efficient minimization methods. The gradient
of J , the residual, is easily calculated and only takes4M operations for the matrixA arising
from the discrete Poisson equation. The value ofJ , if desired, is also readily obtained by
calculating two scalar products involving the already available gradient. A standard mini-
mization method used in optimization problems is to minimize the cost functionJ by follow-
ing its gradient. In this method, called thesteepest descentmethod, a better estimate ofx is
sought in the direction in whichJ decreases fastest. Starting fromx0 and associated residual
r = Ax0 − b a better estimate ofx is sought as

x = x0 − αr, (7.57)

which is reminiscent of a relaxation method. The parameterα is then chosen to minimizeJ .
Because the form is quadratic inα, this can be achieved easily (see Numerical Exercise 7-7)
by taking

α =
rTr

rT Ar
(7.58)

which, becauseA is positive definite, can always be calculated as long as the residual is non-
zero. If the residual vanishes, iterations can be stopped because the solution has been found.
Otherwise, from the new estimatex, a new residual and gradient are computed, and iterations
proceed:

Initialize by first guess x(0) = x0

Loop on increasing k until the residual r is small enough

r = Ax(k) − b

α =
rTr

rT Ar

x(k+1) = x(k) − αr

End of loop on k.

where residual and optimal descent parameterα change at each iteration. It is interesting to
note that the residuals of two successive iterations are orthogonal to each other (Numerical
Exercise 7-7).

Although very natural, the approach does not converge rapidly, andconjugate gradient
methods have been developed to provide better convergence rates. In these methods, the
direction of progress is no longer the direction of the steepest descent but is prescribed from
among a set, notedei. We then look for the minimum along these possible directions:

x = x0 − α1e1 − α2e2 − α3e3 − ...− αMeM . (7.59)
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If there areM vectorsei, chosen to be linearly independent, minimization with respect to
theM parametersαi will yield the exact minimum ofJ . So, instead of searching for theM
components ofx, we search for theM parametersαi leading to the optimal statex. This
solves the linear system exactly. A simplification in the calculations arises if we choose

eT

i A ej = 0 when i 6= j, (7.60)

because in this case the quadratic formJ takes the form

J =
1

2
xT

0 Ax0 − xT

0b

+
α2

1

2
eT

1Ae1 − α1e
T

1 (Ax0 − b)

+
α2

2

2
eT

2Ae2 − α2e
T

2 (Ax0 − b)

+ ...

+
α2
M

2
eT

MAeM − αMeT

M (Ax0 − b) . (7.61)

This expression is readily minimized with respect to each parameterαk and yields, with
r0 = Ax0 − b,

αk =
eT

k r0

eT

k Aek
, k = 1, ...,M (7.62)

In other words, to reach the global minimum and thus the solution of the linear system,
we simply have to minimize each term individually. The difficulty, however, is that the con-
struction of the set of directionsek is complicated. Hence, the idea is to proceed step-by-step
and construct the directions as we iterate, with the plan of stopping iterations when residuals
have become small enough. We can start with a first arbitrary direction, typically the steepest
descente1 = Ax0 − b. Then, once we have a set ofk directions that satisfy (7.60), we only
minimize along directionek by (7.62):

x(k) = x(k−1) − αkek. (7.63)

This leads to a new residualrk = Ax(k) − b

rk = rk−1 − αkAek

= r0 − α1Ae1 − α2Ae2 − ...− αkAek. (7.64)

This shows that, instead of calculatingαk according to (7.62), we can use

αk =
eT
k rk−1

eT

k Aek
, (7.65)

because of property (7.60). We can interpret this result together with (7.64) by showing that
the successive residuals are orthogonal to all previous search directionsei, so that no new
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search in those directions is needed. Expression (7.65) is also more practical because it re-
quires the storage of only the residual calculated at the previous iteration. The construction
of the next directionek+1 is then performed by a variation of the Gram-Schmidt orthogonal-
ization process of a series of linearly independent vectors. The conjugate gradient method
chooses for this set of vectors the residuals already calculated, which can be shown to be or-
thogonal to one another and hence linearly independent. When applying the Gram-Schmidt
orthogonalization in the sense of (7.60), it turns out that the new directionek+1 is surpris-
ingly easy to calculate in terms of the last residuals and search direction (e.g., Golub and van
Loan, 1990):

ek+1 = rk +
‖ rk ‖2

‖ rk−1 ‖2
ek (7.66)

from which we can proceed to the next step. The algorithm is therefore only slightly more
complicated than the steepest-descent method, and we note that we no longer need to store
all residuals or search directions, not even intermediate values ofx. Only the most recent one
needs to be stored at any moment for the following algorithm:

Initialize by first guess

x(0) = x0, r0 = Ax0 − b, e1 = r0, s0 = ‖ r0 ‖2

Loop on increasing k until the residual r is small enough

αk =
eT

k rk−1

eT

k Aek

x(k) = x(k−1) − αkek
rk = rk−1 − αkAek

sk = ‖ rk ‖2

ek+1 = rk +
sk
sk−1

ek

End of loop on k.

Because we minimize independent terms, we are sure afterM steps to be at the minimum,
within rounding errors. For the conjugate-gradient methodthe exact solution is therefore ob-
tained withinM iterations, and the overall cost of our special sparse matrix inversion arising
from the two-dimensional discrete Poisson equation behaves asM2. There is, however, no
need to find the exact minimum, and, in practice, only a certain number of successive mini-
mizations are necessary, and convergence is generally obtained withinM3/2 operations. This
does not seem an improvement over the optimal over-relaxation, but the conjugate-gradient
method is generally robust and has no need of an over-relaxation parameter. If in addition a
proper preconditioning is applied, it can lead to spectacular convergence rates.

Preconditioning needs to preserve the symmetry of the problem and is performed by
introducing a sparse triangular matrixL and writing the original problem as

L−1AL−TLT
x = L−1b, (7.67)
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so that we now work with the new unknownLTx and modified matrixL−1AL−T. This
matrix is symmetric, and, ifL is chosen correctly, also positive definite ifA is. The re-
sulting algorithm, involving the modified matrix and unknown, is very close to the original
conjugate-gradient algorithm after clever rearrangementof the matrix-vector products. The
only difference is the appearence ofM−1r, whereM−1 = L−TLT. Becauseu = M−1r

is the solution ofMu = r, the sparseness and triangular nature ofL allows us to perform
this operation quite efficiently. IfL = C is obtained from a Cholesky decomposition of the
symmetric positive-definite matrixA = CCT, whereC is a triangular matrix, a single step of
the conjugate-gradient method would suffice, because the inversion ofA would be directly
available. For this reason,L is often constructed by the Cholesky decomposition but within-
complete and cost-effective calculations, imposing onL a given sparse pattern. This leads to
the incomplete Cholesky preconditioning4. This reduces the cost of the Cholesky decomposi-
tion itself, but increases the number of iterations needed compared to a situation in which the
full Cholesky decomposition is available. On the other hand, it generally reduces the number
of iterations compared to the version without preconditioning. An optimum is therefore to
be found in the amount of preconditioning, and the particular choice of preconditioning is
problem dependent. Stability of the iterations might be an occasional problem.

Most linear-algebra packages contain conjugate-gradientmethods including generaliza-
tions to solve non-symmetric problems. In this case we can consider the augmented (double)
problem

(
0 A

AT 0

)(
y

x

)
=

(
b

c

)
(7.68)

which is symmetric and possesses the same solutionx.
More efficient solution methods for special linear systems,such as our Poisson equation,

exist and exhibit a close relationship with Fast Fourier Transforms (FFT, see Appendix C).
The cyclic block reduction methods (e.g., Ferziger and Perić, 1999), for example, can be
applied when the discretization constants are uniform and boundary conditions simple. But
in such a case, we could also use a spectral method coupled with FFT for immediate inversion
of the Laplacian operator (see Section18.4). In these methods, costs can be reduced down to
M logM .

Finally, the most efficient methods for very large problems aremultigrid methods. These
start from the observation that the pseudo-evolution approach mimics diffusion, which gener-
ally acts more efficiently at smaller scales [see damping rates of discrete diffusion operators
(5.34)], leaving larger scales to converge more slowly. But, these larger scales can be made
to appear as relatively shorter scales on a grid with wider grid spacing so that their conver-
gence can be accelerated (using, incidentally, a larger pseudo-time step). Thus, introducing
a hierarchy of grids as amultigrid method does, accelerates convergence by iterating on dif-
ferent grids for different length scales. Typically the method begins with a very coarse grid,
on which a few iterations lead to a good estimate of the broad shape of the solution. This
solution is then interpolated onto a finer grid on which several more iterations are performed,
and so on down to the ultimate resolution of interest. The iterations may also be redone on the
coaser grids after some averaging to estimate the broad solution from the finer grid. Multigrid

4More generally, an incompleteLU decomposition approximates any matrixA by the product of lower and upper
sparse triangular matrices.
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methods, therefore, iterate and cycle through different grids (e.g., Hackbusch, 1985), and the
art is to perform the right number of iterations on each grid and to choose wisely the next
grid on which to iterate (the finer or coarser grid). For well chosen strategies, the number of
operations required for convergence behaves asymptotically asM , and multigrid methods are
therefore the most effective ones for very large problems. Iterations on each of the grids may
be of red-black type with over-relaxation or any other method with appropriate convergence
properties.

We only scratched here the surface of the problem of solving large and sparse linear
algebraic systems to give a flavor of the possible approaches, and the reader should be aware
that there is a large number of numerical solvers available for specific problems. Since these
are optimized for specific computer hardware, the practicaland operational task of large-
system inversion of the discrete Poisson equation should beleft to libraries provided with the
computing system available. Only the choice of when to stop the iterations and the proper
preconditioning strategy should be left to the modeler.

Analytical Problems

7-1. A laboratory experiment is conducted in a cylindrical tank 20 cm in diameter, filled with
homogeneous water (15 cm deep at the center) and rotating at 30 rpm. A steady flow
field with maximum velocity of 1 cm/s is generated by a source-sink device. The water
viscosity is 10−6 m2/s. Verify that this flow field meets the conditions of geostrophy.

7-2. (Generalization of the Taylor–Proudman theorem) By reinstating thef∗–terms of equa-
tions (3.21) and (3.24) into (7.2) and (7.4), show that motions in fluids rotating rapidly
around an axis not parallel to gravity exhibit columnar behavior in the direction of the
axis of rotation.

7-3. Demonstrate the assertion made at the end of Section7.2, namely, that geostrophic flows
between irregular bottom and top boundaries are constrained to be directed along lines
of constant fluid depth.

7-4. Establish equation (7.25) for the evolution of a parcel’s horizontal cross-section from
first principles.

7-5. In a fluid of depthH rapidly rotating at the ratef/2 (Figure7-12), there exists a uni-
form flow U . Along the bottom (fixed), there is an obstacle of heightH ′ (< H/2),
around which the flow is locally deflected, leaving a quiescent Taylor column. A rigid
lid, translating in the direction of the flow at speed2U , has a protrusion identical to
the bottom obstacle, also locally deflecting the otherwise uniform flow and entraining
another quiescent Taylor column. The two obstacles are aligned with the direction of
motion so that there will be a time when both are superimposed. Assuming that the
fluid is homogeneous and frictionless, what do you think willhappen to the Taylor
columns?
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Figure 7-12 Schematic view of a hy-
pothetical system, as described in Prob-
lem 7-5.

7-6. As depicted in Figure7-13, a vertically uniform but laterally sheared coastal current
must climb a bottom escarpment. Assuming that the jet velocity still vanishes offshore,
determine the velocity profile and the width of the jet downstream of the escarpment
usingH1 = 200 m, H2 = 160 m, U1 = 0.5 m/s,L1 = 10 km andf = 10−4 s−1.
What would happen if the downstream depth were only 100 m?

7-7. What are the differences in dynamic pressure across the coastal jet of Problem 7-6 up-
stream and downstream of the escarpment? TakeH2 = 160 m andρ0 = 1022 kg/m3.

7-8. In Utopia, a narrow 200-m deep channel empties in a broad bay of varying bottom
topography (Figure7-14). Trace the path to the sea and the velocity profile of the
channel outflow. Takef = 10−4 s−1. (Solve only for straight stretches of the flow and
ignore corners.)

7-9. A steady ocean current of uniform potential vorticityq = 5×10−7 m−1s−1 and volume
flux T = 4×106 m3/s flows along isobaths of a uniformly sloping bottom (with bottom
slopeS = 1 m/km). Show that the velocity profile across the current is parabolic. What
are the width of the current and the depth of the location of maximum velocity? Take
f = 7× 10−4 s−1.

7-10. Show that the rigid-lid approximation can also be obtained by assuming that the verti-
cal velocity at top is much smaller than at the bottom. Establish the necessary scaling
conditions that support your assumptions.
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Figure 7-13 A sheared coastal jet negotiating a bottom escarpment (Problem 7-6).

Numerical Exercises

7-1. An atmospheric pressure fieldp over a flat bottom is given on a rectangular grid accord-
ing to

pi,j = PH exp(−r2/L2) + pε ξi,j r2 = (xi − xc)2 + (yj − yc)2 (7.69)

whereξ is a normal (Gaussian) random variable of zero mean and unit standard devi-
ation. The high pressure anomaly is ofPH = 40 hPa and its radiusL = 1000 km.
For the noise level, takepε = 5 hPa. Use a rectangular grid centered aroundxc, yc
with a uniform grid spacing∆x = ∆y = 50 km. Calculate and plot the associated
geostrophic currents forf = 10−4 s−1. To which extent is volume conservation satis-
fied in your finite-difference scheme? What happens ifpε = 10 hPa or∆x = ∆y =
25 km? Can you interpret your finding?

7-2. Use the sea surface height reconstructed from satellite data and stored in filemadt oer merged h 18861.nc
to calculate associated geostrophic ocean currents aroundthe Gulf stream usingtopexcirculation.m
to read the data. For conversion from latitude and longitudeto local Cartesian coordi-
nates, 1◦ latitude = 111 km and 1◦ longitude = 111 km× cos(latitude). (The altimeter
products have been produced by the CLS Space Oceanography Division, see also Ducet
et al., 2000).

7-3. Use the meteorological pressure field at sea level to calculate geostrophic winds over
Europe. First use the December 2000 monthly average sea-level pressure. Then look
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Figure 7-14 Geometry of the idealized
bay and channel mentioned in Problem
7-8.

at daily variations.Era40.m will help you read the data. Take care of the actual
Coriolis parameter value and the distances to be calculatedfrom the longitude-latitude
information (see Numerical Exercise 7-2).

What happens if you try to redo your calculations in order to plan your sailing trip in
the northern part of Lake Victoria? (ECMWF ERA-40 data were obtained from the
ECMWF data server).

7-4. Calculate with the red-black approach the numerical solution of (7.51) in the basin
depicted in Figure7-15, with q̃i,j = −1 on the right-hand side of the equation and
ψ̃i,j = 0 along all solid boundaries. Implement a stopping criterionbased on a relative
measure of the residual compared tob.

4
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500 km

100 km
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1
0

0
km

ψ = 0

ψ = 0

Figure 7-15 Geometry of the idealized
basin mentioned in Numerical Exercise
7-4.

7-5. Use the conjugate-gradient implementation called intest.m to solve the problem of
Numerical Exercise 7-4 with improved convergence.
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7-6. Redo Numerical Exercise 7-4 with the Gauss-Seidel approachusing over-relaxation and
several values ofω between 0.7 and 1.999. For each value ofω, start from zero and
converge until reaching a preset threshold for the residual. Plot the required number
of iterations until convergence as a function ofω. Design a numerical tool to find the
optimal value ofω numerically. Then repeat the problem with other spatial resolutions,
taking successively 20, 40, 60, 80 and 100 grid points in eachdirection. Look at the
number of iterations and the optimal value ofω as functions of resolution.

7-7. Prove that the parameterα given by (7.58) leads to a minimum ofJ defined in (7.55),
for a given starting point and fixed gradientr. Also prove that at the next iteration of
the steepest-descent method, the new residual is orthogonal to the previous residual.
Implement the steepest-descent algorithm. Try to find the minimum of (7.55) with

A =

(
3 1
1 1

)
, b =

(
6
2

)
(7.70)

and observe the successive approximations obtained by the method, starting at the ori-
gin of the axes.Hint: In the plane defined by the two unknowns, plot isolines ofJ and
plot the line connecting the successive approximations to the solution. Make several
zooms near the solution point.

7-8. Implement, as a Matlab function, a general solver for the Poisson equation. Provide
for masked grids and variable resolution such that∆x depends oni only and∆y on j
only, keeping grid cells rectangular. Also permit variablecoefficients in the Laplacian
operator, as found in (7.47) and apply to the following situation.

In shallow, wind-driven basins, such as small lakes and lagoons, the flow often strikes
a balance between the forces of surface wind, pressure gradient and bottom friction.
Upon defining a streamfunction and eliminating the pressuregradient, one obtains for
steady flow (Matthieuet al., 2002):

∂

∂x

(
2νE
h3

∂ψ

∂x

)
+

∂

∂y

(
2νE
h3

∂ψ

∂y

)
=

∂

∂y

(
τx

ρ0h

)
− ∂

∂x

(
τy

ρ0h

)
, (7.71)

whereνE is the eddy viscosity,h(x, y) is the local bottom depth, and (τx, τy) the
components of the surface wind stress. In the application, take νE = 10−2 m2/s,
ρ0 = 1000 kg/m3, h(x, y) = 50− (x2 +4y2/10) (in m, withx andy in km), τx = 0.1
N/m2, andτy = 0 within an elliptical domainx2 + 4y2 ≤ 400 km2.

7-9. Use the general tool of Numerical Exercise 7-8 to simulate the stationary flow across
the Bering sea, assuming the right-hand side of (7.71) is zero. Useberingtopo.m
to read the topography of Figure7-16. To pass from latitude and longitude to Cartesian
coordinates, use the rule given in Numerical Exercise 7-2 but with cos(latitude) taken
as cos(66.5◦N) to obtain a rectangular grid. Compare your solution to thecase of
constant, average depth instead of the real topography, maintaining the land mask.

7-10. Prove that matrixA arising from the discretization (7.51) is symmetric and positive
definite. Show also that the latter property ensureszTAz > 0 for anyz 6= 0.
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Figure 7-16 Model of the Bering Sea
for Numerical Exercise 7-9. For the
calculation of the streamfunction, as-
sume that West of -169◦ longitude all
land points have a prescribed stream-
functionΨ1 = 0 and those to the East
Ψ2 = 0.8 Sv (1 Sv = 106 m3/s). For
convenience, you may consider clos-
ing the western and eastern boundary
completely and imposing a zero normal
derivative ofΨ along the open bound-
aries.



Geoffrey Ingram Taylor
1886 – 1975

Considered one of the great physicists of the 20th century, Sir Geoffrey Taylor contributed
enormously to our understanding of fluid dynamics. Althoughhe did not envision the birth
and development of geophysical fluid dynamics, his researchon rotating fluids laid the foun-
dation for the discipline. His numerous contributions to science also include seminal work
on turbulence, aeronautics, and solid mechanics. With a staff consisting of a single assistant-
engineer, he maintained a very modest laboratory, constantly preferring to undertake entirely
new problems and to work alone. (Photo courtesy of Cambridge University Press)
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James Cyrus McWilliams
1946 –

A student of George Carrier at Harvard University, James McWilliams is a pioneer in the syn-
thesis of mathematical theory and computational simulation in geophysical fluid dynamics. A
central theme of his research is how advection produces the peculiar combinations of global
order and local chaos – and vice versa – evident in oceanic currents, as well as analogous phe-
nomena in atmospheric and astrophysical flows. His contributions span a formidable variety
of topics across the disciplines of rotating and stratified flows, waves, turbulence, boundary
layers, oceanic general circulation, and computational methods.

McWilliams’ scientific style is the pursuit of phenomenological discovery in the virtual
reality of simulations, leading, on good days, to dynamicalunderstanding and explanation
and to confirmation in nature.

(Photo credit: J. C. McWilliams)
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Chapter 8

The Ekman Layer

(October 18, 2006)SUMMARY : Frictional forces, neglected in the previous chapter, are
now investigated. Their main effect is to create horizontalboundary layers that support a
flow transverse to the main flow of the fluid. The numerical treatment of the velocity profiles
dominated by friction is illustrated with a spectral approach.

8.1 Shear turbulence

Because most geophysical fluid systems are much shallower than they are wide, their vertical
confinement forces the flow to be primarily horizontal. Unavoidable in such a situation is
friction between the main horizontal motion and the bottom boundary. Friction acts to reduce
the velocity in the vicinity of the bottom, thus creating a vertical shear. Mathematically, if
u is the velocity component in one of the horizontal directions andz the elevation above the
bottom, thenu is a function ofz, at least for smallz values. The functionu(z) is called the
velocity profileand its derivativedu/dz, thevelocity shear.

Geophysical flows are invariably turbulent (high Reynolds number) and this greatly com-
plicates the search for the velocity profile. As a consequence, much of what we know is
derived from observations of actual flows, either in the laboratory or in nature.

The turbulent nature of the shear flow along a flat or rough surface includes variability
at short time and length scales, and the best observational techniques for the detailed mea-
surements of these have been developed for the laboratory rather than outdoor situations.
Laboratory measurements of nonrotating turbulent flows along smooth straight surfaces have
led to the conclusion that the velocity varies solely with the stressτb exerted against the bot-
tom, the fluid molecular viscosityν, the fluid densityρ and, of course, the distancez above
the bottom. Thus,

u(z) = F (τb, ν, ρ, z).

Dimensional analysis permits the elimination of the mass dimension shared byτb andρ but
not present inu, ν andz, and we may write more simply:

217
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u(z) = F

(
τb
ρ
, ν, z

)
.

The ratioτb/ρ has the same dimension as the square of a velocity, and for this reason it is
customary to define

u∗ =

√
τb
ρ
, (8.1)

which is called thefriction velocityor turbulent velocity. Physically, its value is related to
the orbital velocity of the vortices that create the cross-flow exchange of particles and the
momentum transfer.

The velocity structure thus obeys a relation of the formu(z) = F (u∗, ν, z) and further
use of dimensional analysis reduces it to a function of a single variable:

u(z)

u∗
= F

(u∗z
ν

)
. (8.2)

In the presence of rotation, the Coriolis parameter enters the formalism and the preceding
function depends on two variables:

u(z)

u∗
= F

(
u∗z

ν
,
fz

u∗

)
. (8.3)

8.1.1 Logarithmic profile

The observational determination of the functionF in the absence of rotation has been re-
peated countless times, yielding the same results every time, and it suffices here to provide
a single report (Figure8-1). When the velocity ratiou/u∗ is plotted versus the logarithm of
the dimensionless distanceu∗z/ν, not only do all the points coalesce onto a single curve,
confirming that there is indeed no other variable to be invoked, but the curve also behaves as
a straight line over a range of two orders of magnitude (fromu∗z/ν between101 and103).

If the velocity is linearly dependent on the logarithm of thedistance, then we can write
for this portion of the velocity profile:

u(z)

u∗
= A ln

u∗z

ν
+ B.

Numerous experimental determinations of the constantsA andB provideA = 2.44 and
B = 5.2 within a 5% error (Pope, 2000). Tradition has it to write the function as:

u(z) =
u∗
K ln

u∗z

ν
+ 5.2 u∗, (8.4)

whereK = 1/A = 0.41 is called thevon Kármán constant1

The portion of the curve closer to the wall, where the logarithmic law fails, may be ap-
proximated by the laminar solution. Constant laminar stress νdu/dz = τb/ρ = u2

∗ implies
u(z) = u2

∗z/ν there. Ignoring the region of transition in which the velocity profile gradually

1in honor of Theodore von Kármán (1881–1963), Hungarian-born physicist and engineer who made significant
contributions to fluid mechanics while working in Germany and who first introduced this notation.
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Figure 8-1 Mean velocity profiles in
fully developed turbulent channel flow
measured by Wei and Willmarth (1989)
at various Reynolds numbers: circles
Re = 2970, squaresRe = 14914, up-
right trianglesRe = 22776, and down-
right triangles Re = 39582. The
straight line on this log-linear plot cor-
responds to the logarithmic profile of
Equation (8.2). (From Pope, 2000)

changes from one solution to the other, we can attempt to connect the two. Doing so yields
u∗z/ν = 11. This sets the thickness of the laminar boundary layerδ as the value ofz for
whichu∗z/ν = 11, i.e.,

δ = 11
ν

u∗
. (8.5)

Most textbooks (e.g., Kundu, 1990) giveδ = 5ν/u∗, for the region in which the velocity
profile is strictly laminar, and label the region between5ν/u∗ and30ν/u∗ as thebuffer layer,
the transition zone between laminar and fully turbulent flow.

For water in ambient conditions, the molecular viscosityν is equal to 1.0× 10−6 m2/s,
while the friction velocity in the ocean rarely falls below 1mm/s. This implies thatδ hardly
exceeds a centimeter in the ocean and is almost always smaller than the height of the cobbles,
ripples and other asperities that typically line the bottomof the ocean basin. Similarly for the
atmosphere: the air viscosity at ambient temperature and pressure is about 1.5× 10−5 m2/s
andu∗ rarely falls below 1 cm/s, givingδ < 5 cm, smaller than most irregularities on land
and wave heights at sea.

When this is the case, the velocity profile above the bottom asperities no longer depends
on the molecular viscosity of the fluid but on the so-calledroughness heightz0, such that

u(z) =
u∗
K ln

z

z0
, (8.6)

as depicted in Figure8-2. It is important to note that the roughness height is not the average
height of bumps on the surface but is a small fraction of it, about one tenth (Garratt, 1992,
page 87).
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Figure 8-2 Velocity profile in the
vicinity of a rough wall. The rough-
ness heighz0 is smaller than the av-
eraged height of the surface asperities.
So, the velocityu falls to zero some-
where within the asperities, where local
flow degenerates into small vortices be-
tween the peaks, and the negative val-
ues predicted by the logarithmic profile
are not physically realized.

8.1.2 Eddy viscosity

We have already mentioned in Section5.2what an eddy diffusivity or viscosity is and how it
can be formulated in the case of a homogeneous turbulence field, i.e., away from boundaries.
Near a boundary, the turbulence ceases to be isotropic and analternate formulation needs to
be developed.

In analogy with Newton’s law for viscous fluids, which has thetangential stressτ propor-
tional to the velocity sheardu/dz with the coefficient of proportionality being the molecular
viscosityν, we write for turbulent flow:

τ = ρ0νE
du

dz
, (8.7)

where the turbulent viscosityνE supersedes the molecular viscosityν. For the logarithmic
profile (8.6) of a flow along a rough surface, the velocity shear isdu/dz = u∗/Kz and the
stressτ is uniform across the flow (at least in the vicinity of the boundary for lack of other
significant forces):τ = τb = ρu2

∗, giving

ρ0u
2
∗ = ρ0νE

u∗
Kz

and thus

νE = Kzu∗. (8.8)

Note that unlike the molecular viscosity, the turbulent viscosity is not constant in space, for it
is not a property of the fluid but of the flow, including its geometry. From its dimension ([νE ]
= L2T−1), we verify that (8.8) is dimensionally correct and note that it can be expressed as
the product of a length by the friction velocity

νE = lmu∗, (8.9)

with themixing lengthlm defined as

lm = Kz. (8.10)

This parameterization is occasionally used for cases otherthan boundary layers (see Chapter
14).
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The preceding considerations ignored the effect of rotation. When rotation is present, the
character of the boundary layer changes dramatically.

8.2 Friction and rotation

After the development of the equations governing geophysical motions (Sections4.1to 4.4), a
scale analysis was performed to evaluate the relative importance of the various terms (Section
4.5). In the horizontal momentum equations [(4.21a) and (4.21b)], each term was compared to
the Coriolis term, and a corresponding dimensionless ratiowas defined. For vertical friction,
the dimensionless ratio was theEkman number:

Ek =
νE

ΩH2
, (8.11)

whereνE is the eddy viscosity,Ω the ambient rotation rate, andH the height (depth) scale of
the motion (the total thickness if the fluid is homogeneous).

Typical geophysical flows, as well as laboratory experiments, are characterized by very
small Ekman numbers. For example, in the ocean at midlatitudes (Ω ' 10−4 s−1), motions
modeled with an eddy-intensified viscosityνE = 10−2 m2/s (much larger than the molecular
viscosity of water, equal to1.0 × 10−6 m2/s) and extending over a depth of about 1000 m
have an Ekman number of about 10−4.

The smallness of the Ekman number indicates that vertical friction plays a very minor
role in the balance of forces and may, consequently, be omitted from the equations. This is
usually done and with great success. However, something is then lost. The frictional terms
happen to be those with the highest order of derivatives among all terms of the momentum
equations. Thus, when friction is neglected, the order of the set of differential equations is
reduced, and not all boundary conditions can be applied simultaneously. Usually, slipping
along the bottom must be accepted.

Since Ludwig Prandtl2 and his general theory of boundary layers, we know that in such
a circumstance the fluid system exhibits two distinct behaviors: At some distance from the
boundaries, in what is called theinterior, friction is usually negligible, whereas, near a bound-
ary (wall) and across a short distance, called theboundary layer, friction acts to bring the
finite interior velocity to zero at the wall.

The thickness,d, of this thin layer is such that the Ekman number is on the order of one
at that scale, allowing friction to be a dominant force:

νE
Ωd2

∼ 1,

which leads to

d ∼
√
νE
Ω

. (8.12)

2See biography at the end of this chapter.
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Obviously,d is much less thanH , and the boundary layer occupies a very small portion of
the flow domain. For the oceanic values cited above (νE = 10−2 m2/s andΩ = 10−4 s−1),
d is about 10 m.

Because of the Coriolis effect, the frictional boundary layer of geophysical flows, called
theEkman layer, differs greatly from the boundary layer in nonrotating fluids. Although, the
traditional boundary layer has no particular thickness andgrows either downstream or with
time, the existence of the depth scaled in rotating fluids suggests that the Ekman layer can
be characterized by a fixed thickness. [Note that as the rotational effects disappear (Ω→ 0),
d tends to infinity, exemplifying this essential difference between rotating and nonrotating
fluids.]

8.3 The bottom Ekman layer

Let us consider a uniform, geostrophic flow in a homogeneous fluid over a flat bottom (Figure
8-3). This bottom exerts a frictional stress against the flow, bringing the velocity gradually to
zero within a thin layer above the bottom. We now solve for thestructure of this layer.

u = 0

z

z = 0

Ekman
layer

Interior

u = ū

u(z) d

Figure 8-3 Frictional influence of a flat bottom on a uniform flow in a rotating framework.

In the absence of horizontal gradients (the interior flow is said to be uniform) and of
temporal variations, continuity equation (4.21d) yields∂w/∂z = 0 and thusw = 0 in the
thin layer near the bottom. The remaining equations are the following reduced forms of
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(4.21a) through (4.21c):

− fv = − 1

ρ0

∂p

∂x
+ νE

∂2u

∂z2
(8.13a)

+ fu = − 1

ρ0

∂p

∂y
+ νE

∂2v

∂z2
(8.13b)

0 = − 1

ρ0

∂p

∂z
, (8.13c)

wheref is the Coriolis parameter (taken as a constant here),ρ0 is the fluid density, andνE is
the eddy viscosity (taken as a constant for simplicity). Thehorizontal gradient of the pressure
p is retained because a uniform flow requires a uniformly varying pressure (Section7.1). For
convenience, we align thex–axis with the direction of the interior flow, which is of velocity
ū. The boundary conditions are then

Bottom(z = 0) : u = 0, v = 0, (8.14a)

Toward the interior(z � d) : u = ū, v = 0, p = p̄(x, y). (8.14b)

By virtue of equation (8.13c), the dynamic pressurep is the same at all depths; thus,p =
p̄(x, y) in the outer flow as well as throughout the boundary layer. In the outer flow (z � d,
mathematically equivalent toz → ∞), equations (8.13a) and (8.13b) relate the velocity to
the pressure gradient:

0 = − 1

ρ0

∂p̄

∂x
,

f ū = − 1

ρ0

∂p̄

∂y
= constant.

Substitution of these derivatives in the same equations, which are now taken at any depth,
yields

− fv = νE
d2u

dz2
(8.15a)

f (u − ū) = νE
d2v

dz2
. (8.15b)

Seeking a solution of the typeu = ū+A exp(λz) andv = B exp(λz), we find thatλ obeys
ν2λ4 + f2 = 0; that is,

λ = ± (1 ± i )
1

d

where the distanced is defined by

d =

√
2νE
f

. (8.16)
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Figure 8-4 The velocity spiral in the bottom Ekman layer. The figure is drawn for the Northern
Hemisphere (f > 0), and the deflection is to the left of the current above the layer. The reverse holds
for the Southern Hemisphere.

Here, we have restricted ourselves to cases with positivef (Northern Hemisphere). Note
the similarity to (8.12). Boundary conditions (8.14b) rule out the exponentially growing
solutions, leaving

u = ū + e−z/d
(
A cos

z

d
+ B sin

z

d

)
(8.17a)

v = e−z/d
(
B cos

z

d
− A sin

z

d

)
, (8.17b)

and the application of the remaining boundary conditions (8.14a) yieldsA = −ū, B = 0, or

u = ū
(
1 − e−z/d cos

z

d

)
(8.18a)

v = ū e−z/d sin
z

d
. (8.18b)

This solution has a number of important properties. First and foremost, we notice that the
distance over which it approaches the interior solution is on the order ofd. Thus, expression
(8.16) gives the thickness of the boundary layer. For this reason,d is called theEkman depth.
A comparison with (8.12) confirms the earlier argument that the boundary-layer thickness is
the one corresponding to a local Ekman number near unity.

The preceding solution also tells us that there is, in the boundary layer, a flow transverse
to the interior flow (v 6= 0). Very near the bottom (z → 0), this component is equal to the
downstream velocity (u ∼ v ∼ ūz/d), thus implying that the near-bottom velocity is at 45
degrees to the left of the interior velocity (Figure8-4). (The boundary flow is to the right of
the interior flow forf < 0.) Further up, whereu reaches a first maximum (z = 3πd/4), the
velocity in the direction of the flow is greater than in the interior (u = 1.07ū). (Viscosity can
occasionally fool us!)

It is instructive to calculate the net transport of fluid transverse to the main flow:

V =

∫ ∞

0

v dz =
ūd

2
, (8.19)
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which is proportional to the interior velocity and the Ekmandepth.

8.4 Generalization to non-uniform currents

Let us now consider a more complex interior flow, namely, a spatially nonuniform flow that
is varying on a scale sufficiently large to be in geostrophic equilibrium (low Rossby number,
as in Section7.1). Thus,

− f v̄ = − 1

ρ0

∂p̄

∂x
, f ū = − 1

ρ0

∂p̄

∂y
,

where the pressurēp(x, y, t) is arbitrary. For a constant Coriolis parameter, this flow isnon-
divergent (∂ū/∂x+ ∂v̄/∂y = 0). The boundary-layer equations are now

− f(v − v̄) = νE
∂2u

∂z2
(8.20a)

f(u− ū) = νE
∂2v

∂z2
, (8.20b)

and the solution that satisfies the boundary conditions aloft (u → ū andv → v̄ for z → ∞)
is

u = ū + e−z/d
(
A cos

z

d
+ B sin

z

d

)
(8.21)

v = v̄ + e−z/d
(
B cos

z

d
− A sin

z

d

)
. (8.22)

Here, the “constants” of integrationA andB are independent ofz but, in general, dependent
onx andy throughū andv̄. Imposingu = v = 0 along the bottom (z = 0) sets their values,
and the solution is:

u = ū
(
1− e−z/d cos

z

d

)
− v̄ e−z/d sin

z

d
(8.23a)

v = ū e−z/d sin
z

d
+ v̄

(
1− e−z/d cos

z

d

)
. (8.23b)

The transport attributed to the boundary-layer structure has components given by

U =

∫ ∞

0

(u − ū) dz = − d

2
(ū+ v̄) (8.24a)

V =

∫ ∞

0

(v − v̄) dz =
d

2
(ū − v̄) . (8.24b)
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Figure 8-5 Divergence in the bottom Ekman layer and compensating downwelling in the interior.
Such a situation arises in the presence of an anticyclonic gyre in the interior, as depicted by the large
horizontal arrows. Similarly, interior cyclonic motion causes convergence in the Ekman layer and
upwelling in the interior.

Since this transport is not necessarily parallel to the interior flow, it is likely to have a non-zero
divergence. Indeed,

∂U
∂x

+
∂V
∂y

=

∫ ∞

0

(
∂u

∂x
+

∂v

∂y

)
dz = − d

2

(
∂v̄

∂x
− ∂ū

∂y

)

= − d

2ρ0f
∇2p̄. (8.25)

The flow in the boundary layer converges or diverges if the interior flow has a relative
vorticity. The situation is depicted in Figure8-5. The question is: From where does the fluid
come, or where does it go, to meet this convergence or divergence? Because of the presence
of a solid bottom, the only possibility is that it be suppliedfrom the interior by means of a
vertical velocity. But, remember (Section7.1) that geostrophic flows must be characterized
by

∂w̄

∂z
= 0, (8.26)

that is, the vertical velocity must occur throughout the depth of the fluid. Of course, since
the divergence of the flow in the Ekman layer is proportional to the Ekman depth,d, which is
very small, this vertical velocity is weak.

The vertical velocity in the interior, calledEkman pumping, can be evaluated by a vertical
integration of the continuity equation (4.21d), usingw(z = 0) = 0 andw(z →∞) = w̄:

w̄ = −
∫ ∞

0

(
∂u

∂x
+

∂v

∂y

)
dz =

d

2

(
∂v̄

∂x
− ∂ū

∂y

)

=
d

2ρ0f
∇2p̄ =

1

ρ0

√
νE
2f3
∇2p̄. (8.27)
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So, the greater the vorticity of the mean flow, the greater theupwelling/downwelling. Also,
the effect increases toward the equator (decreasingf = 2Ω sinϕ and increasingd). The di-
rection of the vertical velocity is upward in a cyclonic flow (counterclockwise in the Northern
Hemisphere) and downward in an anticyclonic flow (clockwisein the Northern Hemisphere).

In the Southern Hemisphere, wheref < 0, the Ekman layer thicknessdmust be redefined
with the absolute value off : d =

√
2νE/|f |, but the previous rule remains: the vertical

velocity is upward in a cyclonic flow and downward in an anticyclonic flow. The difference
is that cyclonic flow is clockwise and anticyclonic flow is counterclockwise.

8.5 The Ekman layer over uneven terrain

It is noteworthy to explore how an irregular topography may affect the structure of the Ekman
layer and, in particular, the magnitude of the vertical velocity in the interior. For this, consider
a horizontal geostrophic interior flow (ū, v̄), not necessarily spatially uniform, over an uneven
terrain of elevationz = b(x, y) above a horizontal reference level. To be faithful to our
restriction (Section4.3) to geophysical flows much wider than they are thick, we shallassume
that the bottom slope (∂b/∂x, ∂b/∂y) is everywhere small (� 1). This is hardly a restriction
in most atmospheric and oceanic situations.

Our governing equations are again (8.20), coupled to the continuity equation (4.21d), but
the boundary conditions are now

Bottom(z = b) : u = 0, v = 0, w = 0, (8.28)

Toward the interior(z � d) : u = ū, v = v̄. (8.29)

The solution is the previous solution (8.23) with z replaced byz − b:

u = ū − e(b−z)/d
(
ū cos

z − b
d

+ v̄ sin
z − b
d

)
(8.30a)

v = v̄ + e(b−z)/d
(
ū sin

z − b
d
− v̄ cos

z − b
d

)
. (8.30b)

We note that the vertical thickness of the boundary layer is still measured byd =
√

2νE/f .
However, the boundary layer is now oblique, and its true thickness, measured perpendicularly
to the bottom, is slightly reduced by the cosine of the small bottom slope.

The vertical velocity is then determined from the continuity equation:
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∂w

∂z
= − ∂u

∂x
− ∂v

∂y

= e(b−z)/d
{(

∂v̄

∂x
− ∂ū

∂y

)
sin

z − b
d

+
1

d

∂b

∂x

[
(ū− v̄) cos

z − b
d

+ (ū+ v̄) sin
z − b
d

]

+
1

d

∂b

∂y

[
(ū+ v̄) cos

z − b
d
− (ū− v̄) sin

z − b
d

]}
,

where use has been made of the fact that the interior geostrophic flow has no divergence
(∂ū/∂x + ∂v̄/∂y = 0). A vertical integration from the bottom (z = b), where the vertical
velocity vanishes (w = 0 becauseu andv are also zero there) into the interior (z → +∞)
where the vertical velocity assumes a vertically uniform value (w = w̄), yields

w̄ =

(
ū
∂b

∂x
+ v̄

∂b

∂y

)
+

d

2

(
∂v̄

∂x
− ∂ū

∂y

)
. (8.31)

The interior vertical velocity thus consists of two parts: acomponent that ensures no normal
flow to the bottom [see (7.10)] and an Ekman-pumping contribution, as if the bottom were
horizontally flat [see (8.27)].

The vanishing of the flow component perpendicular to the bottom must be met by the
inviscid dynamics of the interior, giving rise to the first contribution tow̄. The role of the
boundary layer is to bring the tangential velocity to zero atthe bottom. This explains the
second contribution tōw. Note that the Ekman pumping is not affected by the bottom slope.

The preceding solution can also be applied to the lower portion of the atmospheric bound-
ary layer. This was first done by Akerblom (1908), and matching between the logarithmic
layer close to the ground (Section8.1.1) with the Ekman layer further aloft was performed
by Van Dyke (1975). Oftentimes, however, the lower atmosphere is in a stable (stratified)
or unstable (convecting) state, and the neutral state during which Ekman dynamics prevail is
more the exception than the rule.

8.6 The surface Ekman layer

An Ekman layer occurs not only along bottom surfaces but wherever there is a horizontal
frictional stress. This is the case, for example, along the ocean surface, where waters are
subject to a wind stress. In fact, this is precisely the situation first examined by Vagn Walfrid
Ekman3. Fridtjof Nansen4 had noticed during his cruises to northern latitudes that icebergs
drift not downwind but systematically at some angle to the right of the wind. Ekman, his
student at the time, reasoned that the cause of this bias was the earth’s rotation and subse-
quently developed the mathematical representation that now bears his name. The solution

3See biography at the end of this chapter.
4Fridtjof Nansen (1861–1930), Norwegian oceanographer famous for his Arctic expeditions and Nobel Peace

Prize laureate (1922).



8.6. SURFACE EKMAN LAYER 229

was originally published in his 1902 doctoral thesis and again, in a more complete article,
three years later (Ekman, 1905). In a subsequent article (Ekman, 1906), he mentioned the
relevance of his theory to the lower atmosphere, where the wind approaches a geostrophic
value with increasing height.

z

z = 0

Ekman
layer

Interior (u, v) = (ū, v̄)

d
(u, v)

Sea surface
Wind stress

Figure 8-6 The surface Ekman layer generated by a wind stress on the ocean.

Let us consider the situation depicted in Figure8-6, where an ocean region with interior
flow field (ū, v̄) is subjected to a wind stress (τx, τy) along its surface. Again, assuming
steady conditions, a homogeneous fluid, and a geostrophic interior, we obtain the following
equations and boundary conditions for the flow field (u, v) in the surface Ekman layer:

− f (v − v̄) = νE
∂2u

∂z2
(8.32a)

+ f (u− ū) = νE
∂2v

∂z2
(8.32b)

Surface(z = 0) : ρ0νE
∂u

∂z
= τx, ρ0νE

∂v

∂z
= τy (8.32c)

Toward interior(z → −∞) : u = ū, v = v̄. (8.32d)
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Figure 8-7 Structure of the surface Ekman layer. The figure is drawn for the Northern Hemisphere
(f > 0), and the deflection is to the right of the surface stress. Thereverse holds for the Southern
Hemisphere.

The solution to this problem is

u = ū +

√
2

ρ0fd
ez/d

[
τx cos

(z
d
− π

4

)
− τy sin

(z
d
− π

4

)]
(8.33a)

v = v̄ +

√
2

ρ0fd
ez/d

[
τx sin

(z
d
− π

4

)
+ τy cos

(z
d
− π

4

)]
, (8.33b)

in which we note that the departure from the interior flow (ū, v̄) is exclusively due to the wind
stress. In other words, it does not depend on the interior flow. Moreover, this wind-driven
flow component is inversely proportional to the Ekman-layerdepth,d, and may be very large.
Physically, if the fluid is almost inviscid (smallν, hence shortd), a moderate surface stress
can generate large drift velocities.

The wind-driven horizontal transport in the surface Ekman layer has components given
by

U =

∫ 0

−∞

(u− ū) dz =
1

ρ0f
τy (8.34a)

V =

∫ 0

−∞

(v − v̄) dz =
−1

ρ0f
τx. (8.34b)

Surprisingly, it is oriented perpendicular to the wind stress (Figure8-7), to the right in the
Northern Hemisphere and to the left in the Southern Hemisphere. This fact explains why
icebergs, which float mostly underwater, systematically drift to the right of the wind in the
North Atlantic, as observed by Fridtjof Nansen.
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Figure 8-8 Ekman pumping in an ocean subject to sheared winds (case of Northern Hemisphere).

As for the bottom Ekman layer, let us determine the divergence of the flow, integrated
over the boundary layer:

∫ 0

−∞

(
∂u

∂x
+

∂v

∂y

)
dz =

1

ρ0

[
∂

∂x

(
τy

f

)
− ∂

∂y

(
τx

f

)]
. (8.35)

At constantf , the contribution is entirely due to the wind stress since the interior geostrophic
flow is nondivergent. It is proportional to the wind-stress curl and, most importantly, it is
independent of the value of the viscosity. It can be shown furthermore that this property
continues to hold even when the turbulent eddy viscosity varies spatially (see Analytical
Problem 8-7).

If the wind stress has a non-zero curl, the divergence of the Ekman transport must be
provided by a vertical velocity throughout the interior. A vertical integration of the continuity
equation, (4.21d), across the Ekman layer withw(z = 0) andw(z → −∞) = w̄ yields

w̄ = +

∫ 0

−∞

(
∂u

∂x
+

∂v

∂y

)
dz

=
1

ρ0

[
∂

∂x

(
τy

f

)
− ∂

∂y

(
τx

f

)]
= wEk.

(8.36)

This vertical velocity is calledEkman pumping. In the Northern Hemisphere (f > 0), a
clockwise wind pattern (negative curl) generates a downwelling (Figure8-8a), whereas a
counterclockwise wind pattern causes upwelling (Figure8-8b). The directions are opposite
in the Southern Hemisphere. Ekman pumping is a very effective mechanism by which winds
drive subsurface ocean currents (Pedlosky, 1996; see also Chapter20).

8.7 The Ekman layer in real geophysical flows

The preceding models of bottom and surface Ekman layers are highly idealized, and we
do not expect their solutions to match actual atmospheric and oceanic observations closely
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Figure 8-9 Comparison between observed currents below a drifting ice floe at 84.3◦N and theoretical
predictions based on an eddy viscosityνE = 2.4 × 10−3 m2/s. (Reprinted fromDeep-Sea Research,
13, Kenneth Hunkins, Ekman drift currents in the Arctic Ocean, p. 614, ©1966, with kind permission
from Pergamon Press Ltd, Headington Hill Hall, Oxford 0X3 0BW, UK)

(except in some cases; see Figure8-9). Two factors, among others, account for substantial
differences: turbulence and stratification.

It was noted at the end of Chapter4 that geophysical flows have large Reynolds numbers
and are therefore in a state of turbulence. Replacing the molecular viscosity of the fluid by a
much greater eddy viscosity, as performed in Section4.2, is a first attempt to recognize the
enhanced transfer of momentum in a turbulent flow. However, in a shear flow such as in an
Ekman layer, the turbulence is not homogeneous, being more vigorous where the shear is
greater and also partially suppressed in the proximity of the boundary where the size of tur-
bulent eddies is restricted. In the absence of an exact theory of turbulence, several schemes
have been proposed. At a minimum, the eddy viscosity should be made to vary in the vertical
(Madsen, 1977) and should be a function of the bottom stress value (Cushman-Roisin and
Malačič, 1997). A number of schemes have been proposed (see Section4.2), with varying
degrees of success. Despite numerous disagreements among models and with field observa-
tions, two results nonetheless stand out as quite general. The first is that the angle between
the near-boundary velocity and that in the interior or that of the surface stress (depending on
the type of Ekman layer) is always substantially less than the theoretical value of 45◦ and is
found to range between 5◦ and 20◦ (Figure8-10). See also Staceyet al. (1986).

The second result is a formula for the vertical scale of the Ekman-layer thickness:

d ' 0.4
u∗
f
, (8.37)
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Figure 8-10 Wind vectors minus geostrophic wind as a function of height (in meters) in the maritime
friction layer near the Scilly Isles.Top diagram: Case of warm air over cold water.Bottom diagram:
Case of cold air over warm water. (Adapted from Roll, 1965)

whereu∗ is the turbulent friction velocity defined in (8.1). The numerical factor is derived
from observations (Garratt, 1992, Appendix 3). Whereas 0.4is the most commonly accepted
value, there is evidence that certain oceanic conditions call for a somewhat smaller value
(Mofjeld and Lavelle, 1984; Stigebrandt, 1985).

Takingu∗ as the turbulent velocity and the (unknown) Ekman-layer depth scale,d, as the
size of the largest turbulent eddies, we write

νE ∼ u∗d. (8.38)

Then, using rule8.12to determine the boundary-layer thickness, we obtain

1 ∼ νE
fd2

∼ u∗
fd

,

which immediately leads to (8.37).
The other major element missing from the Ekman-layer formulations of the previous sec-

tions is the presence of vertical density stratification. Although the effects of stratification
are not discussed in detail until Chapter11, it can be anticipated here that the gradual change
of density with height (lighter fluid above heavier fluid) hinders vertical movements, thereby
reducing vertical mixing of momentum by turbulence; it alsoallows the motions at separate
levels to act less coherently and to generate internal gravity waves. As a consequence, strat-
ification reduces the thickness of the Ekman layer and increases the veering of the velocity
vector with height (Garratt, 1992, Section 6.2). For a studyof the oceanic wind-driven Ekman
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layer in the presence of density stratification, the reader is referred to Price and Sundermeyer
(1999).

The surface atmospheric layer during daytime over land and above warm currents at sea
is frequently in a state of convection because of heating from below. In such situations,
the Ekman dynamics give way to convective motions, and a controlling factor, besides the
geostrophic wind aloft, is the intensity of the surface heatflux. An elementary model is
presented later (Section14.7). Because Ekman dynamics then play a secondary role, the
layer is simply called theatmospheric boundary layer. The interested reader is referred to
books on the subject by Stull (1988), Sorbjan (1989), Zilitinkevich (1991) or Garratt (1992).

8.8 Numerical simulation of shallow flows

The theory presented up to now largely relies on the assumption of a constant turbulent vis-
cosity. For real flows, however, turbulence is rarely uniform, and eddy-diffusion profiles must
be considered. Such complexity renders the analytical treatment tedious or even impossible,
and numerical methods need to be employed.
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νE(z) Figure 8-11 A vertically confined fluid
flow, with bottom and top Ekman lay-
ers bracketing a non-uniform velocity
profile. The vertical structure can be
calculated by a one-dimensional model
spanning the entire fluid column even-
though the turbulent viscosityνE(z)
may vary in the vertical.

To illustrate the approach, we reinstate non-stationary terms and assume a vertically vary-
ing eddy-viscosity (Figure8-11) but retain the hydrostatic approximation (8.13c) and con-
tinue to consider a fluid of homogeneous density. The governing equations foru andv are

∂u

∂t
− fv = − 1

ρ0

∂p

∂x
+

∂

∂z

(
νE(z)

∂u

∂z

)
(8.39a)

∂v

∂t
+ fu = − 1

ρ0

∂p

∂y
+

∂

∂z

(
νE(z)

∂v

∂z

)
(8.39b)

0 = − 1

ρ0

∂p

∂z
. (8.39c)

From the last equation it is clear that the horizontal pressure gradient is independent ofz.
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A standard finite-volume approach could be applied to the equations, but since we already
used the approach several times, its implementation is leftas an exercise (see Numerical Prob-
lem 8-5). Instead, we introduce here another numerical method, which consists in expanding
the solution in terms of preselected functionsφj , calledbasis functions. A finite set ofN
basis functions is used to construct atrial solution:

ũ(z, t) = a1(t)φ1(z) + a2(t)φ2(z) + ...+ aN(t)φN (z)

=

N∑

j=1

aj(t)φj(z) (8.40a)

ṽ(z, t) = b1(t)φ1(z) + b2(t)φ2(z) + ...+ bN (t)φN (z)

=
N∑

j=1

bj(t)φj(z). (8.40b)

The problem then reduces to finding a way to calculate the unknown coefficientsaj(t) and
bj(t) for j = 1 toN such that the trial solution is as close as possible to the exact solution.
In other words, we request the residualru obtained by substituting the trial solution into the
differentialx-momentum equation

∂ũ

∂t
− f ṽ +

1

ρ0

∂p

∂x
− ∂

∂z

(
νE

∂ũ

∂z

)
= ru (8.41)

be as small as possible, and similarly with the residualrv of they-momentum equation. The
residualsru andrv quantify the truncation error of the trial solution, and theobjective is to
minimize them.

Collocation methodsrequire that the residuals be zero at a finite number of locationszk
across the domain. If each of the two series containsN terms, then taking alsoN points
where the two residualru andrv are forced to vanish provides2N constraints for the2N
unknownsaj andbj . With a little chance, these constraints will be necessary and sufficient to
determine the time evolution of the coefficientsaj(t) andbj(t). In the present case, the situ-
ation is certain because the equations are linear, and the temporal derivativesdaj(t)/dt and
dbj(t)/dt appear in linear differential equations, a relatively straightforward problem to be
solved numerically, though the matrices involved may have few zeroes. In some cases, how-
ever, the equations may be ill conditioned because of inadequate choices of the collocation
pointszk (e.g., Gottlieb and Orszag, 1977).

An alternative to requiring zero residuals at selected points is to minimize a global mea-
sure of the error. For example, we can multiply the equationsby N different weighting
functionswi(z), and integrate over the domain before requiring that the weighted-average
error vanish:

∫ h

0

wiru dz = 0, (8.42)

and similarly for the companion equation. Note that we require that (8.42) holds only for a
finite setof functionswi, i = 1, ..., N . Had we asked instead that the integral be zero for
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anyfunctionw, the trial solution would be the exact solution of the equation sinceru andrv
would then be zero everywhere, but this not possible becausewe have only2N and not an
infinity of degrees of freedom at our disposal. The weighted residuals (8.42) must satisfy

∫ h

0

wi

[
∂ũ

∂t
− f ṽ +

1

ρ0

∂p

∂x
− ∂

∂z

(
νE

∂ũ

∂z

)]
dz = 0, (8.43)

for every value of the indexi, which leads to

N∑
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∫ h

0

(
νE
dwi
dz

dφj
dz

dz

)
aj = 0, (8.44)

and similarly for they-momentum equation, with thea’s replaced byb’s, b’s by−a’s, x by
y, andu by v. Note that use was made of the fact that the pressure gradientis independent of
z. The top and bottom stresses (first and second terms of the last line) can either be replaced
by their value, if known (such as a wind stress on the sea surface), or be expanded in terms
of the basis functions, if unknown.

As already mentioned, if Equation (8.44) holds for any weighting function, an exact solu-
tion is obtained, but if it only holds for a finite series of weighting functions, an approximate
solution is found for which the residual is not zero everywhere but is orthogonal to every
weighting function5. If N different weights are used and the weighted residuals of each of
the 2 equations are required to be zero, we obtain2N ordinary differential equations for the
2N unknownsaj andbj . To write the sets of equations in compact form, we define square
matricesM andK and column vectors by

Mij =

∫ h

0

wiφj dz, Kij =

∫ h

0

νE
dwi
dz

dφj
dz

dz, si =

∫ h

0

wi dz, (8.45)

group coefficientsaj andbj into column vectorsa andb, and functionswi(z) into column
vectorw(z). The weighted-residual equations can then be written in matrix notation as

M
da

dt
= +f Mb − Ka − 1

ρ0

∂p

∂x
s +

τx

ρ0
w(h) − τxb

ρ0
w(0), (8.46a)

M
db

dt
= −f Ma − Kb − 1

ρ0

∂p

∂y
s +

τy

ρ0
w(h) − τyb

ρ0
w(0). (8.46b)

This set of ordinary differential equations can be solved byany of the time-integration
methods of Chapter2 as long as the temporal evolution of the surface stress, bottom stress
and pressure gradient is known.

5Orthogonality of two functions is understood here as the property that the product of the two functions integrated
over the domain is zero. In the present case, the residual is orthogonal to the weighting functions.
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There remains to provide an initial condition on the coefficientsaj andbj , which must
be deduced from the initial condition on the flow profile (see Numerical Exercise 8-1). After
solving (8.46), the known values of the coefficientsaj(t) andbj(t) permit the reconstruction
of the solution by means of the expansion (8.40). This method is called theweighted-residual
method.

A word of caution is necessary with respect to boundary conditions. Top and bottom
conditions on the shear stress are automatically taken intoaccount, since the stress appears
explicitely in the discrete formulation. A Neumann boundary condition, called anatural
condition, is thus easily applied. No special demand is placed on the basis functions, and
weights are simply required to be different from zero at boundaries where a stress condition
is applied. There are situations, however, when the stress on the boundary is not known. This
is generally the case at a solid boundary along which a no-slip boundary conditionu = v = 0
is enforced. The integration method does not make the boundary values ofu andv appear, and
the basis functions must be chosen carefully to be compatible with the boundary condition.
In the case of a no-slip condition, it is required thatφj = 0 at the concerned boundary, so that
the velocity is made to vanish there. This is called anessential boundary condition.

Up to now, both basis functionsφj and weightswi were arbitrary, except for the afore-
mentioned boundary-related constraints, and smart choices can lead to effective methods.
TheGalerkin methodmakes the rather natural choice of taking the weights equal to the basis
functions used in the expansion. The error is then orthogonal to the basis functions. The
Galerkin method can also be used with a well chosen set of functionsφj so that an increasing
number of functions would eventually lead to the exact solution.

The basis functionsφj do not need to span the entire domain but may be chosen to be zero
everywhere, except in finite subdomains. The solution can then be interpreted as the superpo-
sition of elementary local solutions. The numerical domainis then divided into subdomains
(linear segments in 1D, triangles in 2D, (calledfinite elements)), on each of which only a few
basis functions differ from zero. This leads to reduced calculations of the matricesM andK.
The finite-element method is one of the most advanced and flexible methods available for the
solution of partial differential equations but is also one of the most difficult to implement cor-
rectly (see for example Hanertet al., 2003 for the implementation of a 2D ocean model). The
interested reader is referred to the specialized literature: Buchanan (1995) and Zienkiewicz
and Taylor (2000) for an introduction to general finite-element methods, and Zienkiewiczet
al. (2005) for the application of finite elements to fluid dynamics.

For the Galerkin method, whether in its finite-element form or using global basis func-
tions, the matricesM andK are symmetric, with components6:

Mij =

∫ h

0

φiφj dz, Kij =

∫ h

0

νE
dφi
dz

dφj
dz

dz, si =

∫ h

0

φi dz. (8.47)

For the bottom boundary conditionu = v = 0, one takeswj(0) = φj(0) = 0, and
Equations (8.46) are unchanged, except for the fact that the term including the bottom stress
disappears. The method involves matrices coupling all unknownsaj and bj , demanding
a preliminary matrix inversion (N3 operations) and then matrix-vector multiplications (N2

operations) at every time step.

6In finite-element jargon,M andK are called, respectively, the mass matrix and stiffness matrix .
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For the 1D Ekman layer, the problem can be further simplified (e.g., Heaps, 1987; Davies,
1987) by choosing special basis functions that are designedto obey

∂

∂z

(
νE(z)

∂φj
∂z

)
= − %j φj(z) (8.48a)

φi(0) = 0,
∂φj
∂z

∣∣∣∣
z=h

= 0. (8.48b)

In other words,φj are chosen as the eigenfunctions of the diffusion operator (8.48a), with %j
as the eigenvalues. Multiplication of (8.48a) by φi and subsequent integration by parts in the
left-hand side and use of the boundary conditions (8.48b) yield:

∫ h

0

νE
dφi
dz

dφj
dz

dz = %i

∫ h

0

φiφj dz. (8.49)

Note that fori = j this relationship proves the eigenvalues to be positive forpositive diffusion
coefficients, since all other terms involved are quadratic and thus positive. Switching the
indicesi andj, we also have

∫ h

0

νE
dφj
dz

dφi
dz

dz = %j

∫ h

0

φjφi dz, (8.50)

and subtracting this equation from the preceding one, we obtain

(%i − %j)
∫ h

0

φiφj dz = 0, (8.51)

showing that for non-equal eigenvalues, the basis functionsφi andφj are orthogonal in the
sense that

∫ h

0

φi(z)φj(z) dz = 0 if i 6= j. (8.52)

Since the basis functions are defined within an arbitrary multiplicative factor, we may
normalize them such that

∫ h

0

φi(z)φj(z) dz = δij =

{
0 if i 6= j

1 if i = j
(8.53)

When eigenfunctions are used as basis functions in the Galerkin method, a so-calledspec-
tral methodis obtained. It is a very elegant method because the equations for the coefficients
are greatly reduced. The orthonormality (8.53) of the eigenfunctions yieldsM = I, the iden-
tity matrix, and (8.49) in matrix form reduces toK = %M = %, where% is a diagonal matrix
formed with the eigenvalues%j . Finally, the equations for componentsj of a andb become:

daj
dt

= +f bj − %j aj −
1

ρ0

∂p

∂x
sj +

τx

ρ0
φj(h), (8.54a)

dbj
dt

= −f aj − %j bj −
1

ρ0

∂p

∂y
sj +

τy

ρ0
φj(h). (8.54b)
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Note that, since the eigenvalues are positive, the second term on the right corresponds to a
damping of the amplitudesaj andbj , consistent with physical damping by diffusion.

Because of the decoupling7 achieved by a set of orthogonal basis functions, we no longer
solve a system of2N equations butN systems of2 equations. This leads to a significant re-
duction in the number of operations to be performed: The standard Galerkin method requires,
at every time step, one inversion of a matrix of size2N × 2N and a matrix multiplication
of cost4N2, while the spectral method demands solvingN times a2 × 2 system, with cost
proportional toN . For a large number of time steps, the computational burden is roughly
reduced by a factorN . With typically 102 − −103 basis functions retained, the savings are
very significant, and the use of a spectral method generates important gains in computing
time. It is well worth the preliminary search of eigenfunctions.

In principle, for well behavedνE(z), there exist an infinite but countable number of eigen-
values%j , and the full set of eigenfunctionsφj allows the decomposition of any function. An
approximate solution can thus be obtained by retaining onlya finite number of eigenfunc-
tions, and the questions that naturally come to mind are how many functions should be re-
tained and which ones. To know which to retain, we can look at the case of constant viscosity
νE . Obviously the solution to the eigenproblem is, forj = 1, 2, ...:

φj =

√
2

h
sin
[
(2j − 1)

π

2

z

h

]

%j = (2j − 1)2
π2ν

4h2

sj =
2
√

2h

π(2j − 1)

φj(h) = (−1)(j+1)

√
2

h

in which the scaling factor
√

(2/h) was introduced to satisfy normalization requirement
(8.53). The namespectral methodis now readily understood in view of the type of eigen-
functions used in the expansion. The sine functions are indeed nothing else than those used in
Fourier series to decompose periodic functions into different wavelengths. The coefficients
aj andbj are then directly interpretable in terms of modal amplitudes or, in other words, the
energy associated with the corresponding Fourier modes. The sets ofaj andbj then provide
an insight into the spectrum of the solution.

We further observe that, the larger the eigenvalue%j , the more rapidly the function oscil-
lates in space, allowing the capture of finer structures. Thus, a higher resolution is achieved
by retaining more eigenfunctions in the expansion, just as adding grid points in finite differ-
encing is done to obtain higher resolution. The numberN of functions being retained is a
matter of scales to be resolved. For a finite-difference representation withN degrees of free-
dom, the domain is covered with a uniform grid with spacing∆z = h/N , and the shortest
scale that can be resolved has wavenumberkz = π/∆z (see Section1.12). In the spec-
tral method, the highest mode retained corresponds to wavenumberkz = Nπ/h, which is
identical to the one resolved in the finite-difference approach. Both methods are thus able to

7Only when equations are linear.
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Figure 8-12 Velocity profile forced
by a pressure gradient directed along
the y–axis above a no-slip bottom
and below a stress-free surface. The
geostrophic flow aloft has components
u = 0.1 andv = 0. Solid lines repre-
sent the exact solution, whereas dash-
dotted lines depict the numerical solu-
tion obtained by the spectral method
with only the first five modes. Note the
excellent agreement. Oscillations ap-
pearing in the numerical solution give
a hint of the sine functions used in ex-
panding the solution.

represent the same spectrum of wavenumbers with an identical number of unknowns. Also,
the cost of both methods is directly proportional to the number of unknowns. So, where is
the advantage of using a spectral method?

Except for the straightforward interpretation of the coefficientsaj and bj in terms of
Fourier components, the essential advantage of spectral methods resides in their fast conver-
gence for sufficiently gentle solutions and boundary conditions (e.g., Canutoet al., 1988).
To illustrate this claim, we calculate the stationary solution of a geostrophic current without
surface stress by droppingdaj/dt anddbj/dt from the matrix equations and solve fora and
b before recombining the solution. Even when only 5 basis functions are used (i.e., equiva-
lent to using 5 grid points), the behavior of the solution is well captured (Figure8-12). Since
the equations for differentaj coeffcients are decoupled, increasing the value ofN does not
modify the values of the previously calculated coefficientsand simply adds more terms, each
one bringing additional resolution. The amplitude of the new terms is directly proportional
to the value of the coefficientsaj andbj, and their rapid decrease as a function of indexj
(Figure8-13– note the logarithmic scales) explains why fast convergence can be expected.

In order not to miss the most important parts of the solution,it is imperative to use eigen-
functions in their order, that is, without skipping any in the series, up to the preselected
numberN . In the limit of largeN , it can be shown that convergence for a relatively smooth
solution is faster than with any finite difference method of any order (e.g., Gottlieb and Orszag
1977). Therefore, the spectral method has a distinctive advantage and is often used in cases
when nearly exact numerical solutions are sought.

An alternative to the Galerkin spectral approach is to forcethe error to vanish at particular
grid points, leading to so-calledpseudospectral methods(e.g., Fornberg, 1998). As for all
collocation methods, these do not require evaluation of integrals over the domain.

In concluding the presentation of the function-expansion approach, we insist on the fun-
damental aspect that the numerical approximation is very different from the point-value sam-
pling used in finite-difference methods. In space, the basisfunctionsφj are continuous and
can therefore be differentiated or manipulated mathematically without approximation. The
numerical error arises only due to the fact that a finite number of basis functions are used to
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Figure 8-13 The subsequent values of
coefficientsaj (scaled by an arbitrary
coefficient) obtained with the spectral
method applied to the problem of Fig-
ure 8-12. Scales are logarithmic, show-
ing the rapid decrease of amplitudes
with increasing number of modes in the
expansion. Convergence toward the ex-
act solution is fast.

represent the solution.

Analytical Problems

8-1. It is observed that fragments of tea leaves at the bottom of a stirred tea cup conglomerate
toward the center. Explain this phenomenon with Ekman-layer dynamics. Also explain
why the tea leaves go to the center irrespectively of the direction of stirring (clockwise
or counterclockwise).

8-2. Assume that the atmospheric Ekman layer over the earth’s surface at latitude 45◦N can
be modeled with an eddy viscosityνE = 10 m2/s. If the geostrophic velocity above the
layer is 10 m/s and uniform, what is the vertically integrated flow across the isobars
(pressure contours)? Is there any vertical velocity?

8-3. Meteorological observations above New York (41◦N) reveal a neutral atmospheric bound-
ary layer (no convection and no stratification) and a westerly geostrophic wind of 12
m/s at 1000 m above street level. Under neutral conditions, Ekman dynamics apply.
Using an eddy viscosity of 10 m2/s, determine the wind speed and direction atop the
Empire State Building, which stands 381 m tall.

8-4. A southerly wind blows at 9 m/s over Taipei (25◦N). Assuming neutral atmospheric
conditions so that Ekman dynamics apply and taking the eddy viscosity equal to 10
m2/s, determine the velocity profile from street level to the top of the 509 m tall Taipei
Financial Center skyscraper. The wind force per unit heightand in the direction of the
wind can be taken asF = 0.93ρLV 2, whereρ = 1.20 kg/m3 is the standard air density,
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L = 25 m is the building width, andV (z) = (u2 + v2)1/2 is the wind speed at the
height considered. With this, determine the total wind force on the southern facade of
the Taipei Financial Center.

8-5. Show that although̄w may not be zero in the presence of horizontal gradients, the verti-
cal advection termsw∂u/∂z andw∂v/∂z of the momentum equations are still negli-
gible, even if the short distanced is taken as the vertical length scale.

8-6. You are working for a company that plans to deposit high-level radioactive wastes on
the bottom of the ocean, at a depth of 3000 m. This site (latitude: 33◦N) is known to be
at the center of a permanent counterclockwise vortex. Locally, the vortex flow can be
assimilated to a solid-body rotation with angular speed equal to 10−5 s−1. Assuming a
homogeneous ocean and a steady, geostrophic flow, estimate the upwelling rate at the
vortex center. How many years will it take for the radioactive wastes to arrive at the
surface? Takef = 8× 10−5 s−1 andν = 10−2 m2/s.

8-7. Derive Equation (8.36) more simply not by starting from solution (8.33) as done in the
text but by vertical integration of the momentum equations (8.32). Consider also the
case of non-uniform eddy viscosity, in which caseνE must be kept inside the vertical
derivative on the right-hand side of the equations, as in theoriginal governing equations
(4.21a) and (4.21b).

8-8. Between 15◦N and 45◦N, the winds over the North Pacific Ocean consist mostly of the
easterly trades (15◦N to 30◦N) and the mid-latitude westerlies (30◦N to 45◦N). An
adequate representation is

τx = τ0 sin
(πy

2L

)
, τy = 0 for − L ≤ y ≤ L,

with τ0 = 0.15 N/m2 (maximum wind stress) andL = 1670 km. Takingρ0 = 1028
kg/m3 and the value of the Coriolis parameter corresponding to 30◦N, calculate the
Ekman pumping. Which way is it directed? Calculate the vertical volume flux over the
entire 15◦–45◦N strip of the North Pacific (width = 8700 km). Express your answer in
sverdrup units (1 sverdrup = 1 Sv = 106 m3/s).

8-9. The variation of the Coriolis parameter with latitude can beapproximated asf = f0 +
β0y, wherey is the northward coordinate (beta-plane approximation, see Section9.4).
Using this, show that the vertical velocity below the surface Ekman layer of the ocean
is given by

w̄(z) =
1

ρ0

[
∂

∂x

(
τy

f

)
− ∂

∂y

(
τx

f

)]
− β0

f

∫ 0

z

v̄ dz, (8.55)

whereτx andτy are the zonal and meridional wind-stress components, respectively,
andv̄ is the meridional velocity in the geostrophic interior below the Ekman layer.

8-10. Determine the vertical distribution of horizontal velocity in a 4m deep lagoon subject
to a northerly wind stress of 0.2 N/m2. The density of the brackish water in the lagoon
is 1020 kg/m3. Takef = 10−4 s−1 andνE = 10−2 m2/s. In which direction is the net
transport in this brackish layer?
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8-11. Redo Problem 8-10 withf = 0 and compare the two solutions. What can you conclude
about the role of the Coriolis force in this case?

8-12. Find the stationary solution of (8.13a)–(8.13c) for constant viscosity, a uniform pres-
sure gradient in they–direction in a domain of finite depthh with no stress at the top
and no slip at the bottom. Study the behavior of the solution as h/d varies and com-
pare to the solution in the infinite domain. Then, derive the stationary solution without
pressure gradient but with a top stress in they–direction.

Numerical Exercises

8-1. How can we obtain initial conditions foraj andbj in the expansions (8.40) from an
initial condition on the physical variablesu = u0(z) andv = v0(z)? Hint: Investigate
a least-square approach and an approach in which the initialerror is forced to vanish in
the sense of (8.42). When do the two approaches lead to the same result?

8-2. Usespectralekman.m to calculate numerically the stationary solutions of Analyti-
cal Problem 8-12. Compare the exact and numerical solutionsfor h/d = 4 and assess
the convergence rate as a function of1/N , whereN is the number of eigenfunctions
retained in the trial solution. Compare the convergence rate of both cases (with and
without stress at the top) and comment.

8-3. Usespectralekman.m to explore how the solution changes as a function of the ratio
h/d and how the numberN of modes affects your resolution of the boundary layers.

8-4. Modify spectralekman.m to allow for time evolution, but maintaining constant
wind stress and pressure gradient. Use a trapezoidal methodfor time integration. Start
from rest and observe the temporal evolution. What do you observe?

8-5. Use a finite-volume approach with time splitting for the Coriolis terms and an explicit
Euler method to discretize diffusion in (8.39a) and (8.39b). Verify your program in
the case of uniform eddy viscosity by comparing with the steady analytical solution.
Then use the viscosity profileνE(z) = Kz(1− z/h)u∗. In this case, can you find the
eigenfunctions of the diffusion operator and outline the Galerkin method?Hint: Look
for Legendre polynomials and their properties.

8-6. Assume that your vertical grid spacing in a finite-difference scheme is large compared
to the roughness lengthz0 and that your first point for velocity calculation is found at
the distance∆z/2 above the bottom. Use the logarithmic profile to deduce the bottom
stress as a function of the computed velocity at level∆z/2. Then use this expression in
the finite-volume approach of Numerical Exercise 8-5 to replace the no-slip condition
by a stress condition at the lowest level of the grid.

8-7. Numerical coffee cup?



Vagn Walfrid Ekman
1874 – 1954

Born in Sweden, Ekman spent his formative years under the tutelage of Vilhelm Bjerknes and
Fridtjof Nansen in Norway. One day, Nansen asked Bjerknes tolet one of his students make a
theoretical study of the influence of the earth’s rotation onwind-driven currents, on the basis
of Nansen’s observations during his polar expedition that ice drifts with ocean currents to the
right of the wind. Ekman was chosen and later presented a solution in his doctoral thesis of
1902.

As professor of mechanics and mathematical physics at the University of Lund in Swe-
den, Ekman became the most famous oceanographer of his generation. The distinguished
theoretician also proved to be a skilled experimentalist. He designed a current meter, which
bears his name and which has been used extensively. Ekman wasalso the one who explained
the phenomenon of dead water by a celebrated laboratory experiment (see Figure 1-3). (Photo
courtesy of Pierre Welander)
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Ludwig Prandtl
1875 – 1953

A German engineer, Ludwig Prandtl was attracted by fluid phenomena and their mathematical
representation. He became professor of mechanics at the University of Hannover in 1901,
where he established a world renowned institute for aerodynamics and hydrodynamics. It
was while working on wing theory in 1904 and studying friction drag in particular that he
developed the concept of boundary layers and the attending mathematical technique. His
central idea was to recognize that frictional effects are confined to a thin layer in the vicinity
of the boundary, allowing the modeler to treat rest of the flowas inviscid.

Prandtl also made noteworthy advances in the study of elasticity, supersonic flows and
turbulence, particularly shear turbulence in the vicinityof a boundary. A mixing length and a
dimensionless ratio are named after him.

It has been remarked that Prandtl’s keen perception of physical phenomena was balanced
by a limited mathematical ability and that this shortcomingprompted him to seek ways of
reducing the mathematical description of his objects of study. Thus perhaps, the boundary-
layer technique was an invention born out of necessity. (Photo courtesy of AIP Emilio Segrè
Visual Archives, Land́e Collection)
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Chapter 9

Barotropic Waves

(October 18, 2006)SUMMARY : The aim of this chapter is to describe an assortment of
waves that can be supported by an inviscid, homogeneous fluidin rotation and to analyze
numerical grid arrangements that facilitate the simulation of wave propagation, in particular
for the prediction of tides and storm surges.

9.1 Linear wave dynamics

Chiefly because linear equations are most amenable to methods of solution, it is wise to gain
insight into geophysical fluid dynamics by elucidating the possible linear processes and inves-
tigating their properties before exploring more intricate, nonlinear dynamics. The governing
equations of the previous section are essentially nonlinear; consequently, their linearization
can proceed only by imposing restrictions on the flows under consideration.

The Coriolis acceleration terms present in the momentum equations [(4.21a) and (4.21b)]
are, by nature, linear and need not be subjected to any approximation. This situation is
extremely fortunate because these are the central terms of geophysical fluid dynamics. In
contrast, the so-called advective terms (or convective terms) are quadratic and undesirable at
this moment. Hence, our considerations will be restricted to low-Rossby-number situations:

Ro =
U

ΩL
� 1. (9.1)

This is usually accomplished by restricting the attention to relatively weak flows (smallU ),
large scales (largeL), or, in the laboratory, fast rotation (largeΩ). The terms expressing the
local time rate of change of the velocity (∂u/∂t and∂v/∂t) are linear and are retained here
in order to permit the investigation of unsteady flows. Thus,the temporal Rossby number is
taken as

RoT =
1

ΩT
∼ 1. (9.2)
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Contrasting conditions (9.1) and (9.2), we conclude that we are about to consider slow flow
fields that evolve relatively fast. Aren’t we asking for the impossible? Not at all, for rapidly
moving disturbances do not necessarily require large velocities. In other words, information
may travel faster than material particles, and when this is the case, the flow takes the aspect
of a wave field. A typical example is the spreading of concentric ripples on the surface of a
pond after the throwing of a stone; energy radiates but thereis no appreciable water movement
across the pond. In keeping with the foregoing quantities, ascale for the wave speed can be
defined as the velocity of a signal covering the distanceL of the flow during the nominal
evolution timeT , and, by virtue of restrictions (9.1) and (9.2), it can be compared to the flow
velocity:

C =
L

T
∼ ΩL � U. (9.3)

Thus, our present objective is to consider wave phenomena.
To shed the best possible light on the mechanisms of the basicwave processes typical in

geophysical flows, we further restrict our attention to homogeneous and inviscid flows, for
which the shallow-water model (section7.3) is adequate. With all the preceding restrictions,
the horizontal momentum equations (7.12a) and (7.12b) reduce to

∂u

∂t
− fv = − g ∂η

∂x
(9.4a)

∂v

∂t
+ fu = − g ∂η

∂y
, (9.4b)

wheref is the Coriolis parameter,g the gravitational acceleration,u andv are the veloc-
ity components in thex– andy–directions, respectively, andη is the surface displacement
(equal toη = h − H , the total fluid depthh minus the mean fluid thicknessH). The inde-
pendent variables arex, y andt; the vertical coordinate is absent, for the flow is vertically
homogeneous (Section7.3).

In terms of surface height,η, the continuity equation (7.17) can be expanded in several
groups of terms:

∂η

∂t
+

(
u
∂η

∂x
+ v

∂η

∂y

)
+ H

(
∂u

∂x
+

∂v

∂y

)
+ η

(
∂u

∂x
+

∂v

∂y

)
= 0

if the mean depthH is constant (flat bottom). Introducing the scale∆H for the vertical
displacementη of the surface, we note that the four groups of terms in the preceding equation
are, sequentially, on the order of

∆H

T
, U

∆H

L
, H

U

L
, ∆H

U

L
.

According to (9.3), L/T is much larger thanU , and the second and fourth groups of terms
may be neglected compared with the first term, leaving us withthe linearized equation

∂η

∂t
+ H

(
∂u

∂x
+

∂v

∂y

)
= 0, (9.5)
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the balance of which requires∆H /T to be on the order ofUH/L or, again by virtue of (9.3),

∆H � H. (9.6)

We are thus restricted to waves of small amplitudes.
The system of equations (9.4a) through (9.5) governs the linear wave dynamics of invis-

cid, homogeneous fluids under rotation. For the sake of simple notation, we will perform the
mathematical derivations only for positive values of the Coriolis parameterf and then state
the conclusions for both positive and negative values off . The derivations with negative
values off are left as exercises. Before proceeding with the separate studies of geophysical
fluid waves, the student or reader not familiar with the concepts of phase speed, wavenumber
vector, dispersion relation, and group velocity is directed to Appendix B. A comprehensive
account of geophysical waves can be found in the book by LeBlond and Mysak (1978), with
additional considerations on nonlinearities in Pedlosky (2003).

9.2 The Kelvin wave

The Kelvin wave is a traveling disturbance that requires thesupport of a lateral boundary.
Therefore, it most often occurs in the ocean where it can travel along coastlines. For conve-
nience, we use oceanic terminology such as coast and offshore.

As a simple model, consider a semi-infinite layer of fluid bounded below by a horizontal
bottom, above by a free surface, and on one side (say, they–axis) by a vertical wall (Figure
9-1). Along this wall (x = 0, the coast), the normal velocity must vanish (u = 0), but the
absence of viscosity allows a non-zero tangential velocity.

As he recounted in his presentation to the Royal Society of Edinburgh in 1879, Sir
William Thomson (later to become Lord Kelvin) thought that the vanishing of the veloc-
ity component normal to the wall suggested the possibility that it be zero everywhere. So, let
us state, in anticipation,

u = 0 (9.7)

throughout the domain and investigate the consequences. Although Equation (9.4a) contains
a remaining derivative with respect tox, Equations (9.4b) and (9.5) contain only derivatives
with respect toy and time. Elimination of the surface elevation leads to a single equation for
the alongshore velocity:

∂2v

∂t2
= c2

∂2v

∂y2
, (9.8)

where

c =
√
gH (9.9)

is identified as the speed of surface gravity waves in nonrotating shallow waters.
The preceding equation governs the propagation of one-dimensional nondispersive waves

and possesses the general solution
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Figure 9-1 Upwelling and downwelling Kelvin waves. In the Northern Hemisphere, both waves travel
with the coast on their right, but the accompanying currentsdiffer. Geostrophic equilibrium in thex–
momentum equation leads to a velocityv that is maximum at the bulge and directed as the geostrophic
equilibrium requires. Because of the different geostrophic velocities at the bulge and further away,
convergence and divergence patterns create a lifting or lowering of the surface. The lifting and lowering
is such that the wave propagates towards negativey in either case (positive or negative bulge).

v = V1(x, y + ct) + V2(x, y − ct), (9.10)

which consists of two waves, one traveling toward decreasing y and the other in the opposite
direction. Returning to either (9.4b) or (9.5) whereu is set to zero, we easily determine the
surface displacement:

η = −
√
H

g
V1(x, y + ct) +

√
H

g
V2(x, y − ct). (9.11)

(Any additive constant can be eliminated by a proper redefinition of the mean depthH .) The
structure of the functionsV1 andV2 is then determined by the use of the remaining equation,
i.e., (9.4a):

∂V1

∂x
= − f√

gH
V1,

∂V2

∂x
= +

f√
gH

V2

or

V1 = V10(y + ct) e−x/R , V2 = V20(y − ct) e+x/R,
where the lengthR, defined as

R =

√
gH

f
=

c

f
, (9.12)

combines all three constants of the problem. Within a numerical factor, it is the distance
covered by a wave, such as the present one, traveling at the speedc during one inertial period
(2π/f ). For reasons that will become apparent later, this quantity is called theRossby radius
of deformation, or, more simply, the radius of deformation.
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Figure 9-2 Cotidal lines (dashed) with time in lunar hours for the M2 tide in the English Channel
showing the eastward progression of the tide from the North Atlantic Ocean. Lines of equal tidal range
(solid, with value in meters) reveal larger amplitudes along the French coast, namely to the right of the
wave progression in accordance with Kelvin waves. (From Proudman, 1953, as adapted by Gill, 1982.)

Of the two independent solutions, the second increases exponentially with distance from
shore and is physically unfit. This leaves the other as the most general solution:

u = 0 (9.13a)

v =
√
gH F (y + ct) e−x/R (9.13b)

η = −H F (y + ct) e−x/R, (9.13c)

whereF is an arbitrary function of its variable.
Because of the exponential decay away from the boundary, theKelvin wave is said to be

trapped. Without the boundary, it is unbounded at large distances and thus cannot exist; the
lengthR is a measure of the trapping distance. In the longshore direction, the wave travels
without distortion at the speed of surface gravity waves. Inthe Northern Hemisphere (f > 0,
as in the preceding analysis), the wave travels with the coast on its right; in the Southern
Hemisphere, with the coast on its left. Note that, although the direction of wave propagation
is unique, the sign of the longshore velocity is arbitrary: An upwelling wave (i.e., a surface
bulge withη > 0) has a current flowing in the direction of the wave, whereas a downwelling
wave (i.e., a surface trough withη < 0) is accompanied by a current flowing in the direction
opposite to that of the wave (Figure9-1).

In the limit of no rotation (f → 0), the trapping distance increases without bound and the
wave reduces to a simple gravity wave with crests and troughsoriented perpendicularly to
the coast.

Surface Kelvin waves (as described previously, and to be distinguished from internal
Kelvin waves, which require a stratification, see the end of Chapter13) are generated by the
ocean tides and by local wind effects in coastal areas. For example, a storm off the northeast
coast of Great Britain can send a Kelvin wave that follows theshores of the North Sea in a
counterclockwise direction and eventually reaches the west coast of Norway. Traveling in
approximately 40 m of water and over a distance of 2200 km, it accomplishes its journey in
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about 31 h.
The decay of the Kelvin-wave amplitude away from the coast isclearly manifested in the

English Channel. The North Atlantic tide enters the Channelfrom the west and travels east-
ward toward the North Sea (Figure9-2). Being essentially a surface wave in a rotating fluid
bounded by a coast, the tide assumes the character of a Kelvinwave and propagates while
leaning against a coast on its right, namely, France. This explains why tides are noticeably
higher along the French coast than along the British coast a few tens of kilometers across
(Figure9-2).

9.3 Inertia-gravity waves (Poincaŕe waves)

Let us now do away with the lateral boundary and relax the stipulationu = 0. The system of
equations (9.4a) through (9.5) is kept in its entirety. Withf constant and in the presence of a
flat bottom, all coefficients are constant, and a Fourier-mode solution can be sought. Withu,
v, andη taken as constant factors times a periodic function



η
u
v


 = <



A
U
V


 ei (kxx+kyy−ωt) (9.14)

where the symbol< indicates the real part of what follows,kx andky are the wavenumbers in
thex– andy–directions, respectively, andω is a frequency, the system of equations becomes
algebraic:

− iωU − fV = − i gkxA (9.15a)

− iωV + fU = − i gkyA (9.15b)

− iωA + H (i kxU + i kyV ) = 0. (9.15c)

This system admits the trivial solutionu = v = η = 0 unless its determinant vanishes. Thus
waves occur only when the following condition is met:

ω [ω2 − f2 − gH (k2
x + k2

y)] = 0. (9.16)

This condition, called thedispersion relation, provides the wave frequency in terms of the
wavenumber magnitudek = (k2

x + k2
y)

1/2 and the constants of the problem. The first root,
ω = 0, corresponds to a steady geostrophic state. Returning to (9.4a) through (9.5) with
the time derivatives set to zero, we recognize the equationsgoverning the geostrophic flow
described in Section7.1. In other words, geostrophic flows can be interpreted as arrested
waves of any wavelength. If the bottom were not flat, these “waves” would cease to exist and
be replaced by Taylor columns.

The remaining two roots,

ω =
√
f2 + gH k2 (9.17)



9.3. INERTIA-GRAVITY WAVES 253

-3 -2 -1 1 2 3

-2

-1

1

2

-3 -2 -1 1 2 3

-2

-1

1

2

kyRkyR

ω
f
ω
f

Ke
lvi

n
wav

e

Poincaré
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Figure 9-3 Recapitulation of the dis-
persion relation of Kelvin and Poincaré
waves on thef -plane and on a flat
bottom. While Poincaré waves (gray
shades) can travel in all directions and
occupy therefore a continuous spec-
trum in terms ofky, the Kelvin wave
(diagonal line) propagates only along a
boundary.

and its opposite, correspond to bona fide traveling waves, called Poincaŕe waves. In the limit
of no rotation (f = 0), the frequency isω = k

√
gH and the phase speed isc = ω/k =

√
gH .

The waves become classical shallow-water gravity waves. The same limit also occurs at large
wavenumbers [k2 � f2/gH , i.e., wavelengths much shorter than the deformation radius
defined in (9.12)]. This is not too surprising, since such waves are too shortand too fast to
feel the rotation of the earth.

At the opposite extreme of low wavenumbers (k2 � f2/gH , i.e., wavelengths much
longer than the deformation radius), the rotation effect dominates, yieldingω ' f . At this
limit, the flow pattern is virtually laterally uniform, and all fluid particles move in unison,
each describing a circular inertial oscillation, as described in Section2.3. For intermediate
wavenumbers, the frequency (Figure9-3) is always greater thanf , and the waves are said to
besuperinertial. Since Poincaré waves exhibit a mixed behavior between gravity waves and
inertial oscillations, they are often calledinertia-gravity waves.

Because the phase speedc = ω/k depends on the wavenumber, wave components of
different wavelengths travel at different speeds, and the wave is said to bedispersive. This is
in contrast with the nondispersive Kelvin wave, the signal of which travels without distortion,
irrespective of its profile. See Appendix B for additional information on these notions.

Seiches, tides and tsunamis are examples of barotropic gravity waves. Aseicheis a stand-
ing wave, formed by the superposition of two waves of equal wavelength and propagating in
opposite directions due to reflection on lateral boundaries. Seiches occur in confined water
bodies, such as lakes, gulfs and semi-enclosed seas.

A tsunamiis a wave triggered by an underwater earthquake. With wavelengths ranging
from tens to hundreds of kilometers, tsunamis are barotropic waves, but their relatively high
frequency (period of a few minutes) makes them only slightlyaffected by the Coriolis force.
What makes tsunamis disastrous is the gradual amplificationof their amplitude as they enter
shallower waters, so that what may begin as an innocuous 1m wave in the middle of the
ocean, which a ship hardly notices, can turn into a catastrophic multi-meter surge on the



254 CHAPTER 9. BAROTROPIC WAVES

beach. Disastrous tsunamis occurred in the Pacific Ocean on 22 May 1960 and in the Indian
Ocean on 26 December 2004. Tsunamis are relatively easy to forecast with computer models.
The key to an effective warning system is the early detectionof the originating earthquake,
to track the rapid propagation (at speed of

√
gH) of the tsunami from point of origin to the

coastline on time to issue a warning before the high wave strikes.
Before concluding this section, a note is in order to warn about the possibility of violating

the hydrostatic assumption. Indeed, at short wavelengths (on the order of the fluid depth or
shorter), the frequency is high (period much shorter than2π/f ), and the vertical acceleration
(equal to∂2η/∂t2 at the surface) becomes comparable to the gravitational accelerationg.
When this is the case, the hydrostatic approximation breaksdown, the assumption of vertical
rigidity may no longer be invoked, and the problem becomes three-dimensional. For a study
of non-hydrostatic gravity waves, the reader is referred toSection 10 of LeBlond and Mysak
(1978) and Lecture 3 of Pedlosky (2003).

9.4 Planetary waves (Rossby waves)

Kelvin and Poincaré waves are relatively fast waves, and wemay wonder whether rotating,
homogeneous fluids could not support another breed of slowerwaves. Could it be, for ex-
ample, that the steady geostrophic flows, those corresponding to the zero frequency solution
found in the preceding section, may develop a slow evolution(frequency slightly above zero)
when the system is modified somewhat? The answer is yes, and one such class consists of
planetary waves, in which the time evolution originates in the weak but importantplanetary
effect.

As we may recall from Section2.5, on a spherical earth (or planet or star, in general), the
Coriolis parameter,f , is proportional to the rotation rate,Ω, times the sine of the latitude,ϕ:

f = 2Ω sin ϕ.

Large wave formations such as alternating cyclones and anticyclones contributing to our daily
weather and, to a lesser extent, Gulf Stream meanders span several degrees of latitude; for
them, it is necessary to consider the meridional change in the Coriolis parameter. If the co-
ordinatey is directed northward and is measured from a reference latitudeϕ0 (say, a latitude
somewhere in the middle of the wave under consideration), thenϕ = ϕ0 + y/a, wherea is
the earth’s radius (6371 km). Consideringy/a as a small perturbation, the Coriolis parameter
can be expanded in a Taylor series:

f = 2Ω sinϕ0 + 2Ω
y

a
cosϕ0 + ... (9.18)

Retaining only the first two terms, we write

f = f0 + β0y, (9.19)

wheref0 = 2Ω sinϕ0 is the reference Coriolis parameter andβ0 = 2(Ω/a) cosϕ0 is the
so-calledbeta parameter. Typical midlatitude values on Earth aref0 = 8 × 10−5 s−1 and
β0 = 2 × 10−11 m−1s−1. The Cartesian framework where the beta term is not retainedis
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called thef-plane, and that where it is retained is called thebeta plane. The next step in order
of accuracy is to retain the full spherical geometry (which we avoid throughout this book).
Rigorous justifications of the beta-plane approximation can be found in Veronis (1963, 1981),
Pedlosky (1987), and Verkley (1990).

Note that the beta-plane representation is validated at midlatitudes only if theβ0y term
is small compared to the leadingf0 term. For the motion’s meridional length scaleL, this
implies

β =
β0L

f0
� 1, (9.20)

where the dimensionless ratioβ can be called theplanetary number.
The governing equations, having become

∂u

∂t
− (f0 + β0y)v = − g ∂η

∂x
(9.21a)

∂v

∂t
+ (f0 + β0y)u = − g ∂η

∂y
(9.21b)

∂η

∂t
+ H

(
∂u

∂x
+

∂v

∂y

)
= 0, (9.21c)

are now mixtures of small and large terms. The larger ones (f0, g, andH terms) comprise
the otherwise steady,f -plane geostrophic dynamics; the smaller ones (time derivatives and
β0 terms) come as perturbations, which, although small, will govern the wave evolution.
In first approximation, the large terms dominate, and thusu ' −(g/f0)∂η/∂y andv '
+(g/f0)∂η/∂x. Use of this first approximation in the small terms of (9.21a) and (9.21b)
yields

− g

f0

∂2η

∂y∂t
− f0v −

β0g

f0
y
∂η

∂x
= − g ∂η

∂x
(9.22)

+
g

f0

∂2η

∂x∂t
+ f0u −

β0g

f0
y
∂η

∂y
= − g ∂η

∂y
. (9.23)

These equations are trivial to solve with respect tou andv:

u = − g

f0

∂η

∂y
− g

f2
0

∂2η

∂x∂t
+

β0g

f2
0

y
∂η

∂y
(9.24)

v = +
g

f0

∂η

∂x
− g

f2
0

∂2η

∂y∂t
− β0g

f2
0

y
∂η

∂x
. (9.25)

These last expressions can be interpreted as consisting of the leading and first-correction
terms in a regular perturbation series of the velocity field.We identify the first term of each
expansion as the geostrophic velocity. By contrast, the next and smaller terms are called
ageostrophic.

Substitution in continuity equation (9.21c) leads to a single equation for the surface dis-
placement:
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∂η

∂t
− R2 ∂

∂t
52 η − β0R

2 ∂η

∂x
= 0, (9.26)

where52 is the two-dimensional Laplace operator andR =
√
gH/f0 is the deformation

radius, defined in (9.12) but now suitably amended to be a constant. Unlike the original set
of equations, this last equation has constant coefficients and a solution of the Fourier type,
cos(kxx+ kyy − ωt), can be sought. The dispersion relation follows:

ω = − β0R
2 kx

1 + R2 (k2
x + k2

y)
, (9.27)

providing the frequencyω as a function of the wavenumber componentskx andky. The
waves are calledplanetary wavesor Rossby waves, in honor of Carl-Gustaf Rossby, who
first proposed this wave theory to explain the systematic movement of midlatitude weather
patterns. We note immediately that if the beta corrections had not been retained (β0 = 0), the
frequency would have been nil. This is theω = 0 solution of Section9.3, which corresponds
to a steady geostrophic flow on thef -plane. The absence of the other two roots is explained
by our approximation. Indeed, treating the time derivatives as small terms (i.e.,, having in
effect assumed a very small temporal Rossby number,RoT � 1), we have retained only the
low frequency, the one much less thanf0. In the parlance of wave dynamics, this is called
filtering.

That the frequency given by (9.27) is indeed small can be verified easily. WithL (∼
1/kx ∼ 1/ky) as a measure of the wavelength, two cases can arise: eitherL <

∼ R or L >
∼ R;

the frequency scale is then given, respectively by

Shorter waves: L . R, ω ∼ β0L (9.28)

Longer waves: L & R, ω ∼ β0R
2

L
. β0L. (9.29)

In either case, our premise (9.20) thatβ0L is much less thanf0 implies thatω is much smaller
thanf0 (subinertial wave), as we anticipated.

Let us now explore other properties of planetary waves. First and foremost, the zonal
phase speed

cx =
ω

kx
=

−β0R
2

1 + R2 (k2
x + k2

y)
(9.30)

is always negative, implying a phase propagation to the west(Figure9-4). The sign of the
meridional phase speedcy = ω/ky is undetermined, since the wavenumberky may have
either sign. Thus, planetary waves can propagate only northwestward, westward, or south-
westward. Second, very long waves (1/kx and1/ky both much larger thanR) propagate
always westward and at the speed

c = − β0R
2, (9.31)

which is the largest wave speed allowed.
Lines of constant frequencyω in the (kx, ky) wavenumber space are circles defined by
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Figure 9-4 Dispersion relation of planetary (Rossby) waves. The frequencyω is plotted against the
zonal wavenumberkx at constant meridional wavenumberky . As the slope of the curve reverses, so
does the direction of zonal propagation of energy.

(
kx +

β0

2ω

)2

+ k2
y =

(
β2

0

4ω2
− 1

R2

)
, (9.32)

and are illustrated in Figure9-5. Such circles exist only if their radius is a real number —
that is, ifβ2

0 > 4ω2/R2. This implies the existence of a maximum frequency

|ω|max =
β0R

2
, (9.33)

beyond which planetary waves do not exist.
The group velocity, at which the energy of a wave packet propagates, defined as the vector

(∂ω/∂kx, ∂ω/∂ky), is the gradient of the functionω in the (kx, ky) wavenumber plane (see
Appendix B). It is thus perpendicular to the circles of constantω. A little algebra reveals that
the group-velocity vector is directed inward, toward the center of the circle. Therefore, long
waves (smallkx andky, points near the origin in Figure9-5) have westward group velocities,
whereas energy is carried eastward by the shorter waves (larger kx andky, points on the
opposite side of the circle). This dichotomy is also apparent in Figure9-4, which exhibits
reversals in slope (∂ω/∂kx changing sign).

9.5 Topographic waves

Just as small variations in the Coriolis parameter can turn asteady geostrophic flow into
slowly moving planetary waves, so can a weak bottom irregularity. Admittedly, topographic
variations can come in a great variety of sizes and shapes, but for the sake of illustrating
the wave process in its simplest form, we limit ourselves here to the case of a weak and
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Figure 9-5 Geometric representation
of the planetary-wave dispersion rela-
tion. Each circle corresponds to a fixed
frequency, with frequency increasing
with decreasing radius. The group ve-
locity of the (kx, ky) wave is a vector
perpendicular to the circle at point (kx,
ky) and directed toward its center.

uniform bottom slope. We also return to the use of a constant Coriolis parameter. This latter
choice allows us to choose convenient directions for the reference axes, and, in anticipation
of an analogy with planetary waves, we align they–axis with the direction of the topographic
gradient. We thus express the depth of the fluid at rest as:

H = H0 + α0y, (9.34)

whereH0 is a mean reference depth andα0 is the bottom slope, which is required to be gentle
so that

α =
α0L

H0
� 1, (9.35)

whereL is the horizontal length scale of the motion. The topographic parameterα plays a
role similar to the planetary number, defined in (9.20).

The bottom slope gives rise to new terms in the continuity equation. Starting with the
continuity equation (7.17) for shallow water and expressing the instantaneous fluid layer
depth as (Figure9-6)

h(x, y, t) = H0 + α0y + η(x, y, t), (9.36)

we obtain

∂η

∂t
+

(
u
∂η

∂x
+ v

∂η

∂y

)
+ (H0 + α0y)

(
∂u

∂x
+

∂v

∂y

)

+ η

(
∂u

∂x
+

∂v

∂y

)
+ α0v = 0.

Once again, we strike out the nonlinear terms by invoking a very small Rossby number (much
smaller than the temporal Rossby number) for the sake of linear dynamics. The termα0y can
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Figure 9-6 A layer of homogeneous
fluid over a sloping bottom and the at-
tending notation.

also be dropped next toH0 by virtue of (9.35). With the momentum equations (9.4a) and
(9.4b), our present set of equations is

∂u

∂t
− fv = − g ∂η

∂x
(9.37a)

∂v

∂t
+ fu = − g ∂η

∂y
(9.37b)

∂η

∂t
+ H0

(
∂u

∂x
+

∂v

∂y

)
+ α0v = 0. (9.37c)

In analogy with the system of equations governing planetarywaves, the preceding set
contains both small and large terms. The large ones (terms includingf , g, andH0) comprise
the otherwise steady geostrophic dynamics, which correspond to a zero frequency. But, in
the presence of the smallα0 term in the last equation, the geostrophic flow cannot remain
steady, and the time-derivative terms come into play. We naturally expect them to be small
and, compared to the large terms, on the order ofα. In other words, the temporal Rossby
number,RoT = 1/ΩT , is expected to be comparable toα, leading to wave frequencies

ω ∼ 1

T
∼ αΩ ∼ αf � f

that are very subinertial, just as in the case of planetary waves, for whichω ∼ βf0.
Capitalizing on the smallness of the time-derivative terms, we take in first approximation

the large geostrophic terms:u ' −(g/f)∂η/∂y, v ' +(g/f)∂η/∂x. Substitution of these
expressions in the small time derivatives yields, to the next degree of approximation:

u = − g

f

∂η

∂y
− g

f2

∂2η

∂x∂t
(9.38a)

v = +
g

f

∂η

∂x
− g

f2

∂2η

∂y∂t
. (9.38b)
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The relative error is only on the order ofα2. Replacement of the velocity components,u and
v, by their last expressions (9.38a) and (9.38b) in the continuity equation (9.37c) provides a
single equation for the surface displacementη, which to the leading order is

∂η

∂t
− R2 ∂

∂t
52 η +

α0g

f

∂η

∂x
= 0. (9.39)

(The ageostrophic component ofv is dropped from theα0v term for being on the order of
α2, whereas all other terms are on the order ofα.) Note the analogy with equation (9.26) that
governs the planetary waves: It is identical, except for thesubstitution ofα0g/f for−β0R

2.
Here,the deformation radius is defined as

R =

√
gH0

f
, (9.40)

that is, the closest constant to the original definition (9.12). A wave solution of the type
cos(kxx+ kyy − ωt) immediately provides the dispersion relation:

ω =
α0g

f

kx
1 + R2 (k2

x + k2
y)
, (9.41)

the topographic analogue of (9.27). Again, we note that if the additional ingredient, here
the bottom slopeα0, had not been present, the frequency would have been nil, andthe flow
would have been steady and geostrophic. Because they owe their existence to the bottom
slope, these waves are calledtopographic waves.

The discussion of their direction of propagation, phase speed, and maximum possible
frequency follows that of planetary waves. The phase speed in thex–direction — that is,
along the isobaths — is given by

cx =
ω

kx
=

α0g

f

1

1 + R2 (k2
x + k2

y)
(9.42)

and has the sign ofα0f . Thus, topographic waves propagate in the Northern Hemisphere
with the shallower side on their right. Because planetary waves propagate westward,i.e., with
the north to their right, the analogy between the two kinds ofwaves is “shallow–north” and
“deep–south”. (In the Southern Hemisphere, topographic waves propagate with the shallower
side on their left, and the analogy is “shallow–south”, “deep–north”.)

The phase speed of topographic waves varies with the wavenumber; they are thus disper-
sive. The maximum possible wave speed along the isobaths is

c =
α0g

f
, (9.43)

which is the speed of the very long waves (k2
x + k2

y → 0). With (9.41) cast in the form

(
kx −

α0g

2fωR2

)2

+ k2
y =

(
α2

0g
2

4f2R4ω2
− 1

R2

)
, (9.44)

we note that there exists a maximum frequency:

|ω|max =
|α0|g
2|f |R . (9.45)
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The implication is that a forcing at a frequency higher than the preceding threshold cannot
generate topographic waves. The forcing then generates either a disturbance that is unable
to propagate or higher-frequency waves, such as inertia-gravity waves. However, such a
situation is rare because, unless the bottom slope is very weak, the maximum frequency
given by (9.45) approaches or exceeds the inertial frequencyf , and the theory fails before
(9.45) can be applied.

As an example, let us take the West Florida Shelf, which is in the eastern Gulf of Mexico.
There the ocean depth increases gradually offshore to 200 m over 200 km (α0 = 10−3) and
the latitude (27◦N) yieldsf = 6.6 × 10−5 s−1. Using an average depthH0 = 100 m, we
obtainR = 475 km andωmax = 1.6 × 10−4 s−1. This maximum frequency, corresponding
to a minimum period of 11 min, is larger thanf , violates the condition of subinertial motions
and is thus meaningless. The wave theory, however, applies to waves whose frequencies are
much less than the maximum value. For example, a wavelength of 150 km along the isobaths
(kx = 4.2× 10−5 m−1, ky = 0) yieldsω = 1.6× 10−5 s−1 (period of 4.6 days) and a wave
speed ofcx = 0.38 m/s.

Where the topographic slope is confined between a coastal wall and a flat-bottom abyss,
such as for a continental shelf, topographic waves can be trapped, not unlike the Kelvin
wave. Mathematically, the solution is not periodic in the offshore, cross-isobath direction
but assumes one of several possible profiles (eigenmodes). Each mode has a corresponding
frequency (eigenvalue). Such waves are calledcontinental shelf waves. The interested reader
can find an exposition of these waves in LeBlond and Mysak (1978) and Gill (1978, pages
408–415).

9.6 Analogy between planetary and topographic waves

We have already discussed some of the mathematical similarities between the two kinds of
low-frequency waves. The object of this section is to go to the root of the analogy and to
compare the physical processes at work in both kinds of waves.

Let us turn to the quantity called potential vorticity and defined in (7.28). On the beta
plane and over a sloping bottom (oriented meridionally for convenience), the expression of
the potential vorticity becomes

q =
f0 + β0y + ∂v/∂x − ∂u/∂y

H0 + α0y + η
. (9.46)

Our assumptions of a small beta effect and a small Rossby number imply that the numerator is
dominated byf0, all other terms being comparatively very small. Likewise,H0 is the leading
term in the denominator because both bottom slope and surface displacements are weak. A
Taylor expansion of the fraction yields

q =
1

H0

(
f0 + β0y −

α0f0
H0

y +
∂v

∂x
− ∂u

∂y
− f0

H0
η

)
. (9.47)

In this form, it is immediately apparent that the planetary and topographic terms (β0 and
α0 terms, respectively) play identical roles. The analogy between the coefficientsβ0 and
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Figure 9-7 Comparison of the physical mechanisms that propel planetary and topographic waves.
Displaced fluid parcels react to their new location by developing either clockwise or counterclockwise
vorticity. Intermediate parcels are entrained by neighboring vortices, and the wave progresses forward.

−α0f0/H0 is identical to the one noted earlier between−β0R
2 of (9.20) andα0g/f of

(9.35), since nowR = (gH0)
1/2/f0. The physical significance is the following: Just as the

planetary effect imposes a potential-vorticity gradient,with higher values toward the north, so
the topographic effect, too, imposes a potential-vorticity gradient, with higher values toward
the shallower side.

The presence of an ambient gradient of potential vorticity is what provides thebouncing
effect necessary to the existence of the waves. Indeed, consider Figure9-7, where the first
panel represents a north-hemispheric fluid (seen from the top) at rest in a potential-vorticity
gradient, and think of the fluid as consisting of bands taggedby various potential-vorticity
values. The next two panels show the same fluid bands after a wavy disturbance has been
applied, in the presence of either the planetary or the topographic effect.

Under the planetary effect (middle panel), fluid parcels caught in crests have been dis-
placed northward and have seen their ambient vorticity,f0 + β0y, increase. To compensate
and conserve their initial potential vorticity, they must develop some negative relative vor-
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ticity, that is, a clockwise spin. This is indicated by curved arrows. Similarly, fluid parcels
in troughs have been displaced southward, and the decrease of their ambient vorticity is met
with an increase of relative vorticity, that is, a counterclockwise spin. Focus now on those
intermediate parcels that have not been displaced so far. They are sandwiched between two
counterrotating vortex patches, and, like an unfortunate finger caught between two gears or
the newspaper zipping through the rolling press, they are entrained by the swirling motions
and begin to move in the meridional direction. From left to right on the figure, the displace-
ments are southward from crest to trough and northward from trough to crest. Southward dis-
placements set up new troughs whereas northward displacements generate new crests. The
net effect is a westward drift of the pattern. This explains why planetary waves propagate
westward.

In the third panel of Figure9-7, the preceding exercise is repeated in the case of an
ambient potential-vorticity gradient due to a topographicslope. In a crest, a fluid parcel is
moved into a shallower environment. The vertical squeezingcauses a widening of the parcel’s
horizontal cross-section (see Section7.4), which in turn is accompanied by a decrease in
relative vorticity. Similarly, parcels in troughs undergovertical stretching, a lateral narrowing,
and an increase in relative vorticity. From there on, the story is identical to that of planetary
waves. The net effect is a propagation of the trough-crest pattern with the shallow side on the
right.

The analogy between the planetary and topographic effects has been found to be ex-
tremely useful in the design of laboratory experiments. A sloping bottom in rotating tanks
can substitute for the beta effect, which would otherwise beimpossible to model experimen-
tally. Caution must be exercised, however, for the substitution is acceptable so long as the
analogy holds. Three conditions must be met: absence of stratification, gentle slope, and slow
motion. If stratification is present, the sloping bottom affects preferentially the fluid motions
near the bottom, whereas the true beta effect operates evenly at all levels. And, if the slope
is not gentle and the motions are not weak, the expression of potential vorticity cannot be
linearized as in (9.47), and the analogy is invalidated.

9.7 Arakawa’s grids

The preceding developments had for aim to explain the basic physical mechanisms respon-
sible for shallow-water wave propagation, by simplifying the governing equations down to
their simplest, yet meaningful ingredients. Numerical models help us do better in cases where
such simplifications are questionable or when it is necessary to calculate wave motions with
more accuracy. For the sake of clarity, broadly applicable numerical techniques will be illus-
trated on simplified cases. The simplest situation arises with inertia-gravity waves, for which
the core mechanisms are rotation and gravity (see Section9.3). In a one-dimensional domain
of uniform fluid depthH , the linearized governing equations are
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∂η

∂t
+ H

∂u

∂x
= 0 (9.48a)

∂u

∂t
− fv = − g ∂η

∂x
(9.48b)

∂v

∂t
+ fu = 0. (9.48c)

A straightforward second-order central differentiation in space yields:

dη̃i
dt

+ H
ũi+1 − ũi−1

2∆x
= 0 (9.49a)

dũi
dt
− f ṽi = − g η̃i+1 − η̃i−1

2∆x
(9.49b)

dṽi
dt

+ fũi = 0. (9.49c)
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Figure 9-8 For variables̃η and ũ defined at the same grid points (upper panel), the discretization of
inertia-gravity waves demands that approximations of spatial derivatives be made over distances2∆x,
even if the underlying grid has a resolution of∆x. However, if variables̃η and ũ are defined on two
different grids (lower panel), shifted one with respect to the other by∆x/2, the spatial derivatives can
conveniently be discretized over the grid spacing∆x. The origin of each arrow indicates which variable
influences the time evolution of the node where the arrow ends.

When analyzing this second-order method (upper part of Figure 9-8), we observe that the
effective grid size is2∆x in the sense that all derivatives are taken over this distance. This
is somehow unsatisfactory because the real grid size,i.e., the distance between adjacent grid
nodes is only∆x. To improve the situation, we notice that the spatial derivatives ofu are



9.7. ARAKAWA’S GRIDS 265

needed to calculateη, while the calculation ofu requires the gradients ofη. The most natural
place to calculate a derivative ofη is then at a point mid-way between two grid points of
η, since the gradient approximation there is of second order while using a step of only∆x,
and the most natural position to calculate the velocityu is therefore at mid-distance between
η-grid nodes. Likewise, the most natural place to calculate the time evolution ofη is at mid-
distance betweenu nodes. It appears therefore that locating grid nodes forη andu in an
interlaced fashion allows a second-order space differencing ofbothfields over a distance∆x
(lower part of Figure9-8). Formally, the discretization on such astaggered gridtakes the
form1:

dη̃i
dt

+ H
ũi+1/2 − ũi−1/2

∆x
= 0 (9.50a)

dũi+1/2

dt
− f ṽi+1/2 = − g η̃i+1 − η̃i

∆x
(9.50b)

dṽi+1/2

dt
+ fũi+1/2 = 0. (9.50c)

Thus, spatial differencing can be performed over a distance∆x instead of2∆x, as it
was done with the original, non-staggered grid arrangement. Since the scheme is centered in
space, it is of second order, and its discretization error isreduced by a factor 4 without any
additional calculation2 when using a staggered grid instead of a more naive, collocated grid.
This is a prime example of optimization of numerical methodsat fixed cost.
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Figure 9-9 Characteristicsx + ct and
x − ct of wave equation (9.51). In-
formation propagates along these lines
from two initial conditions and one
boundary condition on each side to set
in a unique way the value of the solu-
tion at any point(x, t) of the domain.

But, as we will now show, the performance gain is not the sole advantage of the staggered-
grid approach. In the case of a negligible Coriolis force (f → 0), elimination of velocity from
(9.48) leads to a single wave equation forη:

1We arbitrarily choose to placẽη at integer grid indices and̃u at half indices. We could have chosen the reverse.
2Both approaches use the same number of grid points to cover a given domain, and the both schemes demand the

same number of operations.
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∂2η

∂t2
= c2

∂2η

∂x2
, (9.51)

wherec2 = gH . This equation is the archetype of a hyperbolic equation, which possesses a
general solution of the form

η = E1(x+ ct) + E2(x− ct) , (9.52)

where the functionsE1 andE2 are set by initial and boundary conditions. The general solu-
tion is therefore the combination of two signals, travelling in opposite directions at speeds±c
(Figure9-9). The lines of constantx+ct andx−ct define the characteristics along which the
solution is propagated. Fort = 0, it is then readily seen that two initial conditions are needed,
one forη and the other on its time derivative,i.e., the velocity field, before one can determine
the two functionsE1 andE2 at the conclusion of the first step. Later on, when characteris-
tics no longer originate from the initial conditions but have their root in the boundaries, the
solution becomes influenced first by the most proximate boundary condition and ultimately
by both. If the boundary is impermeable, the condition isu = 0, which can be translated into
a zero-gradient condition onη. For discretization (9.50), the necessary numerical boundary
conditions are consistent with the analytical conditions,whereas the non-staggered version
(9.53) needs additional conditions to reach the near-boundary points. We have already learned
(Section4.7) how to deal with artificial conditions.

We now turn our attention to the remaining problem of the non-staggered grid, which is
the appearance of spurious, stationary and decoupled modeswithin the domain. To illustrate
the issue, we use a standard leapfrog time discretization with zero Coriolis force so that the
non-staggered discretization becomes:

η̃n+1
i − η̃n−1

i

2∆t
= − H ũni+1 − ũni−1

2∆x
(9.53a)

ũn+1
i − ũn−1

i

2∆t
= − g η̃

n
i+1 − η̃ni−1

2∆x
. (9.53b)

For the grid-staggered version, we can also introduce a formof time-staggering by using a
forward-backward approach in time:

η̃n+1
i − η̃ni

∆t
= − H

ũni+1/2
− ũni−1/2

∆x
(9.54a)

ũn+1
i+1/2

− ũni+1/2

∆t
= − g η̃

n+1
i+1 − η̃n+1

i

∆x
. (9.54b)

While it may first appear that we are dealing with an implicit scheme because of the presence
of η̃n+1 on the right of the second equation, it is noted that this quantity has just been cal-
culated when marching the preceding equation one step forward in time. The scheme is thus
explicit in the sense that we solve the first equation to getη̃n+1 everywhere in the domain
and then use immediately in the second equation to calculateũn+1 without having to invert
any matrix.
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As for all forms of leap-frogging and staggering, we should be concerned by spurious
modes. These can be sought here rather simply by eliminatingthe discrete field̃u from
each set of equations. This elimination can be performed by taking a finite time difference
of the first equation and a finite space difference of the second equation3. This is the direct
analogue of the mathematical differentiation used in eliminating the velocity between the two
governing equations (9.48) to obtain (9.51). For the non-staggered and staggered grids we
obtain respectively

η̃n+2
i − 2η̃ni + η̃n−2

i =
c2∆t2

∆x2

(
η̃ni+2 − 2η̃ni + η̃ni−2

)
(9.55)

η̃n+1
i − 2η̃ni + η̃n−1

i =
c2∆t2

∆x2

(
η̃ni+1 − 2η̃ni + η̃ni−1

)
. (9.56)

These equations are straightforward second-order discretizations of the wave equation (9.51),
the first one with spatial and temporal steps twice as large asfor the second one. The CFL
criterion is |c|∆t/∆x ≤ 1 in each case, since the propagation speeds of the hyperbolic
equation are±c and the corresponding characteristics must lie in the numerical domain of
dependence.

The discretization (9.55) shows that the non-staggered grid is prone to decoupled modes.
Indeed, for even values ofn andi, all grid indexes involved are even, and the evolution is
completely independent of that on points with odd values ofn or i, which are nonetheless
proximate in both time and space. In fact, there are four different solutions evolving inde-
pendently, with their only link being through the initial and boundary conditions (left panel
of Figure9-10). Although theoretically acceptable, such decoupled modes typically increase
their “distance” from one another in the course of the simulation and induce undesirable
space-time oscillations in the solution. In some occasionsthis can lead to stationary solu-
tions that are simply unphysical (Figure9-10), such as a solution with zero velocity andη̃
alternating in space between two different constants. Solutions of this type are clearly spuri-
ous. In contrast, the only stationary solution produced by the staggered equation (9.56) is the
physical one. This is a desirable property.
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Figure 9-10 Four different solutions,
each identified by a different sym-
bol, evolve independently on the non-
staggered grid. The numerical domain
of dependence is shown as the shaded
region (left panel). A spurious station-
ary mode alternating between two con-
stants (right panel) is incompatible with
the original governing equations.

More generally, the spurious stationary solutions of a space discretization can be analyzed
in terms of the state-variable vectorx, space-discretization operatorD, and the semi-discrete
equation

3For the non-staggered version we make the following formal elimination: ∆x [(9.53a)n+1 - (9.53a)n−1] -
∆tH[(9.53b)i+1 - (9.53b)i−1]
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dx

dt
+ D x = 0 (9.57)

so that spurious stationary modes can be found among the non-zero solutions of

D x = 0. (9.58)

In the jargon of matrix calculation (linear algebra), spurious modes lie within thenull-space
of matrixD. In the case of the wave equation, the solution depicted in Figure9-10is certainly
not a physically valid solution but satisfies (9.58).

All non-zero stationary solutions (members of the null-space), however, do not need to be
spurious, and a physically admissible non-zero stationarysolution is possible in the presence
of Coriolis term, namely the geostrophic equilibrium. In that case, the discretized geostrophic
equilibrium solution is also part of the null-space (9.58). It is therefore worthwhile sometimes
to analyze the null-space of discretization operators for which the corresponding physical
stationary solutions are known.

Having found that staggering has advantages in one-dimension, we can now explore the
situation in two dimensions but immediately realize that there is no single way to generalize
the approach. Indeed, we have three state variables,u, v andη, which can each be calculated
on a different grid. The collocated version, the so-called A–grid model, is readily defined,
and discretization4 of equations (9.4a) through (9.5) with uniform fluid thickness leads to:

dη̃

dt
= − H ũi+1 − ũi−1

2∆x
− H

ṽj+1 − ṽj−1

2∆y
(9.59a)

dũ

dt
= + f ṽ − g

η̃i+1 − η̃i−1

2∆x
(9.59b)

dṽ

dt
= − fũ − g

η̃j+1 − η̃j−1

2∆y
. (9.59c)

Clearly, a spurious stationnary solution exists, again with zero velocity (̃u = ṽ = 0) and η̃
alternating between two constants on the spatial grid (Figure9-11).

j

i

Figure 9-11 A spurious stationary
η̃ mode alternating between two con-
stants (depicted by two different gray
levels) on the A–grid. This mode is
called for obvious reasons thechecker-
board mode.

Starting from the unstaggered grid we can move the variableswith respect to the others
in different ways and create various staggered grids. Theseare named Arakawa’s grids in

4As before, we only write indices that differ fromi andj.
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A-grid B-grid

C-grid D-grid

ũ location

η̃ location

ṽ location

E-grid

i

j

Figure 9-12 The five Arakawa grids. On the A–grid, the variablesη̃, ũ and ṽ are collacated, but
staggered on other grids, called B–, C–, D– and E–grids. Notethat the E–grid (center) has a higher grid
point density than the other grids for the same distance between adjacent nodes.

honor of Akio Arakawa5, and bear the letters A, B, C, D and E depending on where the
state variables are located across the mesh (Figure9-12). For the linear system of equations
considered here, it can be shown (e.g., Mesinger and Arakawa, 1976) that the E–Grid a rotated
B–grid, so that we do not need to analyze it further.

A two-dimensional staggered grid we already encountered isthe so-called C–grid (bot-
tom left of Figure9-12). For advection [recall Equation (6.58)] and the rigid-lid pressure
formulation [recall Equation (7.41)], we tacitly assumed that the velocityu was being cal-
culated halfway between pressure nodes(i + 1, j) and(i, j) andv halfway between nodes
(i, j) and(i, j + 1). In the present wave problem, this approach yields a straightforward and
second-order discretization of both divergence term and pressure gradients

(
∂u

∂x
+
∂v

∂y

)

i,j

' ũi+1/2 − ũi−1/2

∆x
+
ṽj+1/2 − ṽj−1/2

∆y
(9.60)

5See biography at the end of this Chapter.



270 CHAPTER 9. BAROTROPIC WAVES

∂η̃

∂x

∣∣∣∣
i+1/2,j

' η̃i+1 − η̃
∆x

+O(∆x2) (9.61a)

∂η̃

∂y

∣∣∣∣
i,j+1/2

' η̃j+1 − η̃
∆y

+O(∆y2). (9.61b)

exactly as in the advection and surface pressure problems (Figure9-13). But if we proceed
with the discretization of the Coriolis term, a problem arises for the C–grid, because the
velocity components are not defined at the same points. The integration of thedu/dt equation
at theu grid node(i + 1/2, j) requires knowledge of the velocityv, which is only available
at node(i, j ± 1/2). Therefore, an interpolation is necessary. The simplest scheme takes an
average of surrounding values:

v|i+1/2,j '
ṽj+1/2 + ṽi+1,j+1/2 + ṽj−1/2 + ṽi+1,j−1/2

4
, (9.62)

where the right-hand side can now be calculated from the available values of̃v. Similar
averaging to estimate variables at locations where they arenot defined can be used to dis-
cretize the equations on the other staggered grids. For example, the B–grid is a grid whereη
is defined on integer grid indices whereas velocity components are defined at corner points
(i± 1/2, j± 1/2). For this grid, the Coriolis term does not require any averaging, since both
velocity components are collocated, but the grid arrangement requires the derivative ofη in
thex–direction at location(i+1/2, j+1/2). We approximate such a term by the appropriate
average

∂η

∂x

∣∣∣∣
i+1/2,j+1/2

'
η̃i+1,j+1+η̃i+1

2 − η̃j+1+η̃
2

∆x
, (9.63)

and similarly for∂u/∂x, which is needed at(i, j). The full spatial discretization on each
grid can be achieved in similar manner, and the derivation isleft as an exercice (Numerical
Exercise 9-2).

η̃

ṽj+1/2

ṽj−1/2

ũi+1/2ũi−1/2

η̃j+1

η̃i+1

Figure 9-13 Discretization on the C–grid. The divergence
operator is discretized most naturally by (9.60) while pres-
sure gradients are calculated with (9.61).

We can then analyze the wave-propagation properties on the different grids by a Fourier
analysis, for which we take
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η̃
ũ
ṽ


 = <



A
U
V


 ei (ikx∆x+jky∆y−ω̃t). (9.64)

The insertion of this type of solution in the various finite-difference schemes and then sim-
plification by the common exponential factor provides the following equations

− i ω̃U − fαV = − i gαxkxA (9.65a)

− i ω̃V + fαU = − i gαykyA (9.65b)

− i ω̃A + H (iαxkxU + iαykyV ) = 0, (9.65c)

where the coefficientsα, αx andαy vary with the type of grid and are given in Table9.1.
As for the physical solution, a non-zero solution is only possible when the determinant of

the system vanishes, and this provides the dispersion relation of the discretized wave physics:

ω̃ [ω̃2 − α2f2 − gH (α2
xk

2
x + α2

yk
2
y)] = 0, (9.66)

which is the discrete analogue of (9.16).
For small wavenumber values (kx∆x � 1 andky∆y � 1), i.e., long, well resolved

waves, we recover the physical dispersion relation becauseα, αx andαy all tend towards
unity. For shorter waves, the numerical dispersion relation can be analyzed in detail through
the error estimate

ω2 − ω̃2

ω2
=

(1− α2) +R2
[
(1− α2

x)k
2
x + (1− α2

y)k
2
y

]

1 +R2
(
k2
x + k2

y

) ≥ 0. (9.67)

Except for the simple statementω̃2 ≤ ω2, the analysis of the error is rather complex because
it involves five length scales6 R, 1/kx, 1/ky, ∆x and∆y. For simplicity we take∆x ∼ ∆y
andkx ∼ ky to reduce the problem. We then define the length scaleL ∼ 1/kx ∼ 1/ky of the
wave under consideration. In this caseαx ∼ αy, and we can distinguish two situations:

Shorter waves: L . R, ω2 ∼ gH

L2
(9.68)

Longer waves: L & R, ω2 ∼ f2. (9.69)

The shorter waves are dominated by gravity and the relative error onω2 behaves as

ω2 − ω̃2

gH/L2
∼ 2(1− α2

x). (9.70)

If the wave is well resolved,∆x � L and the error tends towards zero for all four grids
becauseαx → 1. For the barely resolved waves,i.e., ∆x ∼ L, the errors are largest for the
discretizations in whichαx andαy depart most strongly from unity. In this sense the A–, B–
and D–grids have larger errors than the C–grid (see Table9.1).

6Note how the discretization has added two length scales∆x and∆y to the discussion compared to the physical
dispersion relation.
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Table 9.1 DEFINITION OF THE PARAMETERS INVOLVED IN THE DISCRETE DISPERSION RELATION

FOR A, B, C AND D GRIDS WITH 2θx = kx∆x AND 2θy = ky∆y. FOR LONG WAVES, WE CAN

VERIFY THAT α, αx AND αy ALL TEND TOWARDS UNITY, SO THAT THE METHOD IS CONSISTENT.
Grid α αxkx ∆x αyky ∆y

A 1 sin 2θx sin 2θy
B 1 2 sin θx cos θy 2 sin θy cos θx
C cos θx cos θy 2 sin θx 2 sin θy
D cos θx cos θy 2 cos θx cos θy sin θx 2 cos θx cos θy sin θy

The longer waves are dominated by rotation, and the relativeerror onω2 behaves as

ω2 − ω̃2

f2
∼ (1− α2). (9.71)

Again,α should remain close to unity for all wavenumbers, so that theB–grid outperforms
both the C– and D–grids. For details on the errors, an exploration with abcdgrid.m in
parameter space provides relative errors fields as those depicted in Figure9-14 for various
resolution levelsR/∆x, etc. Errors can be further investigated through the analysis of the
group velocity behavior (Numerical Exercice 9-5) and in thecontext of generalized dynam-
ics, including planetary waves, with a clear distinction between zonal and meridional wave
behaviors (Dukowicz, 1995; Haidvogel and Beckmann, 1999).

Because the A–grid suffers from spurious modes, and the D–grid is always penalized in
terms of accuracy, the B– and C–grids are the most interesting ones among the four types.
Since wavelengths up to∆x ∼ L are to be resolved in a significant way, the C–grid is the
better choice as long as∆x � R, whereas forR � ∆x the B–grid should be preferred
on the ground that the error in (9.70) and (9.71) is less. This confirms more detailed er-
ror analyses of the semi-discrete equations on staggered grids (e.g., Mesinger and Arakawa,
1976; Haidvogel and Beckman, 1999), although additional time discretization or boundary-
condition implementation can introduce stability problems (e.g., Beckers and Deleersnijder,
1993; Beckers, 1999). Also, time discretization further complicates the error analysis and
may sometimes inverse the error behavior (Beckers, 2002). Nevertheless, the choice of the
B–grid for larger grid spacing and the C–grid for finer grid spacing is justified by the fact that
for large grid spacing we only capture large-scale movements, which are nearly geostrophic.
Since the Coriolis force is dominant in this case, its discretization is crucial. Because the
B–grid does not require a spatial average of the velocity components, contrary to the C–grid,
its use should be advantageous. The pressure gradient, which is the other dominant force,
could arguably be better represented on the C–grid. If the grid is very fine, averaging the
large-scale geostrophic equilibrium over four closely spaced nodes does not deteriorate the
geostrophic solution, whereas smaller-scale processes such as gravity waves and advection
are better captured by the C–grid.

From the preceding interpretation we can establish some general rules for staggering the
variables. Starting with the goal of placing variables on the grid so that dominant processes
are discretized in the best possible way, we can then afford to represent secondary processes
by more crude discrete operators without affecting overallmodel accuracy. In practice, how-
ever, dominant processes may change in time and space so thatno single approach can be
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Figure 9-14 For medium resolution compared to the deformation radius (R/∆x = R/∆y = 1),
the error (9.67) is depicted as a function ofkx∆x andky∆y. Waves with wavenumber higher than
kx∆x = π/2 are not shown, and thex– andy–axes are therefore percents ofπ/2. The D–grid clearly
exhibits the worst behavior. The B–grid keeps the error low for well resolved waves, while the C–grid
creates lower errors for shorter waves.
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guaranteed to work uniformly, but it should at least be tried. For example, if tracer advec-
tion is of primary interest, the C–grid can be generalized tothree-dimensions with vertical
velocities defined at the bottom and top of each grid cell. In that case, advection fluxes are
readily calculated using one of the advection schemes presented in Section6.6without need
for velocity interpolations. Similarly, if diffusion in a heterogeneous turbulent environment is
the main process at play, the definition of diffusion coefficients between tracer nodes would
allow the direct discretization of turbulent fluxes withoutthe need of averaging the diffusion
coefficients.

9.8 Numerical simulation of tides and storm surges

The two-dimensional momentum equations (7.12a) and (7.12b) and volume conservation
(7.17) describing shallow-water dynamics are the central equations from which storm-surge
models of vertically mixed coastal seas have been developed. The prediction of rising sea
level (surge) along a coast depends on remotely generated waves that propagate from the
stormy area toward the shore. Because shallow-water equations describe well the propagation
of such waves, their prediction is indeed feasible, although a few additional processes must be
taken into account. Among these other processes are the surface wind stress, through which
waves are generated, and bottom friction, which causes attenuation during travel. To include
these last two stresses, we can start from the observation that the shallow-water equations
used up to now assume that the flow is independent of the vertical coordinate. If this is not
the case, we can at least try to predict the evolution of the depth-averaged velocity,

ū =
1

h

∫ b+h

b

u dz v̄ =
1

h

∫ b+h

b

v dz (9.72)

wherez = b is the bottom level andh the total depth. We can derive a governing equation
for ū by integrating vertically the three-dimensional governing equations including thex–
momentum equation:

∂u

∂t
=

∂

∂z

(
νE
∂u

∂z

)
+ F (u), (9.73)

where the termF (u) gathers all terms other than the time derivative and vertical diffusion.
We can then integrate vertically to obtain

1

h

∫ b+h

b

∂u

∂t
dz =

τx

ρ0h
− τxb

ρ0h
+ F (u), (9.74)

where boundary conditions similar to (4.34) have been used for the surface wind stressτ and
bottom stressτb, respectively. Physically, these stresses appear here as body forces applied
to the layerh of fluid moving as a slab with the depth-averaged velocity (Figure9-15).

Two difficulties arise, however, during the integration. The first is that the elevation of the
surface is time dependent and does not allow a simple permutation of the integration with the
time derivative in the left-hand side of (9.74). The second and more fundamental difficulty
is due to the nonlinearities of the equations, which preventus from equating the average of
F (u) with F (ū), i.e.,
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Figure 9-15 For a fluid column of vol-
umehS and moving with the average
velocity ū, Newton’s second law in the
absence of lateral friction and pressure
force implicates the forces associated
with the surface stressτ and bottom
friction: ρ0hS dū/dt = (τ − τb)S.

F (u) 6= F (ū) (9.75)

so that we cannot express the right-hand side of (9.74) as a function of only the average ve-
locity. The integrated equation then requires some form of parameterization. Hence, shallow-
water models include additional parameterization of the horizontal-diffusion type.

For simplicity, the governing equations are written as if depth averaging had not taken
place and the overbar (̄) operator is ignored. The outcome is that it is sufficient to add
the τ/(ρ0h) and−τb/(ρ0h) terms to the right-hand side of the two-dimensional momen-
tum equations (7.12a) and (7.12b), and then to include a parameterization of the nonlinear
effects. The wind-stressτ appears as an externally imposed source term in the equations
while the bottom stress is depending on the flow itself,i.e., τb = τb(u, v). A difficulty arises
here because the bottom stress depends on the velocity profile near the bottom whereas the
governing equations provide only the vertical average of the velocity. A parameterization is
needed here, too. The simplest version is linear bottom friction, in which the frictional term
is made linear in, and opposite to, velocity:

τxb = − rρ0 u, τyb = − rρ0 v, (9.76)

wherer is a coefficient with dimensions of velocity (LT−1). The linear formulation is partic-
ularly advantageous in analytical studies or with spectralmethods. They fail, however, to take
into account the turbulent nature of the bottom boundary layer, with stress better expressed
as a quadratic function of velocity (see Chapter14):

τxb = − ρ0Cd
√
u2 + v2 u, τyb = − ρ0Cd

√
u2 + v2 v, (9.77)

with a drag coefficientCd either constant or depending on the flow itself.
Finally, the direct driving force associated with a moving disturbance of the atmospheric

pressurepatm(x, y, t) can be easily taken into account by including it in the pressure bound-
ary condition at the surface (4.32), p = ρ0gη + patm.

We can now estimate the wind-induced surge in a shallow sea byconsidering how the
storm piles up water near the coast (Figure9-16). This accumulation of water creates a sur-
face elevation (surge) and, consequently, an adverse pressure gradient. Eventually, this ad-
verse pressure gradient can grow strong enough to cancel thewind stress. When this balance
is reached, the sea-surface slope caused by the wind stress is governed by
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A

L

Wind stress

Bottom
Figure 9-16 The piling up of water by
a storm near a coast creates an adverse
pressure-gradient force, and an equilib-
rium can exist if it cancels the wind-
stress force.

∂η

∂x
' τ

ρ0gh
. (9.78)

This relation provides an estimate of the storm-surge amplitudeA as a function of the distance
L over which the wind blows:

A ' Lτ

ρ0gh
. (9.79)

Note that the shallower the water, the stronger the effect. In other words, storm surges inten-
sify near the coast where the water is shallower.

Storm surges can become dramatic when superimposed to the tide, and it is therefore
important to know how to calculate tidal elevations, too. Tides are forced gravity waves
caused by the gravitational attraction of the moon and sun. The following development is
also valid for the atmosphere, but the velocities associated with atmospheric tides are much
smaller than the wind speed due to atmospheric disturbances. Tides, therefore, are generally
negligible in the atmosphere, while tidal currents in the ocean can be an order of magnitude
larger than other currents.

To quantify the net effect of the gravitational acceleration of the moon and sun, we have
to realize that the whole system is moving. Therefore Newton’s law cannot simply be written
with respect to axes fixed at the earth center as we did in Chapter2. Instead, using Newton’s
law in absolute axesI, J andK of the solar system, we can calculate the absolute acceleration
A of the fluid parcel and of the earthAe under the moon’s attraction7:

ρA = ργ + ρf (9.80)

MeAe = Meγe. (9.81)

We regrouped under the forceρf all forces acting on the fluid parcel other than the moon’s
attraction. The gravitationnal forcesργ andMeγe involve the gravitationnal constantG =
6.67× 10−11 N m2/kg2, the earth’s massMe = 5.9736× 1024 kg, the moon’s massMm =
7.349× 1022 kg, the distanceDm ∼ 385000 km between earth and moon, and the actual
distancedm of the point under consideration to the center of the moon (Figure9-17). The
two gravitational accelerations are directed towards the center of the moon and of magnitude

7The sun’s influence can be studied in an analoguous way.
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γ =
GMm

d2
m

, γe =
GMm

D2
m

. (9.82)
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Figure 9-17 A planet acts simultaneously on a fluid parcel lying on the earth’s surface as well as on
the entire earth. The tidal force results from the respective positions of the celestial bodies and the local
gravitational attraction on earth.

We are not so much interested in the movement of earthper seand since the absolute
acceleration of the fluid parcel is the acceleration of earthplus the relative acceleration of
the fluid parcel with respect to earth,A = Ae + d2r/dt2, the elimination of the earth’s
acceleration leads to

d2r

dt2
= f + (γ − γe). (9.83)

Without the astronomical force, the equation would have been d2r/dt2 = f, and so we note
that its effect is the addition of a so-calledtidal force:

ρft = ρ(γ − γe). (9.84)

We notice that this force is the difference between almost identical forces. Its components
in the local coordinate system are, first on its verticalk:

f↑ = γ cos(θ + ε) − γe cos θ. (9.85)

The expression can be simplified because the angleε is extremely small. By expanding
cos(θ + ε) and using

cos ε ' 1, Dm sin ε ' r sin θ, (9.86)
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we obtain

f↑ =
GMm

D2
m

[(
D2
m

d2
m

− 1

)
cos θ − D2

m

d2
m

r sin θ

Dm
sin θ

]
. (9.87)

The use ofdm in the formulation of the tidal forcing is not very practical(can you tell at
any moment the precise distance of your position with respect to the moon?). So, we use the
identityr cos θ + dm cos ε = Dm and the smallness ofε to obtain

dm ' Dm

(
1− r

Dm
cos θ

)
. (9.88)

For the same reason thatε is small, the ratior/Dm is also considered small8, and we drop
higher-order terms inr/Dm:

D2
m

d2
m

' 1 + 2
r

Dm
cos θ, (9.89)

so that the vertical component of the tidal force finally is

f↑ '
GMm

D3
m

r (3 cos2 θ − 1). (9.90)

To compare its magnitude tog = GMe/r
2 = 9.8 m/s2, the gravitational acceleration of

the earth on its surface, we form the ratioδ = f↑/g and find it to be on the order of

δ ∼ r3Mm

D3
mMe

∼ O(10−7). (9.91)

It appears therefore that the tidal force associated with the moon is completely negligible, not
only compared to gravityg but also to any of the typical forces acting along the vertical. So
does it mean tidal forces are not responsible for the observed tides? Of course they are, but
not through the local vertical attraction as sometimes erroneously thought, but through the
horizontal component, which we now proceed to calculate.

The component of the tidal force along the local axisj is, after several simplifications
similar to those used above,

f← ' − GMm

D3
m

3r cos θ sin θ. (9.92)

The order of magnitude of this force component is the same as that of the vertical one, but
since all horizontal forces are much smaller than gravity, the horizontal tidal force isnot
negligible and acts to make the fluid converge or diverge. This is the essential mechanism
of tides (Figure9-18). The spatial distribution of this force along the earth’s surface is such
that it tends to create a bulge in the region of the earth facing the moon and a second bulge
at the diametricallyoppositeplace. The explanation is that, for a point closer to the moon
thanDm, the gravitational pull of the moon exceeds the centrifugalforce associated with
the earth-moon co-rotation, while on the opposite side of the earth the inverse is true; the
centrifugal force of the earth-moon co-rotation exceeds the gravitational pull of the moon.

8In the case of the earth-moon system, its value is about 6400/385000∼ 0.017.
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f←

Figure 9-18 The movement of earth and moon around their common center of mass creates a centrifu-
gal force that is weaker than the moon’s gravitational attraction for points on earth facing the moon. The
resulting horizontal tidal forcef← has a tendency to create a bulge toward the moon. On the earth’s
face opposite to the moon, the centrifugal force is larger than the moon’s gravitational attraction, and
the horizontal force creates a second bulge facing away fromthe moon. Since the earth rotates around
its own South–North axis, the two bulges move with respect tothe continents.

The angleθ involved in our formula is constantly changing in time because of the terres-
trial rotation and lunar motion, and it must be determined through astronomical calculations
(e.g., Doodson, 1921). These calculations also take into accountvariations in the earth-moon
distanceDm, which induce slow modulations of the tidal force. Trigonometric calculations
reveal different periods of motion, the most noticeable onebeing due to the co-rotation of
the earth and moon, giving rise to an apparent rotation of themoon over a given point on the
earth every 24 h and 50 minutes (24 hours of terrestrial rotation plus the delay due to the fact
that the moon rotates around the sun in the same direction). But, because there are two bulges
half an earth’s circumference apart from each other (mathematically because of the product
cos θ sin θ in (9.92)), the apparent period of the main lunar tide is only half of that, i.e., 12 h
25 minutes.

For practical purposes, it is worth noting that the tidal force derives from the so-called
tidal potential(see Analytical Problem 9-8). In the local Cartesian coordinate system, the
tidal force can be expressed:

ft = −
(
∂V

∂x
,
∂V

∂y
,
∂V

∂z

)
with V = − GMm

D3
m

r2

2
(3 cos2 θ − 1). (9.93)

All we have to do then is to calculate the local tidal potential, take its local derivatives and
introduce these as tidal forces in the shallow-water equations.

The tidal potential can also be used to estimate tidal amplitudes. Since the tidal force,
i.e., the gradient of the potential, has a form similar to the pressure-gradient force associated
with the sea surface height, we can ask which distribution ofη, denotedηe, would cancel the
tidal force so that no motion would result. Obviously, this is the case when
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ηe = −V
g

=
GMm

D3
m

r2

2g
(3 cos2 θ − 1)

= O
(
GMm

D3
m

r2

g

)
∼ 0.36m. (9.94)

This defines the so-calledequilibrium tide, first derived by Isaac Newton. It would be the
tidal elevation if the fluid could follow the tidal force in order to remain in equilibrium with
the pressure gradient generated by the bulges. In reality, however, continents and topographic
features in the ocean do not allow sea water to stay at the equilibrium.

Not only is the equilibrium tide never reached, but the tidalpotential is also in need of
further adaptation to take into account the solid-earth deformation due to tides and the self-
attraction of tides (e.g., Hendershott, 1972). For actual tidal predictions we thus resort to
numerical methods. For this, we gather all terms previouslymentioned in this chapter and
add the components of the tidal force. The governing equations used in a shallow-water
model to predict both tides and storm surges are:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = − 1

ρ0

∂p

∂x
+

τx

ρ0h
− τxb

ρ0h
− ∂V

∂x

+
1

h

∂

∂x

(
A∂hu
∂x

)
+

1

h

∂

∂y

(
A∂hu
∂y

)
(9.95a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = − 1

ρ0

∂p

∂y
+

τy

ρ0h
− τyb

ρ0h
− ∂V

∂y

+
1

h

∂

∂x

(
A∂hv
∂x

)
+

1

h

∂

∂y

(
A∂hv
∂y

)
(9.95b)

p = ρ0gη + patm (9.95c)

together with (7.17) and (9.93). Note that the driving forces of wind and tide act very differ-
ently. While the wind-stress acts as a surface force and therefore appears with a factor1/h,
the tidal force is a body force acting over the whole water column. Consequently, the tidal
force is more important in the deeper parts of the ocean. Thismight surprise us since we are
used to observe the highest tides near the coasts, whereh is small! In most cases, tides are
generated in the deeper parts of the oceans, where the tidal force acts on a thick layer of water,
creates a pattern of convergence/divergence and locally modifies the sea surface height. The
sea-surface elevation is then propagated as a set of Kelvin and Poincaré waves into shelf seas
and coastal regions, where the reduced depth increases their amplitudes (Figure9-2).

Some shelf models can provide tidal predictions by imposingtidal elevations at distant
open boundaries and propagating the waves into the domain while discarding the local tidal
force. This is consistent with the idea that, in shallow seas, the wind stress is the dominant
local forcing. Indeed, in a 10000m-deep basin the tidal force is equivalent to the surface
friction of a 75m/s wind, while in a shallow sea of 100 m, a windof 7.5 m/s already matches
the local tidal force. An example of a tidal calculation in which the tides are imposed along
an open boundary is given in Figure9-19. In this figure, we note in passing the presence of
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Figure 9-19 Tidal amplitudes (full lines) and phases (dotted lines) over the Northwestern European
continental shelf, generated by the moon. (Eric Delhez)

nodes where the tidal amplitude is nil and the phase undefined. Each such node, called anam-
phidromic point, is a place where the various wave components cancel each other (destructive
interference).

The numerical implementation of the model we have just developed is readily feasible
since we have already encountered all its ingredients: timestepping, advection, Coriolis
term, pressure gradient, diffusion, which were all treatedin detail in previous sections. The
only remaining term is that including the bottom stress, andfor it we suggest to discretize it
with the Patankar technique (to be discussed in Section14.6) if the nonlinear relationship is
selected:

τxb = − ρ0Cd
√

(un)2 + (vn)2 un+1, τyb = − ρ0Cd
√

(un)2 + (vn)2 vn+1. (9.96)

Since several methods are available for each process, the combination of the various pro-
cesses at play here leads to a very wide array of possible numerical implementations, all
at relatively low cost with two spatial dimensions. This explains the large number of two-
dimensional numerical models that were developed relatively early in geophysical fluid mod-
eling (e.g., Nihoul, 1975; Backhaus, 1983; Heaps, 1987).
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Analytical Problems

9-1. Prove that Kelvin waves propagate with the coast on their left in the Southern Hemi-
sphere.

9-2. The Yellow Sea between China and Korea (mean latitude: 37◦N) has an average depth
of 50 m and a coastal perimeter of 2600 km. How long does it takefor a Kelvin wave
to go around the shores of the Yellow Sea?

9-3. Prove that at extremely large wavelengths, inertia-gravity waves degenerate into a flow
field where particles describe circular inertial oscillations.

9-4. An oceanic channel is modeled by a flat-bottom strip of ocean between two vertical
walls. Assume that the fluid is homogeneous and inviscid, andthat the Coriolis param-
eter is constant. Describe all waves that can propagate along such channel.

9-5. Consider planetary waves forced by the seasonal variationsof the annual cycle. For
f0 = 8 × 10−5 s−1, β0 = 2 × 10−11 m−1s−1, R = 1000 km, what is the range of
admissible zonal wavelengths?

9-6. Because the Coriolis parameter vanishes along the Equator,it is usual in the study of
tropical processes to write

f = β0y,

wherey is the distance measured from the Equator (positive northward). The linear
wave equations then take the form

∂u

∂t
− β0yv = − g ∂η

∂x
(9.97)

∂v

∂t
+ β0yu = − g ∂η

∂y
(9.98)

∂η

∂t
+ H

(
∂u

∂x
+

∂v

∂y

)
= 0, (9.99)

whereu and v are the zonal and meridional velocity components,η is the surface
displacement,g is gravity, andH is the ocean depth at rest. Explore the possibility
of a wave traveling zonally with no meridional velocity. At which speed does this
wave travel and in which direction? Is it trapped along the Equator? If so, what is the
trapping distance? Does this wave bear any resemblance to a mi-latitude wave (f0 not
zero)?
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9-7. Seek wave solutions to the nonhydrostatic system of equations with nonstrictly vertical
rotation vector:

∂u

∂t
− fv + f∗w = − 1

ρ0

∂p

∂x
(9.100a)

∂v

∂t
+ fu = − 1

ρ0

∂p

∂y
(9.100b)

∂w

∂t
− f∗u = − 1

ρ0

∂p

∂z
(9.100c)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (9.100d)

The fluid is homogeneous (ρ = 0), inviscid (ν = 0) and infinitely deep. Consider in
particular the equivalent of the Kelvin wave (u = 0 atx = 0) and Poincaré waves.

9-8. Prove by using a local polar coordinate system that tidal forces derive from the tidal
potential (9.93).

9-9. Estimate the average travel time for a gravity wave to circlethe earth along the Equator,
assuming that there are no continents and that the average depth of the ocean is 3800
m. Compare to the tidal period.

9-10. Based on the mass of the sun and its distance to the earth, how intense do you expect
solar tides to be compared to lunar tides? At what period do the combined forces give
rise to the strongest tides?

9-11. Knowing that a hurricane approaching Florida has a diameterof 100 km and wind-
speedsU of 150 km/h, which storm surge height do you expect in a 10-m deep coastal
sea? Use the following wind-stress formula:τ = 10−6ρ0U

2.

9-12. Assuming the earthquake near Indonesia’s Sumatra Island on26 December 2004 gen-
erated a surface wave (tsunami) by a upward motion of the sea floor during 10 minutes,
estimate the wavelength of the wave. For simplicity, assumea uniform depthh = 4 km.
Estimate also the time available between the detection of the earthquake and the mo-
ment the tsunami reaches another coastline 4000 km away. If instead a unform depth,
you use the depth profileh(x) provided insumatra.m , how would you estimate the
travel time? Investigate under which conditions you can usethe local wave speed of
gravity waves over uneven topography.Hint: Compare the wavelength to the length
scale of topographic variations.

9-13. In order to avoid the problem in Section9.5 of an infinitely deep layer at large dis-
tances, assume now that the flow takes place in a channel of widthL. Analyze how the
topographic waves are modified by the presence of the lateralboundaries.

9-14. Consider an inertia-gravity wave of wavelengthλ = 2π/k on thef–plane and align
the x–axis with the direction of propagation (i.e., kx = k andky = 0). Write the
partial-differential equations and solve them foru andη proportional tocos(kx − ωt)
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andv proportional tosin(kx − ωt). Then calculate the kinetic and potential energies
per unit horizontal area, defined as

KE =
1

λ

∫ λ

0

1

2
ρ0(u

2 + v2)H dx (9.101a)

PE =
1

λ

∫ λ

0

1

2
ρ0gη

2 dx, (9.101b)

each in terms of the amplitude ofη and show that the kinetic energy is always greater
than the potential energy, except in the casef = 0 (pure gravity waves), in which case
there is equipartition of energy.

Numerical Exercises

9-1. Establish the numerical stability condition of schemes (9.53) and (9.54). Can you pro-
vide an interpretation for the parameterc∆t/∆x? Compare to the CFL criterion.

9-2. Spell out the spatial discretization on the B–, C– and D–grids of Equations (9.4a)
through (9.5).

9-3. Implement the C–grid in Matlab for equations (9.4a) through (9.5) with a variable fluid
thickness given on a grid at the same location asη. Use a time discretization as in (9.54)
and a fractional-step approach for the Coriolis term. Then use your code to simulate a
pure Kelvin wave for different values of∆x/R andk2

xR
2 by initializing with the exact

solution. Hint: Use a periodic domain in thex–direction and a second impermeable
boundary in they–direction, to be justified, aty = 10R. Start fromshallow.m .

9-4. Analyze the way geostrophic equilibrium is represented in discrete Fourier modes on
the B– and C–grids.

9-5. Investigate group-velocity errors for the different Arakawa grids using the numerical
dispersion relation given in (9.66). Use∆x = ∆y and distinguish two types of waves:
kx 6= 0, ky = 0 andkx = ky. Vary the resolution by takingR/∆x = 0.2, 1, 5, where
R is the deformation radius.

9-6. Design the best staggering strategy for a model in which the eddy viscosityνE is chosen
proportional to|∂u/∂z|l2m, wherelm is a specified length scale andu is determined
numerically from a governing equation that includes vertical turbulent diffusion.

9-7. Assume you need to calculate the vertical component of relative vorticity from a discrete
velocity field provided on the two-dimensional C–grid. Where is the most natural node
to calculate the relative vorticity? Can you see an advantage to using a D–grid here?
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9-8. Can you think of possibilities to include bottom topographic variations as those inducing
tsunamis in shallow water?

9-9. Take the variable depth implementation of Numerical Exercise 9-3 and apply it to the
following topography

h = H0 + ∆H

[
1 + tanh

(
x− L

2

D

)]

with H0 = 50 m,D = L/8 and∆H = 5H0. Use a solid wall atx = 0 andx =
L = 100 km and periodic boundary conditions in they–direction across a domain of
length5L. Start with zero velocities and a Gaussian sea surface elevation of widthL/4
and height of 1 m in the center of the basin. Use linear bottom friction with friction
coefficientr = 10−4 m/s. Trace the evolution of the sea surface elevation forf = 10−4

s−1.

9-10. Perform a storm-surge simulation with the implementation of Numerical Exercise 9-3
by using a uniform wind stress over a square basin with a uniform topography and then
with the topography given in Numerical Exercise 9-9. Use thequadratic law (9.77) for
bottom friction.



William Thomson, Lord Kelvin
1824 – 1907

(Standing at right, in laboratory of Lord Rayleigh, left)

Named professor of natural philosophy at the University of Glasgow, Scotland, at age 22,
William Thomson became quickly regarded as the leading inventor and scientist of his time.
In 1892, he was named Baron Kelvin of Largs for his technological and theoretical contri-
butions leading to the successful laying of a transatlanticcable. A friend offirstnameJoule,
he helped establish a firm theory of thermodynamics and first defined the absolute scale of
temperature. He also made major contributions to the study of heat engines. With Hermann
von Helmholtz, he estimated the ages of the earth and sun, andventured in fluid mechan-
ics. His theory of the so-called Kelvin wave was published in1879 (under the name William
Thomson). His more than 300 original papers left hardly any aspect of science untouched.
He is quoted as saying that he could understand nothing of which he could not make a model.
(Photo by A.G. Webster)
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Akio Arakawa
1920 –

A graduate of the University of Tokyo, Akio Arakawa decided to pursue a career in “practical
meteorology” and went to the University of California in LosAngeles (UCLA) for further
studies. The atmospheric-circulation computer models of the time (early 1960s) could re-
produce weather-like motion but not for long. Beyond a two-week simulation, the computed
patterns no longer looked like weather. Arakawa’s doctoralthesis demonstrated that the prob-
lem lied in the artificial generation of energy by inadequatenumerical procedures, and found
the remedy. The remedy consisted of enforcing conservationof energy (and also of enstro-
phy, which is the square of vorticity) at the grid level. The grids, which he proposed and later
came to bear his name, were designed to respect numerical conservation of physically con-
served quantities. After obtaining his doctorate, Arakawaspent most of his career at UCLA,
where is currently a professor emeritus. His legacy to the science of weather prediction by
computer modeling is significant and enduring.
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Chapter 10

Barotropic Instability

(October 18, 2006) SUMMARY: The waves explored in the previous chapter evolve in a
fluid otherwise at rest, propagating without either growth or decay. Here, we investigate
waves riding on an existing current and find that, under certain conditions, they may grow at
the expense of the energy contained in the mean current whilerespecting conservation of vor-
ticity. The numerical section exposes the method of contourdynamics, designed specifically
for applications in which conservation of vorticity is important.

10.1 What makes a wave grow unstable?

The planetary and topographic waves described in the previous chapter (Sections9.4through
9.5) owe their existence to the presence of an ambient potential-vorticity gradient. In the case
of planetary waves, the cause is the sphericity of the planet, whereas for topographic waves
the gradient results from the bottom slope. We may naturallywonder whether a sheared
current that possesses a gradient of relative vorticity, would, too, be able to sustain similar
low-frequency waves.

The situation is quite different, however, for several reasons. First, the current would
not only create the required ambient potential-vorticity gradient but would also transport the
wave pattern; because of the current shear, this translation would be differential, and the wave
pattern would be rapidly distorted. Moreover, there is likely to be a place within the current
where the speed of the wave matches the velocity of the current; such a location, termed the
critical level, typically permits a vigorous transfer of energy between the basic current and
the wave. As a consequence, the wave may draw energy from the current and grow in time. If
this happens, insignificant little wiggles may turn into very large perturbations, and the initial
flow can become highly contorted, to the point of becoming unrecognizable. The flow is said
to be unstable. To distinguish this situation from other instabilities occurring in baroclinic
fluids (i.e., those possessing a stratification; see Chapters14 and17), the preceding process
is generally known asbarotropic instability.

The stability theory of homogeneous shear flows is a well developed chapter in fluid
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mechanics (see, for example, Lindzen, 1988; Kundu, 1990, Section 11-9). Here, we address
the problem with the inclusion of the Coriolis force but limit our investigation to establishing
general properties and solving one particular case.

10.2 Waves on a shear flow

To investigate the behavior of waves on an existing current in a relatively clear and tractable
formalism, it is customary to make the following assumptions: The fluid is homogeneous
and inviscid, and the bottom and the surface are flat and horizontal. The Coriolis parameter
is, however, allowed to vary (i.e., the beta effect is retained). The governing equations are
(Section4.4)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv = − 1

ρ0

∂p

∂x
(10.1a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu = − 1

ρ0

∂p

∂y
(10.1b)

0 = − ∂p

∂z
(10.1c)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (10.1d)

where the Coriolis parameterf = f0 + β0y varies with the northward coordinatey (Section
9.4). As demonstrated in Section7.3, a horizontal flow that is initially uniform in the vertical
will, in the absence of vertical friction, remain so at all times. In GFD parlance, this is what
is called abarotropic flow, and we consider such a case. Consequently, we drop the terms
w∂u/∂z andw∂v/∂z in equations (10.1a) and (10.1b), respectively. According to (10.1d),
∂w/∂z must bez-independent, too, which implies thatw is linear inz. But, because the
vertical velocity vanishes at both top and bottom, it must bezero everywhere (w = 0). The
continuity equation reduces to

∂u

∂x
+

∂v

∂y
= 0. (10.2)

For the basic state, we choose a zonal current with arbitrarymeridional profile:u = ū(y),
v = 0. This is an exact solution to the nonlinear equations as longas the pressure profile,
p = p̄(y), satisfies the geostrophic balance

(f0 + β0y) ū(y) = − 1

ρ0

dp̄

dy
. (10.3)

Next, we add a small perturbation, meant to represent an arbitrary wave of weak ampli-
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tude. We write

u = ū(y) + u′(x, y, t) (10.4a)

v = v′(x, y, t) (10.4b)

p = p̄(y) + p′(x, y, t), (10.4c)

where the perturbationsu′, v′ andp′ are taken to be much smaller that the corresponding vari-
ables of the basic flow (i.e., u′ andv′ much less than̄u, andp′ much less than̄p). Substitution
in Equations (10.1a), (10.1b), and (10.2) and subsequent linearization to take advantage of
the smallness of the perturbation yield:

∂u′

∂t
+ ū

∂u′

∂x
+ v′

dū

dy
− (f0 + β0y)v

′ = − 1

ρ0

∂p′

∂x
(10.5a)

∂v′

∂t
+ ū

∂v′

∂x
+ (f0 + β0y)u

′ = − 1

ρ0

∂p′

∂y
(10.5b)

∂u′

∂x
+

∂v′

∂y
= 0. (10.5c)

The last equation admits the streamfunctionψ, defined as

u′ = − ∂ψ

∂y
, v′ = +

∂ψ

∂x
. (10.6)

The choice of signs corresponds to a flow along streamlines with the higher streamfunction
values on the right.

A cross-differentiation of the momentum equations (10.5a) and (10.5b) and the elimina-
tion of the velocity components leads to a single equation for the streamfunction:

(
∂

∂t
+ ū

∂

∂x

)
52 ψ +

(
β0 −

d2ū

dy2

)
∂ψ

∂x
= 0. (10.7)

This equation has coefficients that depend onū and, therefore, on the meridional coordinate
y only. A sinusoidal wave in the zonal direction is then a solution:

ψ(x, y, t) = φ(y) expi (kx−ωt) . (10.8)

Substitution provides the following second-order ordinary differential equation for the am-
plitudeφ(y):

d2φ

dy2
− k2φ +

β0 − d2ū/dy2

ū(y) − c
φ = 0, (10.9)

wherec = ω/k is the zonal speed of propagation. An equation of this type iscalled a
Rayleigh equation(Rayleigh, 1880). Its key features are the non-constant coefficient in the
third term and the fact that its denominator may be zero, creating a singularity.

For boundary conditions, let us assume for simplicity that the fluid is contained between
two walls, aty = 0 andL. We are thus considering waves on a zonal flow in a zonal
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channel. Obviously, there is no such zonal channel in eitherthe atmosphere or ocean, but
wavy zonal flows of limited meridional extent abound. The atmospheric jet stream in the
upper troposphere, the Gulf Stream after its seaward turn off Cape Hatteras (36◦N), and the
Antarctic Circumpolar Current are all good examples. Also,the atmosphere on Jupiter, with
the exception of the Great Red Spot and other vortices, consists almost entirely of zonal bands
of alternating winds, calledbeltsor stripes(see Figure1-5).

If the boundaries prevent fluid from entering and leaving thechannel,v′ is zero there, and
(10.6) implies that the streamfunction must be a constant along each wall. In other words,
walls are streamlines. This is possible only if the wave amplitude obeys

φ(y = 0) = φ(y = L) = 0. (10.10)

The second-order, homogeneous problem of (10.9) and (10.10) can be viewed as an eigen-
value problem: The solution is trivial (φ = 0), unless the phase velocity assumes a specific
value (eigenvalue), in which case a non-zero functionφ (eigenfunction) can be determined
within an arbitrary multiplicative constant.

In general, the eigenvaluescmay be complex. Ifc admits the functionφ, then the complex
conjugatec∗ admits the complex conjugate functionφ∗ and is thus another eigenvalue. This
can be readily verified by taking the complex conjugate of equation (10.9). Hence, complex
eigenvalues come in pairs.

Decomposing the eigenvalue into its real and imaginary components,

c = cr + i ci, (10.11)

we note that the streamfunctionψ has an exponential factor of the formexp(kcit), which
grows or decays according to the sign ofci. Because the eigenvalues come in pairs, to any
decaying mode will correspond a growing mode. Therefore, the presence of a non-zero
imaginary part in the phase velocityc automatically guarantees the existence of a growing
disturbance and thus the instability of the basic flow. The productkci is then called the
growth rate. Conversely, for the basic flow to be stable, it is necessary that the phase speedc
be purely real.

Because mathematical difficulties prevent a general determination of thec values for an
arbitrary velocity profilēu(y) (the analysis is difficult even for idealized but nontrivialpro-
files), we shall not attempt to solve the problem (10.9)–(10.10) exactly but will instead estab-
lish some of its integral properties and, in so doing, reach weaker stability criteria.

When we multiply equation (10.9) byφ∗ and then integrate across the domain, we obtain

−
∫ L

0

(∣∣∣∣
dφ

dy

∣∣∣∣
2

+ k2|φ|2
)
dy +

∫ L

0

β0 − d2ū/dy2

ū− c |φ|2 dy = 0, (10.12)

after an integration by parts. The imaginary part of this expression is

ci

∫ L

0

(
β0 −

d2ū

dy2

) |φ|2
|ū− c|2 dy = 0. (10.13)

Two cases are possible: Eitherci vanishes or the integral does. Ifci is zero, the basic flow
admits no growing disturbance and is stable. But, ifci is not zero, then the integral must
vanish, which requires that the quantity
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β0 −
d2ū

dy2
=

d

dy

(
f0 + β0y −

dū

dy

)
(10.14)

must change sign at least once within the confines of the domain. Summing up, we conclude
that a necessary condition for instability is that expression (10.14) vanish somewhere inside
the domain. Conversely, a sufficient condition for stability is that expression (10.14) not
vanish anywhere within the domain (on the boundaries maybe,but not inside the domain).
Physically, the total vorticity of the basic flow,f0 + β0y − dū/dy, must reach an extremum
within the domain to cause instabilities. This result was first derived by Kuo (1949).

This first criterion can be strengthened by considering nextthe real part of (10.12), which
takes the form:

∫ L

0

(ū− cr)
(
β0 −

d2ū

dy2

) |φ|2
|ū− c|2 dy =

∫ L

0

(∣∣∣∣
dφ

dy

∣∣∣∣
2

+ k2|φ|2
)
dy. (10.15)

In the event of instability, the integral in (10.13) vanishes. Multiplying it by (cr − ū0), where
ū0 is any real constant, adding the result to (10.15), and noting that the right-hand side of
(10.15) is always positive for non-zero perturbations, we obtain:

∫ L

0

(ū− ū0)

(
β0 −

d2ū

dy2

) |φ|2
|ū− c|2 dy > 0. (10.16)

This inequality demands that the expression

(ū− ū0)

(
β0 −

d2ū

dy2

)
(10.17)

be positive in at least some finite portion of the domain. Because this must hold true for
any constant̄u0, it must be true in particular if̄u0 is the value of̄u(y) whereβ0 − d2ū/dy2

vanishes. Hence, a stronger criterion is: Necessary conditions for instability are thatβ0 −
d2ū/dy2 vanish at least once within the domainandthat(ū− ū0)(β0 − d2ū/dy2), whereū0

is the value of̄u(y) at which the first expression vanishes, be positive in at least some finite
portion of the domain. Although this stronger criterion still offers no sufficient condition for
instability, it is generally quite useful.

10.3 Bounds on wave speeds and growth rates

The preceding analysis taught us that instabilities may occur when certain conditions are met.
A question then naturally arises: If the flow is unstable, howfast will perturbations grow? In
the general case of an arbitrary shear flowū(y), a precise determination of the growth rate
of unstable perturbations is not possible. However, an upper bound can be derived relatively
easily, and, in the process, we can also determine lower and upper bounds on the phase speed
of the perturbations. For simplicity, we will restrict our attention to thef -plane (β0 = 0),
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in which case the derivation is due to Howard (1961). Afterwards, we will cite, without
demonstration, the result for theβ-plane.

The analysis begins by a change of variable1:

φ = (ū − c) a, (10.18)

which transforms equation (10.9) into

d

dy

[
(ū − c)2 da

dy

]
− k2 (ū − c)2 a = 0, (10.19)

with β0 set to zero. Because of (10.18), the boundary conditions ona are identical to those
onφ, namely,a(0) = a(L) = 0.

We consider the case of an unstable wave. In this case,c has a non-zero imaginary part,
anda is non-zero and complex. Multiplying by the complex conjugate a∗ and integrating
across the domain, we obtain an expression whose real and imaginary parts are

Real part:
∫ L

0

[(ū− cr)2 − c2i ]P dy = 0 (10.20)

Imaginary part:
∫ L

0

(ū− cr)P dy = 0, (10.21)

whereP = |da/dy|2 + k2|a|2 is a non-zero positive quantity. With (10.21), (10.20) can also
be recast as

∫ L

0

[ū2 − (c2r + c2i )]P dy = 0 (10.22)

It immediately follows from (10.21) that (ū − cr) must vanish somewhere in the domain,
implying that the phase speedcr lies between the minimum and maximum values ofū(y):

Umin < cr < Umax. (10.23)

Physically, the wavy perturbation, if unstable, must travel with a speed that matches that
of the entraining flow, in at least one location. In other words, there will always be a place
in the domain where the wave does not drift with respect to theambient flow and grows in
place. It is precisely this local coupling between wave and flow that allows the wave to extract
energy from the flow and to grow at its expense. The location where the phase speed is equal
to the flow velocity is called acritical level.

Armed with bounds for the real part ofc, we now seek bounds on its imaginary part. To
do so, we introduce the obvious inequality

∫ L

0

(ū− Umin) (Umax − ū)P dy ≥ 0 (10.24)

and then expand the expression, replace all linear terms inū using (10.21), and replace the
quadratic term using using (10.22) to arrive at

1It can be shown that the new variablea is the meridional displacement, the material time derivative of which is
thev component of velocity
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[(
cr −

Umin + Umax

2

)2

+ c2i −
(
Umax − Umin

2

)2
] ∫ L

0

P dy ≤ 0. (10.25)

Because the integral ofP can only be positive, the preceding bracketed quantity mustbe
negative:

(
cr −

Umin + Umax

2

)2

+ c2i ≤
(
Umax − Umin

2

)2

. (10.26)

ci

crUmaxUmin Umin+Umax

2

Umax−Umin

2

0

(cr, ci)

Figure 10-1 The semicircle theorem. Growing perturbations of wavenumberk must have phase speeds
cr and growth rateskci such that the tip of the vector (cr, ci) falls within the half-circle constructed
from the minimum and maximum velocities of the ambient shearflow ū(y), as depicted in the figure.
When theβ effect is taken into account the tip of the vector must lie in the slightly enlarged domain
that includes the semi-circle and the light gray area.

This inequality implies that, in the complex plane, the number cr + ici must lie within the
circle centered at[(Umin + Umax)/2, 0] and of radius(Umax − Umin)/2. Since we are in-
terested in modes that grow in time,ci is positive, and only the upper half of that circle is
relevant (Figure10-1). This result is calledHoward’s semicircle theorem.

It is readily evident from inequality (10.26) or Figure10-1thatci is bounded above by

ci ≤
Umax − Umin

2
. (10.27)

The perturbation’s growth ratekci is thus likewise bounded above.
On the beta plane, the treatment of integrals and inequalities is somewhat more elaborate

but still feasible. Pedlosky (1987, Section 7.5) showed that the preceding inequalities oncr
andci must be modified to

Umin −
β0L

2

2(π2 + k2L2)
< cr < Umax (10.28)

(
cr −

Umin + Umax

2

)2

+ c2i ≤
(
Umax − Umin

2

)2

+
β0L

2(Umax − Umin)

2(π2 + k2L2)
, (10.29)



296 CHAPTER 10. BAROTROPIC INSTABILITY

whereL is the domain’s meridional width andk the zonal wavenumber (Figure10-1). The
westward velocity shift on the left side of (10.28) is related to the existence of planetary
waves [see the zonal phase speed, (9.30)]. The last inequality readily leads to an upper bound
for the growth ratekci. Knowing bounds for the phase speedcr and growth ratekci is useful
in the numerical search of stability threshold in specific applications (Proehl, 1996).

10.4 A simple example

The preceding considerations on the existence of instabilities and their properties are rather
abstract. So, let us work out an example to illustrate the concepts. For simplicity, we restrict
ourselves to thef -plane (β0 = 0) and take a shear flow that is piecewise linear (Figure10-2):

y < − L : ū = − U, dū

dy
= 0,

d2ū

dy2
= 0 (10.30)

−L < y < + L : ū =
U

L
y,

dū

dy
=

U

L
,

d2ū

dy2
= 0 (10.31)

+L < y : ū = + U,
dū

dy
= 0,

d2ū

dy2
= 0, (10.32)

y

ū(y)

U

−U

L

−L Figure 10-2 An idealized shear-flow
profile that lends itself to analytic treat-
ment. This profile meets both neces-
sary conditions for instability and is
found to be unstable to long waves.

whereU is a positive constant and the domain width is now infinity. Although the second
derivative vanishes within each of the three segments of thedomain, it is non-zero at their
junctions. Asy increases, the first derivativedū/dy changes from zero to a positive value
and back to zero, so it can be said that the second derivative is positive at the first junction
(y = −L) and negative at the second (y = +L). Thus,d2ū/dy2 changes sign in the domain,
and this satisfies the first condition for the existence of instabilities. The second condition,
that expression (10.17), now reduced to
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− ū d
2ū

dy2
,

be positive in some portion of the domain, is also satisfied becaused2ū/dy2 has the sign
opposite tōu at each junction of the profile. Thus, the necessary conditions for instability are
met, and, although instabilities are not guaranteed to exist, we ought to expect them.

We now proceed with the solution. In each of the three domain segments, governing
equation (10.9) reduces to

d2φ

dy2
− k2 φ = 0, (10.33)

and admits solutions of the typeexp(+ky) andexp(−ky). This introduces two constants of
integration per domain segment, for a total of six. Six conditions are then applied. First,φ is
required to vanish at large distances:

φ(−∞) = φ(+∞) = 0.

Next, continuity of the meridional displacements aty = ±L requires, by virtue of (10.19)
and by virtue of the continuity of thēu(y) profile, thatφ, too, be continuous there:

φ(−L − ε) = φ(−L+ ε) and φ(+L− ε) = φ(+L+ ε),

for arbitrarily small values ofε. Finally, the integration of governing equation (10.9) across
the lines joining the domain segments

∫ ±L+ε

±L−ε

[
(ū− c) d

2φ

dy2
− k2 (ū− c) φ − d2ū

dy2
φ

]
dy = 0,

followed by an integration by parts, implies that

(ū− c) dφ
dy
− dū

dy
φ

must be continuous at bothy = −L andy = +L. An alternative way of obtaining this result
is to integrate Equation (10.19), which is in conservative form, across a discontinuity.

Applying these six conditions leads to a homogeneous systemof equations for the six
constants of integration. Non-zero perturbations exist when this system admits a nontrivial
solution – that is, when its determinant vanishes. Some tedious algebra yields

c2

U2
=

(1− 2kL)2 − e−4kL

(2kL)2
. (10.34)

Equation (10.34) is the dispersion relation, providing the wave velocityc in terms of the
wavenumberk and the flow parametersL andU . It yields a unique and realc2, either positive
or negative. If it is positive,c is real and the perturbation behaves as a non-amplifying wave.
But, if c2 is negative,c is imaginary and one of the two solutions yields an exponentially
growing mode [a proportional toexp(kcit)]. Obviously, the instability threshold isc2 = 0,
in which case the dispersion relation (10.34) yields kL = 0.639. There is thus a critical
wavenumberk = 0.639/L or critical wavelength2π/k = 9.829L separating stable from



298 CHAPTER 10. BAROTROPIC INSTABILITY

Figure 10-3 Plot of the dis-
persion relation (10.34) for
waves riding on the shear flow
depicted in 10-2. The lower
wavenumbersk for which
ci is non-zero correspond to
growing waves.

unstable waves (Figure10-3). It can be shown by inspection of the same dispersion relation
that shorter waves (kL > 0.639) travel without growth (becauseci = 0), whereas longer
waves (kL < 0.639) grow exponentially without propagation (becausecr = 0). In sum, the
basic shear flow is unstable to long-wave disturbances.

An interesting quest is the search for the fastest growing wave, because this is the domi-
nant wave, at least until finite-amplitude effects become important and the preceding theory
loses its validity. For this, we look for the value ofkL that maximizeskci, whereci is the
positive imaginary root of (10.34). The answer iskL = 0.398, from which follows the
wavelength of the fastest growing mode:

λfastest growth =
2π

k
= 15.77 L = 7.89 (2L). (10.35)

This means that the wavelength of the perturbation that dominates the early stage of instability
is about 8 times the width of the shear zone. Its growth rate is

(kci)max = 0.201
U

L
, (10.36)

corresponding toci = 0.505U . It is left to the reader as an exercise to verify the preceding
numerical values.

At this point, it is instructive to unravel the physical mechanism responsible for the growth
of long-wave disturbances. Figure10-4displays the basic flow field, on which is superim-
posed a wavy disturbance. The phase shift between the two lines of discontinuity is that
propitious to wave amplification. As the middle fluid, endowed with clockwise vorticity, in-
trudes in either neighboring strip where the vorticity is nonexistent, it produces local vorticity
anomalies, which can be viewed as vortices. These vortices generate clockwise rotating flows
in their vicinity, and, if the wavelength is sufficiently long, the interval between the two lines
of discontinuity appears relatively short and the vorticesfrom each side interact with those on
the other side. Under a proper phase difference, such as the one depicted in Figure10-4, the
vortices entrain one another further into the regions of no vorticity, thereby amplifying the
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Figure 10-4 Finite-amplitude development of the instability of the shear flow depicted in Figure 10-2.
The troughs and crests of the wave induce a vortex field, which, in turn, amplifies those troughs and
crests. The wave does not travel but amplifies with time. [Thesequence of figures shown here were
generated withshearedflow.m developped in Chapter 16].

crests and troughs of the wave. The wave amplifies, and the basic shear flow cannot persist.
As the wave grows, nonlinear terms are no longer negligible,and some level of saturation is
reached. The ultimate state (Figure10-4) is that of a series of clockwise vortices embedded
in a weakened ambient shear flow (Zabuskyet al., 1979; Dritschel, 1989).

Lindzen (1988) offers an alternative mechanism for the instability, based on the fact that
there are two special locations across the system. The first is the critical levelyc, where the
wave speed matches the velocity of the basic flow [cr = ū(yc)] and the other isy0 where the
vorticity of the basic flow reaches an extremum [where Expression (10.14) changes sign]. A
wave travelling in the direction ofy0 to yc undergoes overreflection, that is, upon entering the
[y0,yc] interval, it is being reflected toward its region of origin with a greater amplitude than
on arrival. If there is a boundary or other place where the wave can be (simply) reflected, then
it returns toward the region of overreflection, and on it goes. The successive overreflections
of the echoing wave lead to exponential growth.
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10.5 Nonlinearities

From Section10.2we note that the nonlinear advection term is responsible forthe instability
of the basic flowū(y). We analyzed the stability by linearizing the equations around the
steady-state solution and replaced terms such asu∂u/∂x by ū∂u′/∂x and this led to linear
equations and wave-like solutions, yet retaining the advection by the basic current̄u. When
instability occurs, the velocity perturbations grow in time, and, after an initial phase during
which linearization holds, they eventually reach such an intensity thatu′∂u′/∂x may no be
neglected. We enter a fully nonlinear regime requiring numerical simulation. In an inviscid
problem such as the present one, we then face a serious problem, already mentioned in the
Introduction, namely the aliasing of short waves into longer waves.

kx

-
0 π

∆x− π
∆x

kx → kx − 2π
∆x

−kx → kx

Figure 10-5 Transformation of a unresolved short wave of wavenumberkx > π/∆x into a resolved
wavenumber|kx − 2π/∆x|, corresponding to a reflection of wavenumber about the cutoff valueπ/∆x
as indicated for three particular values of the wavenumber identified by an open circle, a cross and a
gray dot to the right ofπ/∆x and the wavenumbers into which they are aliased (all to the left of π/∆x).

As shown in Section1.12for time series, sampling (read: discretization) sets somelimits
on the frequencies that can be resolved. In space instead of time, the same analysis applies,
and waves of wavenumberskx andkx + 2π/∆x cannot be distinguished from each other in
a discretization with space interval∆x. If a wavenumberkx larger thanπ/∆x exists, it is
mistaken by the discretization as being of smaller wavenumber kx − 2π/∆x or 2π/∆x −
kx. This misinterpretation of too rapidly varying waves can bedepicted (Figure10-5) as a
reflection of the wavenumber about the cutoff valueπ/∆x. Any wave can be decomposed
in its spectral components, and let us suppose that the spectrum of a set waves (wave packet)
takes the form shown in Figure10-6. Since waves of higher wavenumbers are reflected
around the cutoff wavenumber into the resolved range, the associated spectral energy will also
be transferred from the shorter unresolved waves to the longer resolved waves. If the energy
level decreases with decreasing wavenumber, the spectrum alteration will be strongest near
the cutoff value. In other words, the energy content of marginally resolved waves is the one
most influenced by aliasing, and the manifestation is an unwanted excess of energy among
barely resolved waves. This is one reason why model results ought generally to viewed as
suspect at scales comparable to the grid spacing. But there is more to the problem.

The aliasing problem is particularly irksome when nonlinear advection comes into play,
because the quadratic term in the equation creates wave harmonics: If the velocity field is re-
sulting from the superposition of two waves, one of wavenumberk1 and another of wavenum-
berk2 of equal amplitude and phase,
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kx
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Apparent Spectrum
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Real Spectrum

?

Unresolved Spectrum
Figure 10-6 Spectrum alteration by
aliasing, which effectively folds the
numerically unresolved part of the
spectrum (kx ≥ π/∆x) into re-
solved scales. The steeper the energy
spectrum decrease around the cutoff
wavenumber, the less aliasing is a prob-
lem. The spectrum alteration is then
limited to the vicinity of the shortest re-
solved waves.

u = u1 + u2 with u1 = Aei k1x and u2 = Aei k2x, (10.37)

then the advection termu∂u/∂x generates a contribution of the form

A2i (k1 + k2)e
i (k1+k2)x (10.38)

which introduces a new spectral component of higher wavenumberk1 + k2. Even if the two
original waves are resolved by the grid, the newly created and shorter wave may be aliased
and mistaken for a longer wave. This happens whenk1 + k2 > π/∆x. The nonlinear advec-
tion thus creates an aliasing problem, which can seriously handicap calculations, especially
if the aliasing is such that the newly created waves have a wavenumber identical to one of the
original waves,k1 for example. In this case we have a feedback loop in which component
u1 interacts with another one and, instead of generating a shorter wave as it ought, increases
its own amplitude. The process is self-repeating and, before long, the amplitude of the self-
amplifying wave will reach an untolerable level. This is known asnumerical instability,
which was first discovered by Phillips (1956).

Such a self-amplification occurs when the interaction ofk1 andk2 satisfies the aliasing
condition and the new wave is aliased back into one of the original wavenumbers (herek1):

(k1 + k2) ≥
π

∆x
and

2π

∆x
− (k1 + k2) = k1. (10.39)

To avoid such a situation for any wavenumber resolved by the grid (i.e., for all admissible
values fork2 varying between 0 andπ/∆x), k1 should not be allowed to take values in the
interval π/(2∆x) to π/∆x. This requirement is a little bit too strong since, ifk1 is not
allowed to exceedπ/(2∆x), k2, too, should not be allowed to do so. The highest permit-
ted value for eitherk1 or k2 is then found by lettingk1 = k2 in (10.39), and this yields
kmax = 2π/(3∆x). In other words, if we are able to avoid all waves of wavelength shorter
than2π/kmax = 3∆x, nonlinear instability by aliasing will not occur. Disallowing these
waves from the initial condition is not enough, however, because sooner or later, they will be
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generated by nonlinear interaction among the longer waves.The remedy is to eliminate the
shorter waves as they are being generated, and this is accomplished byfiltering.

Filtering is a form of dissipation that mimics physical dissipation but is designed to re-
move preferentially the undesirable waves, that is, only those on the shortest scales resolved
by the numerical grid. This can be accomplished by the filtersdiscussed in the following
section. Other methods to address aliasing and nonlinear numerical instability related to the
advection term will be encountered later in Section16.6. Before concluding this chapter,
we will also describe an entirely different approach, whichavoids aliasing altogether by not
using a grid at all. This method, known ascontour dynamics, follows fluid parcels along their
path of motion thus absorbing the advection terms in the material time derivative.

10.6 Filtering

We saw earlier that the leapfrog method generates spurious modes (flip-flop in time) and we
just realized that spatial modes near the2∆x cutoff (‘saw-tooth’ structure in space) are poorly
reproduced and prone to aliasing. We further showed how nonlinearities can create aliasing
problems around the2∆x mode. Naturally, we would now like to remove these unwanted
oscillations from the numerical solution. For the spatial saw-tooth structure, we already have
at our disposal a method for eliminating shorter waves: physical diffusion. Physical diffusion
in the model, however, may not always be sufficient to suppress or even control the2∆x
mode, and additional dissipation, of a numerical nature, becomes necessary. This is called
filtering.

In this section, we concentrate on explicitly introduced filtering designed to damp short
waves. Let us start with a discrete filter inspired by the physical diffusion operator:

ĉni = c̃ni + κ

(
c̃ni+1 − 2c̃ni + c̃ni−1

)
,

︸ ︷︷ ︸
'∆x2 ∂2c

∂x2

(10.40)

in which the new (filtered) valuêcni is henceforth replacing the original (unfiltered) value
c̃ni . The preceding formulation is equivalent to introducing a diffusion term with diffusivity
κ∆x2/∆t, which enhances physical diffusion, if any.

The behavior of this filter can be analyzed with Fourier modes(exp(i kxi∆x)), thus pro-
viding the ‘amplification’ factor, which in this case is actually a damping factor:

% = 1− 4κ sin2

(
kx∆x

2

)
. (10.41)

For well resolved waves, the amplification factor is close tounity (no change of amplitude),
while for the2∆x wave (kx = 2π/2∆x), its value is1 − 4κ. The valueκ = 1/4 therefore
eliminates the shortest wave in a single pass of the filter. But intermediate wavelengths, are
partially reduced at the same time, and a smaller value ofκ is generally used in order not
to dampen unnecessarily the intermediate scales of the solution. A compromise, therefore,
needs to be reached between our desire to eliminate the2∆x component while altering as
least as possible the rest of the solution.

To alleviate such compromise, more selective filters can be implemented. These are of
the biharmonic type and require a wider stencil (more grid points). For example,
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Figure 10-7 Damping factor as a func-
tion of wavelength for two different
filters: regular diffusion [Eq. 10.40,
dashed-dotted line] and biharmonic op-
erator [Eq. 10.42, solid line], both for
κ = 1/4. Both filters eliminate the
2∆x mode completely (% = 0), but
the biharmonic filter is more scale se-
lective in the sense that it damps less
the intermediate-scale components (%
closer to unity for these).

ĉni = c̃ni +
κ

4

(
−c̃ni+2 + 4c̃ni−1 − 6c̃ni + 4c̃ni+1 − c̃ni+2

)
︸ ︷︷ ︸

'−∆x4 ∂4 c̃
∂x4

(10.42)

leads to the more scale-selective damping factor

% = 1− κ

[
4 sin2

(
kx∆x

2

)
− sin2

(
2kx∆x

2

)]
. (10.43)

The difference in the caseκ = 1/4 is illustrated in Figure10-7. Both diffusion-like and
biharmonic filters [(10.40) and (10.42), respectively] eliminate the2∆x mode with the same
value ofκ. Figure10-7also shows that components of intermediate scales are less affected
by the biharmonic filter than by the diffusion-like filter. The biharmonic filter, however,
may introduce non monotonic behavior because there are negative coefficients in its stencil
(10.42).

As for the diffusion-like filter, the biharmonic filter is sometimes written as an additional
term of the form−B∂4c̃/∂x4 in the undiscretized model equations, withB = κ∆x4/(4∆t).
The approach can, of course, be extended to ever larger stencils with increased scale selectiv-
ity but at the cost of additional computations.

It should be noted that the coefficients used in the filters aredepending on the grid spacing
and time step, whereas physical parameters do not, unless they parameterize sub-grid scale
effects. In the latter case, the grid size can be involved in the parameterization, as seen in
Section4.2. We should, however, not confuse the different concepts: The physical molecular
diffusion, the standard micro-turbulent (eddy) diffusion, sub-grid scale diffusion introduced
to parameterize mixing at scales longer than turbulent motions yet shorter than the grid spac-
ing, diffusion associated with explicit filtering (the subject of the present section), and, finally,
numerical diffusion caused by the numerical scheme (totally uncoded). It is unfortunately not
always clearly stated in model applications which type of diffusion is being referenced when
the authors mention their model’s diffusion parameters.
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For filtering in time, we can adopt the same filtering technique. Because the spatial filter
replaces the model values by a filtered version obtained via (10.40), one way of eliminating
the flip-flop mode is:

ĉn = c̃n + κ

(
c̃n+1 − 2c̃n + c̃n−1

)
. (10.44)

This, however, is not very practical since it requires that past values of̃c be stored for
later filtering. Note also how filtering at time leveln must wait until values have been com-
puted at time leveln + 1. This does avoid the nonlinear interactions of the spuriousmode
with the physical modes. It is better, therefore, to blend the filtering with time stepping, by
replacing the unfiltered solution by the filtered one as soon as it becomes available. Suppose
for example that we have a new value ofc̃n+1 obtained with the leapfrog scheme,

c̃n+1 = ĉn−1 + 2∆t Q(t, c̃n), (10.45)

with the usual source termQ regrouping all spatial operators. We can then filterc̃n with

ĉn = c̃n + κ

(
c̃n+1 − 2c̃n + ĉn−1

)
, (10.46)

and immediately store it in the array holdingc̃n. This is whyĉn−1 appears in the filtering and
leapfrog step instead of̃cn−1 because the filtered value has already superseded the original
one. This filter, known asAsselin filter(Asselin, 1972), is commonly used in models with
leapfrog time discretization.

In order not to filter excessively, small values ofκ can be used. Alternatively, the filter
can be applied only intermittently or with varying intensity κ.

More selective filters in time can be inspired by the spatial filter (10.42), but these would
require the storage of additional intermediate values of the state vector because the filter
involves more time levels (five in the biharmonic case), while the leapfrog scheme itself only
requires that only three levels be stored.

Other filters exist, some of them based on intermittent re-initialization of the leapfrog time
integration by simple Euler steps, but all of them should be applied with caution because they
always filter part of the physical solution or alter the truncation error.

10.7 Contour dynamics

The preceding stability analysis and aliasing problem gives us a nice opportunity to intro-
duce yet another numerical method, the family of so-calledboundary elementmethods. This
method was first applied to vortex calculations by Norman Zabusky2 (Zabuskyet al., 1979).
To illustrate the approach, we start from the simple task of retrieving the velocity field from
a known vorticity distribution in two dimensions. The vorticity is related to the velocity

For a localized vortex of vorticityω, the calculation of the velocity field in an infinite
domain without boundary conditions can be obtained from theStokes theorem:

∂v

∂x
− ∂u

∂y
= ω (10.47)

2See his biography at the end of this chapter.
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where symmetry considerations directly yield a particularform of the circulationΓ:

2πr dvθ = dΓ = ω ds, r2 = (x− x′)2 + (y − y′)2 (10.48)

wherevθ is perpendicular to the line joining the vortex to the point under consideration (left
part of Figure10-8). In vectorial notation, the differential velocity associated with a differen-
tial surfaceds of vorticity ω is

du =
1

2π

ω

r

k× (x− x′)

r
ds (10.49)

which we can then integrate over a space-dependent collection of vorticesω(x, y) to obtain

u(x, y) =
1

2π

∫ ∫
ω(x′, y′)

k× (x− x′)

r2
dx′dy′ . (10.50)
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Figure 10-8 An infinitesimal vortex patch allows to calculate the associated velocity fielddvθ . The
integration over a surface of constant vorticity limited bythe contourC (right part), allows for the
calculation of the velocity field of the vortex patch in an infinite domain.

This provides the velocity field as a function of the vorticity distribution, up to an irrota-
tional velocity field. In an infinite domain and with no boundary condition, the latter is zero.
Suppose for now that we have a single patch of constant vorticity so that

u(x, y) =
ω

2π

∫ ∫ −(y − y′)
(x− x′)2 + (y − y′)2 dx

′ dy′ (10.51a)

v(x, y) =
ω

2π

∫ ∫
(x − x′)

(x− x′)2 + (y − y′)2 dx
′ dy′ (10.51b)

where the surface integral is performed over the vorticity patch delimited by its contourC.
Noting that integrands are derivatives of

φ = ln

[
(x− x′)2 + (y − y′)2

L2

]
(10.52)

we can reformulate the velocity components as

u(x, y) =
ω

4π

∫ ∫
∂φ

∂y′
dx′dy′ = − ω

4π

∮

C
φdx′ (10.53a)

v(x, y) =
ω

4π

∫ ∫
− ∂φ
∂x′

dx′dy′ = − ω

4π

∮

C
φdy′ , (10.53b)
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where we used Green’s theorem, the generalization of integration by parts to a closed surface
of contourC (e.g., Riley et al. 1997). Finally, the velocity field associated with a patch of
uniform vorticity can be calculated at any point as

u(x, y) = − ω

4π

∮

C
ln

[
(x− x′)2 + (y − y′)2

L2

]
dx′ . (10.54)
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Figure 10-9 When several contours
are involved in the velocity determina-
tion, contour integrals must be summed
up and the relevant quantity to take into
account on a contour is the vorticity
jumpδωk across the contour, in the de-
picted caseω3 − ω2 for contourC3.

When several vorticity patches are present, all we have to dois to sum up the different
contributions of each patch with a slight difficulty if a patch is contained within another one as
ω3 vorticity within theω2 vorticity patch of Figure10-9. For the “outside” patch, the contour
integration has two contributions, one on the outside contour C2 in in the counterclockwise
direction with the patch to the left and a second one, also with the patch to the left and
hence in clockwise direction in its inner contourC3. This is the same as an integration in
the direction with changed sign of the integral value. Sinceon the same contour, the inner
vorticity patch will we integrated in counterclockwise direction and vorticityω3, all we have
to do is to integrate once and use the jump of vorticityδωk across the contours (from outside
to inside) instead of the vorticity inside the contour. Finally in any point(x, y) the velocity
field takes the form

u(x, y) = − 1

4π

∑

k

δωk

∮

Ck

ln

[
(x− x′)2 + (y − y′)2

L2

]
dx′ (10.55)

whereδωk is the vorticity jump across the contourCk (inside value minus outside value) and
where the sum is performed over allK contours.

Up to now we only designed a diagnostic tool to retrieve the velocity field from a given
distribution of vorticity patches. To predict the evolution of these patches, we now have to
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Integration direction

Cm

Ck (xki , y
k
i )

(xmj , y
m
j )

(xmj+1, y
m
j+1)

(x̄mj , ȳ
m
j )

ωm

Figure 10-10 The discretization of
contour integrals can be achieved by
using a mid-point evaluation of the in-
tegrand on the contourm at location
((xm

j + xm
j+1)/2, (y

m
j + ym

j+1)/2). In
this way, the singularity of the log-
arithm is avoided even if the point
xk

i , y
k
i lies on the contour on which the

integral is calculated.

solve the governing equation for vorticity. In the absence of any friction or vorticity gener-
ating processes, vorticity is conserved and simply advected by the current. For points within
a given vortex patch, they will remain within this patch and not change their vorticity so that
all we have to do is to predict the evolution of theboundaryof each patch,i.e., the contours.
Therefore we simply have to move the contour points with their velocity, i.e., the velocity
field on the contour calculated from (10.55), hence the namecontour dynamics. In practice,
integrations can rarely be performed analytically and numerical methods are again called for.
The integral discretization has to deal with a singularity if the point(x, y) lies on the contour
over which integration takes place. A simple way to avoid numerical problems associated
with it, is the use a staggered approach for the integration,or stated differently, the use of
a mid-point integration in which the integrand is evaluatedat mid-distance between points
i andi + 1 (Figure10-10): For pointi on contourk located in(xki , y

k
i ) integrals related to

contourCm are approximated as

Im(xki , y
k
i ) =

N∑

j=1

ln

[
(xki − x̄mj )2 + (yki − ȳmj )2

L2

]
(xmj+1 − xmj )

Jm(xki , y
k
i ) =

N∑

j=1

ln

[
(xki − x̄mj )2 + (yki − ȳmj )2

L2

]
(ymj+1 − ymj )

x̄mj =
xmj+1 + xmj

2
, ȳmj =

ymj+1 + ymj
2
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Figure 10-11 Evolution of a thin layer of uniform vorticity simulated with contour dynamics.

where the sum is done overN segments3 defining each contour and where we defined for
conveniencexmN+1 = x1 andymN+1 = y1. Even whenm is equal tok (i.e., we integrate
over the contour on which lies the point where velocity is to be calculated) the singularity
of the logarithm is avoided as long as all contour points(xj , yj) are different. Finally, once
individual integrals are estimated, the velocity components can be assessed by summing over
all contours:

u(xki , y
k
i ) = − 1

4π

∑

m

δωm Im(xki , y
k
i )

v(xki , y
k
i ) = − 1

4π

∑

m

δωm Jm(xki , y
k
i )

Then each point on all contours can be moved with the Lagrangian velocity, deforming the
contour:

dxki
dt

= u(xki , y
k
i ) (10.56a)

dyki
dt

= v(xki , y
k
i ). (10.56b)

The time integration can be performed by any method of chapter 2, leading to Lagrangian
displacements of discrete points of the contours (see also Lagrangian approach of Section
12.7).

The simple numerical integration method outlined here is easily implemented (see for
examplecontourdyn.m ). To check the method, we can apply it to a case akin to the shear
layer instability of Section10.4, and simulate the evolution of thin small layer of uniform
vorticity (Figure10-11). The method can also be used to study the evolution and interaction
of inviscid vortex patches in an infinite domain (Figure10-12) with the distinct advantage
that no aliasing is present and that in principle no numerical dissipation needs to be added
to stabilize the nonlinear advection. In reality, some dissipation will be needed because the
advection, leading to tearing and shearing of the eddies, can lead to the creation of filaments
becoming finer and finer when there is no viscosity. Because the discretization uses only a
finite number of fluid parcels on the contour, the contours cannot be followed down to the
smallest scales and eventually some special treatment is needed when calculation points are
getting too close and make other regions of the contour void of calculation points. Then
moving or adding new points is required. The techniques to deal with these problems are

3the number of segments per contour could of course be chosen different in which caseN = Nm.
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Figure 10-12 Two positive vorticity patches flank-
ing a vortex of opposite vorticity and twice as large
in size (left side). Depending on the distances
between the initial vortices, several outcomes are
possible. One of them is vortex breakup and sepa-
ration of vortex pairs (right panel).

rightfully calledcontour surgeryand where optimized by Dritschel (1988). This eliminates
some of the smallest structures and amounts to add some dissipation.

To conclude the section we can observe that we replaced a two-dimensional problem of
Eulerian vorticity evolution with the problem of moving contours, which are one-dimensional
structures. This reduces the complexity, but we must realize that the numerical cost of the
methods still behaves asK2N2 forK contours ofN segments, since for each of theKN dis-
crete points, an integration/sum over all other points mustbe performed. This is less than the
cost of a two-dimensional Eulerian model in which a Poisson equation must be solved (see
Section16.6), but the reduction of complexity was possible only becausewe exploited the
fact that there were no boundary conditions and that vorticity was constant between contours.
For a continuous vorticity distribution without boundaries, we can still apply the approach by
discretizing the vorticity levels (see Numerical Exercise10-5), analogous to what we will do
for layered models where density will be discretized (Chapter 12). Also generalizations to
stratified systems and more complicated governing equations are possible (e.g., Mohebalho-
jeh and Dritschel, 2004).

Analytical Problems

10-1. Show that the variablea introduced in (10.18) is the amplitude of the meridional dis-
placement, as claimed in the footnote.
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10-2. What can you say of the stability properties of the followingflow fields on thef–plane?

ū(y) = U

(
1 − y2

L2

)
(− L ≤ y ≤ + L) (10.57)

ū(y) = U sin
πy

L
(0 ≤ y ≤ L) (10.58)

ū(y) = U cos
πy

L
(0 ≤ y ≤ L) (10.59)

ū(y) = U tanh
( y
L

)
(−∞ < y < + ∞). (10.60)

10-3. A zonal shear flow with velocity profile

ū(y) = U

(
y

L
− 3

y3

L3

)

occupies the channel−L ≤ y ≤ +L on the beta plane. Show that if|U | is less than
β0L

2/12, this flow is stable.

10-4. The atmospheric jet stream is a wandering zonal flow of the upper troposphere, which
plays a central role in mid-latitude weather. If we ignore the variations in air density,
we can model the average jet stream as a purely zonal flow, independent of height and
varying meridionally according to

ū(y) = U exp

(
− y2

2L2

)
,

in which the constantsU andL, characteristics of the speed and width, are taken as
40 m/s and 570 km, respectively. The jet center (y = 0) is at 45◦N whereβ0 =
1.61× 10−11 m−1s−1. Is the jet stream unstable to zonally propagating waves?

10-5. Verify the semicircle theorem for the particular shear flow studied in Section10.4. In
other words, prove that|cr| < U for stable waves andci < U for unstable waves.
Also, prove that the wavelength leading to the highest growth rate,kci, is 15.77L, as
stated in the text.

10-6. Derive the dispersion relation and establish a stability threshold for the jet-like profile
of Figure10-13.

Numerical Exercises

10-1. Redo the analysis of nonlinear aliasing for a cubic term likedu/dt = −u3 in the gov-
erning equation foru. Why do you think aliasing is less of a concern in this particular
case?
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y

ū(y)
0

ū = 0

+a

−a

U

ū = U (1− y/a)

ū = U (1 + y/a)

Figure 10-13 A jet-like profile (for
Problem 10-6).

10-2. An elliptic vortex patch with uniform vorticity inside and zero vorticity outside is called
a Kirchhoff vortex. Usecontourdyn.m with itest=1 to study the evolution of
Kirchhoff vortices of aspect ratios 2:1 and 4:1. What do you observe? Implement
another time-integration scheme (among which the explicitEuler scheme) and analyze
how it behaves with a circular eddy.Hint: Love (1893) provides a stability analysis of
the Kirchhoff vortex.

10-3. Experiment withcontourdyn.m with test caseitest=4 in which two identical
eddies are placed at various distances. Start withdist=1.4 and then try the value
1.1 . What happens? Which numerical parameters would you adapt to improve the
numerical simulation? Try it!

10-4. Simulate the eddy separation shown in Figure10-12usingcontourdyn.m .

10-5. Discretize a circular eddy with vorticity varying linearlyfrom zero at the rim to a
maximum at the center by usingK different vorticity values in concentric annuli. Then
simulate its evolution withK = 3.

10-6. Verify your findings of Analytical Problem 10-6 by adaptingshearedflow.m to
simulate the evolution of the most unstable periodic perturbation.

10-7. Adaptshearedflow.m to investigate the so-calledBickley jetwith profile given by

ū(y) = U sech2
( y
L

)
(−∞ < y < +∞). (10.61)



Louis Norberg Howard
1929 –

Applied mathematician and fluid dynamicist, Louis Norberg Howard has made numerous
contributions to hydrodynamic stability and rotating flow.His famous semicircle theorem
was published in 1961 as a short note extending some contemporary work by John Miles.
Howard is also well known for his theoretical and experimental studies of natural convection.
With Willem Malkus, he devised a simple waterwheel model of convection that, like real
convection, can exhibit resting, steady, periodic and chaotic behaviors. Howard has been a
regular lecturer at the annual Geophysical Fluid Dynamics Summer Institute at the Woods
Hole Oceanographic Institution, where his audiences were much impressed by the breadth of
his knowledge and the clarity of his explanations. (Photo credit: L. N. Howard)
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Norman J. Zabusky
19xx –

Invented the method of contour dynamics and made numerous other contributions to compu-
tational fluid dynamics. Studied vorticity dynamics in highly turbulent flows. ()
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Chapter 11

Stratification

(October 18, 2006)SUMMARY : After having studied the effects of rotation in homoge-
neous fluids, we now turn our attention toward the other distinctive feature of geophysical
fluid dynamics, namely, stratification. A basic measure of stratification, the Brunt–Väisälä
frequency, is introduced, and the accompanying dimensionless ratio, the Froude number, is
defined and given a physical interpretation. The numerical part deals with the handling of
unstable stratification in model simulations.

11.1 Introduction

As Chapter1 stated, problems in geophysical fluid dynamics concern fluidmotions with
one or both of two attributes, namely, ambient rotation and stratification. In the preceding
chapters, attention was devoted exclusively to the effectsof rotation, and stratification was
avoided by the systematic assumption of a homogeneous fluid.We noted that rotation imparts
to the fluid a strong tendency to behave in a columnar fashion —to be vertically rigid.

By contrast, a stratified fluid, consisting of fluid parcels ofvarious densities, will tend
under gravity to arrange itself so that the higher densitiesare found below lower densities.
This vertical layering introduces an obvious gradient of properties in the vertical direction,
which affects — among other things — the velocity field. Hence, the vertical rigidity induced
by the effects of rotation will be attenuated by the presenceof stratification. In return, the
tendency of denser fluid to lie below lighter fluid imparts a horizontal rigidity to the system.

Because stratification induces a certain degree of decoupling between the various fluid
masses (those of different densities), stratified systems typically contain more degrees of
freedom than homogeneous systems, and we anticipate that the presence of stratification
permits the existence of additional types of motions. When the stratification is mostly ver-
tical (e.g., layers of various densities stacked on top of one another),gravity waves can be
sustained internally (Chapter13). When the stratification also has a horizontal component,
additional waves can be permitted, and, if these grow at the expense of the basic potential
energy available in the system, instabilities may arise (Chapter17).
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11.2 Static stability

Let us first consider a fluid in static equilibrium. Lack of motion can occur only in the absence
of horizontal forces and thus in the presence of horizontal homogeneity. Stratification is then
purely vertical (Figure11-1).

h

ρ(z + h)

z ρ(z)

Figure 11-1 When an incompressible
fluid parcel of densityρ(z) is vertically
displaced from levelz to level z + h
in a stratified environment, a buoyancy
force appears because of the density
differenceρ(z)−ρ(z+h) between the
particle and the ambient fluid.

It is intuitively obvious that if the heavier fluid parcels are found below the lighter fluid
parcels, the fluid is stable, whereas if heavier parcels lie above lighter ones, the system is apt
to overturn, and the fluid is unstable. Let us now verify this intuition. Take a fluid parcel at a
heightz above a certain reference level, where the density isρ(z), and displace it vertically
to the higher levelz + h, where the ambient density isρ(z + h) (Figure11-1). If the fluid
is incompressible, our displaced parcel retains its formerdensity despite a slight pressure
change, and at that new level feels a buoyancy force equal to

g [ρ(z + h) − ρ(z)] V,

whereV is the volume of the parcel. As it is written, this force is positive if it is directed
upward. Newton’s law (mass times acceleration equals force) yields

ρ(z) V
d2h

dt2
= g [ρ(z + h) − ρ(z)] V. (11.1)

Now, geophysical fluids are generally only weakly stratified; the density variations, al-
though sufficient to drive or affect motions, are nonetheless relatively small compared to the
average or reference density of the fluid. This remark was theessence of the Boussinesq
approximation (Section3.7). In the present case, this fact allows us to replaceρ(z) on the
left-hand side of (11.1) by the referenceρ0 and to use a Taylor expansion to approximate the
density difference on the right by

ρ(z + h) − ρ(z) ' dρ

dz
h.

After a division byV , equation (11.1) reduces to

d2h

dt2
− g

ρ0

dρ

dz
h = 0, (11.2)

which shows that two cases can arise. The coefficient−(g/ρ0)dρ/dz is either positive or
negative. If it is positive (dρ/dz < 0, corresponding to a fluid with the greater densities
below the lesser densities), we can define the quantityN2 as
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N2 = − g

ρ0

dρ

dz
, (11.3)

and the solution to the equation has an oscillatory character, with frequencyN . Physically,
this means that, when displaced upward, the parcel is heavier than its surroundings, feels a
downward recalling force, falls down, and, in the process, acquires a vertical velocity; upon
reaching its original level the particle’s inertia causes it to go further downward and to become
surrounded by heavier fluid. The parcel, now buoyant, is recalled upward, and oscillations
persist about the equilibrium level. The quantityN , defined by the square root of (11.3),
provides the frequency of the oscillation and can thus be called thestratification frequency.
It goes more commonly, however, by the name of Brunt–Väisälä frequency, in recognition of
the two scientists who were the first to highlight the importance of this frequency in stratified
fluids. (See their biographies at the end of this chapter.)

If the coefficient in equation (11.1) is negative (i.e., dρ/dz > 0, corresponding to a top-
heavy fluid configuration), the solution exhibits exponential growth, a sure sign of instability.
The parcel displaced upward is surrounded by heavier fluid, finds itself buoyant, and moves
farther and farther away from its initial position. Obviously, small perturbations will ensure
not only that the single displaced parcel will depart from its initial position, but that all other
fluid parcels will likewise participate in a general overturning of the fluid until it is finally
stabilized, with the lighter fluid lying above the heavier fluid. If, however, a permanent
destabilization is forced onto the fluid, such as by heating from below or cooling from above,
the fluid will remain in constant agitation, a process calledconvection.

In this and the following chapters, we will restrict our attention to stably stratified fluids,
for which the stratification frequency,N , defined from (11.3), exists.

11.3 A note on atmospheric stratification

In a compressible fluid, such as the air of our planetary atmosphere, density can change in
one of two ways: by pressure changes or by internal-energy changes. In the first case, a
pressure variation resulting in no heat exchange (i.e., an adiabatic compression or dilation)
is accompanied by both density and temperature variations:All three quantities increase (or
decrease) simultaneously, though not in equal proportions. If the fluid is made of fluid parcels
all having the same heat content, the lower parcels, feelingthe weight of those above them,
will be more compressed than those in the upper levels, and the system will appear stratified,
with the denser and warmer fluid underlying the lighter, colder fluid. But such stratification
cannot be dynamically relevant, for if parcels are interchanged adiabatically, they adjust their
density and temperature according to the local pressure, and the system is left unchanged.

In contrast, internal-energy changes are dynamically important. In the atmosphere, such
variations occur because of a heat flux (such as heating in thetropics and cooling at high
latitudes, or according to the diurnal cycle) or because of the variations in air composition
(such as water vapor). Such variations among fluid parcels doremain despite adiabatic com-
pression/dilation and cause density differences that drive motions. It is thus imperative to
distinguish, in a compressible fluid, the density variations that are dynamically relevant from
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those that are not. Such separation of density variations leads to the concept of potential
density.

First, we consider a neutral (adiabatic) atmosphere – that is, one consisting of all air
parcels having the same internal energy. Further, let us assume that the air, a mixture of
various gases, behaves as a single perfect gas. Under these assumptions, we can write the
equation of state and the adiabatic conservation law:

p = RρT, (11.4)

p

p0
=

(
ρ

ρ0

)γ
, (11.5)

wherep, ρ, andT are, respectively, the pressure, density and absolute temperature (in contrast
with the preceding chapters, the variablesp andρ here denote the full pressure and density);
R = Cp − Cv andγ = Cp/Cv are the constants of a perfect gas. Finally,p0 andρ0 are
reference pressure and density characterizing the level ofinternal energy of the fluid; the
corresponding reference temperatureT0 is obtained from (11.4) — that is,T0 = p0/Rρ0.
Expressing both pressure and density in terms of the temperature, we obtain

p

p0
=

(
T

T0

)γ/(γ−1)

(11.6)

ρ

ρ0
=

(
T

T0

)1/(γ−1)

. (11.7)

Without motion, the atmosphere is in static equilibrium, which requires hydrostatic bal-
ance:

dp

dz
= − ρg. (11.8)

Elimination ofp andρ by use of (11.6) and (11.7) yields a single equation for the temperature:

dT

dz
= − γ − 1

γ

g

R

= − g

Cp
. (11.9)

In the derivation, it was assumed thatp0, ρ0, and thusT0 are not dependent onz, in agreement
with our premise that the atmosphere is composed of parcels with identical internal-energy
contents. Equation (11.9) states that the temperature in such atmosphere must decrease with
increasing height at the uniform rateg/Cp ' 10 K/km. This gradient is called theadiabatic
lapse rate. Physically, lower parcels are under greater pressure thanhigher parcels and thus
have higher densities and temperatures. This explains why the air temperature is lower on
mountain tops than at in the valleys.

It almost goes without saying that the departures from this adiabatic lapse rate – and not
the total temperature gradients — are to be considered in thestudy of atmospheric motions.
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We can demonstrate this clearly by redoing here, with a compressible fluid, the analysis of a
vertical displacement performed in the previous section with an incompressible fluid. Con-
sider a vertically stratified gas with pressure, density, and temperature,p, ρ, andT , varying
with heightz but not necessarily according to (11.9); that is, the heat content in the fluid is
not uniform. The fluid is in static equilibrium so that equation (11.8) is satisfied. Consider
now a parcel at heightz; its properties arep(z), ρ(z), andT (z). Imagine then that this fluid
parcel is displaced adiabatically upward over a small distanceh. According to the hydrostatic
equation, this results in a pressure changeδp = −ρgh, which causes density and tempera-
ture changes given by the adiabatic constraints (11.5) and (11.6): δρ = −ρgh/γRT and
δT = −(γ − 1)gh/γR. Thus, the new density isρ′ = ρ+ δρ = ρ− ρgh/γRT . But, at that
new level, the ambient density is given by the stratification: ρ(z + h) ' ρ(z) + (dρ/dz)h.
The displaced parcel experiences an upward force equal to the buoyancy force, which per
volume is

F = g [ρambient − ρparcel]

= g [ρ(z + h) − ρ′]

' g

(
dρ

dz
+

ρg

γRT

)
h.

In terms of the temperature, this force is

F ' − ρg

T

(
dT

dz
+

g

Cp

)
h.

If

N2 = − g

ρ

(
dρ

dz
+

ρg

γRT

)
(11.10)

=
g

T

(
dT

dz
+

g

Cp

)
(11.11)

is a positive quantity, this force recalls the particle towards its initial level, and the stratifica-
tion is stable. As we can clearly see, the relevant quantity is not the total temperature gradient
but the departure from the adiabatic gradientg/Cp. As in the previous case of a stably strati-
fied incompressible fluid, the quantityN is the frequency of vertical oscillations. It is called
the stratification, or Brunt–Väisälä, frequency.

In order to avoid the systematic subtraction of the adiabatic gradient from the tempera-
ture gradient, the concept of potential temperature is introduced. Thepotential temperature,
denoted byθ, is defined as the temperature that the parcel would have if itwere brought adi-
abatically to a given reference pressure. (In the atmosphere, this reference is usually taken as
a nominal ground pressure of 1030 millibars = 1.03× 105 N/m2.) From (11.6), we have

p

p0
=

(
T

θ

)γ/(γ−1)

and hence
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θ = T

(
p

p0

)−(γ−1)/γ

. (11.12)

The corresponding density is called thepotential density, denotedσ:

σ = ρ

(
p

p0

)−1/γ

. (11.13)

The definition of the stratification frequency (11.11) takes the more compact form

N2 = − g

σ

dσ

dz
. (11.14)

Comparison with the earlier definition, (11.3), immediately shows that the substitution of
potential density for density allows us to treat compressible fluids as incompressible.

During daytime and above land, the lower atmosphere is typically heated from below by
the warmer ground and is in a state of turbulent convection. The convective layer not only
covers the entire region where the time-averaged gradient of potential temperature is negative,
but it also penetrates into the region above where it is positive (Figure11-2). Consequently,
the sign ofN2 at a particular level is not unequivocally indicative of stability at that level.
For this reason, Stull (1991) advocates the use of a non-local criterion to determine static
stability. Those considerations apply equally well to the upper ocean under surface cooling.

JMB from⇓
Benoit This chapter is very short compared to the others. I tried to find some numerics

from other chapters that could fit here but was not successful(maybe you have some ideas).
On the other hand, we could add a little more on static stability in the atmosphere:

• dry air: lapse rate withCp of dry air

• humid, unsaturated air: mixture with water vapor (highCp) hence apparentCp of
mixture is larger and lapse rate smaller

• saturated air: consendation liberates energy hence cooling due to expansion is reduced:
even smaller lapse rate

Hence situation of11-3.JMB to⇑

11.4 Convective adjustment

When static instability is present in the ocean or atmosphere, non-hydrostatic movements
very rapidly restore stability through small columns of convection (e.g., Marshall and Schott
1999). Such physical movements are not resolved by most models and parameterizations
calledconvection schemesare introduced to remove static instability and to model thever-
tical motion and mixing associated with convection. Parameterization of the effect can be
done trough additional terms in governing equations, typically through a strongly increased
eddy viscosity and diffusivity wheneverN2 ≤ 0 (e.g., Cox, 1984; Marotzke, 1991). Other
parameterizations are rather “algorithmical” tools working on rules such as the following
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Figure 11-2 Typical profile of potential temperature in the lower atmosphere above warm ground.
Heating from below destabilizes the air, generating convection and turbulence. Note how the convective
layer extends not only over the region of negativeN2 but also slightly beyond, whereN2 is positive.
Such a situation shows that a positive value ofN2 may not always be indicative of local stability. (From
Stull, 1991.)
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T

z

Adiabatic lapse rate

Condensation level

Upper cloud level

Saturated lapse rate

Air temperature

k

Figure 11-3 A fluid parcel located
in z within an ambient temperature
(solid line) is in an unstable situation.
Parcels that move upward eventually
reach their saturation level, condensa-
tion takes place and the lapse rate is
decreased. If an inversion is present at
higher levels, clouds extension is verti-
cally limited.

While there is any negative $Nˆ2$
Loop over all layers

If pot_density(layer_above) > pot_density(layer_below)
Mix both layer

end if
end loop over all layers

end while

The mixing is then a volume-weighted mixing and was used in the first oceanic models (e.g.,
Bryan, 1969; Cox, 1984) whenever a static instability occurred (Figure11-4). Such mixing is
however too strong in practice, because the model mixes overa complete horizontal grid box
of size∆x∆y while physical convection operates at smaller scales and mixes only part of
the physical field contained within a grid box. Therefore, the numerical mixing can be partly
replaced by a swapping of water masses, assuming convectioncarries part of the properties
without alteration to their level of equilibrium (e.g., Roussenovet al.. 2001). It is clear
that some arbitrary choices are done here and require calibrations for real applications. In
particular, changing the time step clearly changes the speed at which the column is mixed. For
atmospheric conditions, the situation is even more complicated as it involves condensation,
latent-heat release and precipitation during convective movements, so that the convection
parameterizations involve adjustment of both temperatureand moisture vertical structures
(e.g., Kuo 1974, Betts 1986).
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Figure 11-4 Illustration of the convec-
tive adjustment with a heating from be-
low, where grid boxes that are statically
unstable are mixed until the whole col-
umn is stable

Figure 11-5 Situation in which a stratified flow encounters an obstacle, forcing some fluid parcels to
move vertically against a buoyancy force.

11.5 The importance of stratification: The Froude number

It was established in Section1.5 that rotational effects are dynamically important when the
Rossby number is on the order of unity or less. This number compares the distance traveled
horizontally by a fluid parcel during one revolution (∼ U/Ω) with the length scale over
which the motions take place (L). Rotational effects are important when the former is less
than the latter. By analogy, we may ask whether there exists asimilar number measuring the
importance of the stratification. From the remarks in the preceding sections, we can anticipate
that the stratification frequency,N , and the height scale,H , of a stratified fluid will play roles
similar to those ofΩ andL in rotating fluids.

To illustrate how such a dimensionless number can be derived, let us consider a stratified
fluid of thicknessH and stratification frequencyN flowing horizontally at a speedU over
an obstacle of lengthL and height∆z (Figure11-5). We can think of a wind in the lower
atmosphere blowing over a mountain range. The presence of the obstacle forces some of
the fluid to be displaced vertically and, hence, requires some supply of gravitational energy.
Stratification will act to restrict or minimize such vertical displacements in some way, forcing
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the flow to pass around rather than over the obstacle. The greater the restriction, the greater
the importance of stratification.

The time passed in the vicinity of the obstacle is approximately the time spent by a fluid
parcel to cover the horizontal distanceL at the speedU , that is,T = L/U . To climb a height
of ∆z, the fluid needs to acquire a vertical velocity on the order ofW = ∆z/T = U∆z/L.
The vertical displacement is on the order of the height of theobstacle, causes in the presence
of stratificationρ(z) a density perturbation on the order of

∆ρ =

∣∣∣∣
dρ̄

dz

∣∣∣∣ ∆z

=
ρ0N

2

g
∆z, (11.15)

whereρ̄(z) is the fluid’s vertical density profile upstream. In turn, this density variation gives
rise to a pressure disturbance that scales, via the hydrostatic balance, as

∆P = gH∆ρ

= ρ0N
2H∆z. (11.16)

By virtue of the balance of forces in the horizontal, the pressure-gradient force must be ac-
companied by a change in fluid velocity [u∂u/∂x+ v∂u/∂y ∼ (1/ρ0)∂p/∂x]:

U2

L
=

∆P

ρ0L

U2 = N2H∆z. (11.17)

From this last expression, the ratio of vertical convergence,W/H , to horizontal divergence,
U/L, is found to be

W/H

U/L
=

∆z

H
=

U2

N2H2
. (11.18)

We immediately note that ifU is less than the productNH ,W/H must be less thanU/L,
implying that convergence in the vertical cannot fully meethorizontal divergence. Conse-
quently, the fluid is forced to be partially deflected horizontally so that the term∂u/∂x can
be met by−∂v/∂y better than by−∂w/∂z. The stronger the stratification, the smaller isU
compared toNH and, thus,W/H compared toU/L.

From this argument, we conclude that the ratio

Fr =
U

NH
, (11.19)

called theFroude number, is a measure of the importance of stratification. The rule is: If
Fr . 1, stratification effects are important; the smallerFr, the more important these effects
are.

The analogy with the Rossby number of rotating fluids,
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Ro =
U

ΩL
, (11.20)

whereΩ is the angular rotation rate andL the horizontal scale, is immediate. Both Froude
and Rossby numbers are ratios of the horizontal velocity scale by a product of frequency
and length scale; for stratified fluids, the relevant frequency and length are naturally the
stratification frequency and the height scale, whereas in rotating fluids they are, respectively,
the rotation rate and the horizontal length scale.

The analogy can be pursued a little further. Just as the Froude number is a measure of the
vertical velocity in a stratified fluid [via (11.18)], the Rossby number can be shown to be a
measure of the vertical velocity in a rotating fluid. We saw (Section7.2) that strongly rotating
fluids (Ro nominally zero) allow no convergence of vertical velocity,even in the presence
of topography. This results from the absence of horizontal divergence in geostrophic flows
(ruling out here, for the sake of the analogy, an eventual beta effect). In reality, the Rossby
number cannot be nil, and the flow cannot be purely geostrophic. The nonlinear terms, of
relative importance measured byRo, yield corrective terms to the geostrophic velocities of
the same relative importance. Thus, the horizontal divergence,∂u/∂x+ ∂v/∂y, is not zero
but is on the order ofRoU/L. Since the divergence is matched by the vertical divergence,
−∂w/∂z, on the order ofW/H , we conclude that

W/H

U/L
= Ro, (11.21)

in rotating fluids. Contrasting (11.18) to (11.21), we note that, with regard to vertical veloci-
ties, the square of the Froude number is the analogue of the Rossby number.

In continuation of the analogy, it is tempting to seek the stratified analogue of the Taylor
column in rotating fluids. Recall that Taylor columns occur in rapidly rotating fluids (Ro =
U/ΩL� 1). Let us then ask what happens when a fluid is very stratified (Fr = U/NH �
1). By virtue of (11.18), the vertical displacements are severely restricted (∆z � H), imply-
ing that an obstacle causes the fluid at that level to be deflected almost purely horizontally.
(In the absence of rotation, there is no tendency toward vertical rigidity, and parcels at levels
above the obstacle can flow straight ahead without much disruption.) If the obstacle occupies
the entire width of the domain, such a horizontal detour is not allowed, and the fluid at the
level of the obstacle is blocked on both the upstream and downstream sides. This horizontal
blocking in stratified fluids is the analogue of the vertical Taylor columns in rotating fluids.
Further analogies between homogeneous rotating fluids and stratified nonrotating fluids have
been reviewed by Veronis (1967).

11.6 Combination of rotation and stratification

In the light of the previous remarks, we are now in position toask what happens when, as in
actual geophysical fluids, the effects of rotation and stratification are simultaneously present.
The preceding analysis remains unchanged, except that we now invoke the geostrophic bal-
ance [see (7.7)] in the horizontal momentum equation to obtain the horizontal velocity scale:
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ΩU =
∆P

ρ0L

U =
N2H∆z

ΩL
. (11.22)

The ratio of the vertical to horizontal convergence then becomes

W/H

U/L
=

∆z

H
=

ΩLU

N2H2

=
Fr2

Ro
. (11.23)

As a result, the influence of rotation (Ro . 1) is to increase the scale for the vertical
velocity. However, since vertical divergence cannot existwithout horizontal convergence
(W/H . U/L), the following inequality must hold:

Fr2 . Ro, (11.24)

that is,

U

NH
. NH

ΩL
. (11.25)

This sets an upper bound for the magnitude of the flow field in a fluid under given rotation
(Ω) and of given stratification (N ) in a domain of given dimensions (L, H). If the velocity
is imposed externally (e.g., by an upstream condition), the inequality specifies eitherthe
horizontal or the vertical length scales of the possible disturbances. Finally, if the system is
such that all quantities are externally imposed and that they do not meet (11.25), then special
effects such as Taylor columns or blocking must occur.

Inequality (11.25) brings a new dimensionless numberNH/ΩL, namely, the ratio of the
Rossby and Froude numbers. For historical reasons and also because it is more convenient in
some dimensional analyses, the square of this quantity is usually defined:

Bu =

(
NH

ΩL

)2

=

(
Ro

Fr

)2

. (11.26)

It bears the name ofBurger number, in honor of Alewyn P. Burger (1927–2003), who con-
tributed to our understanding of geostrophic scales of motions (Burger, 1958). In practice,
the Burger number is a useful measure of stratification in thepresence of rotation.

In typical geophysical fluids, the height scale is much less than the horizontal length scale
(H � L), but there is also a disparity between the two frequenciesΩ andN . AlthoughΩ,
the rotation rate of the earth, corresponds to a period of 24 h, the stratification frequency
generally corresponds to much shorter periods, on the orderof few to tens of minutes in both
the ocean and atmosphere. This implies that generallyΩ� N and opens the possibility of a
Burger number on the order of unity.

This is a particular case of great importance. According to our foregoing scaling analysis,
the ratio of vertical convergence to horizontal divergence, (W/H)/(U/L), is given byFr2,
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Figure 11-6 Recapitulation of the var-
ious scalings of the ratio of the ver-
tical convergence (divergence),W/H ,
to the horizontal divergence (conver-
gence), U/L, as a function of the
Rossby number,Ro = U/(ΩL), and
Froude number,Fr = U/(NH).

Fr2/Ro, or Ro, depending on whether vertical motions are controlled by stratification or
rotation or both (Figure11-6). Thus, ifFr2/Ro is less thanRo, stratification restricts vertical
motions more than rotation and is the dominant process. The converse is true ifFr2/Ro is
greater thanRo. This relationship implies that stratification and rotation influence the flow
field to similar degrees ifFr2/Ro andRo are on the same order. Such is the case when the
Froude number equals the Rossby number and, consequently, the Burger number is unity.
The horizontal length scale then assumes a special value:

L =
NH

Ω
. (11.27)

For the values ofΩ andN just cited and a height scaleH of 100 m in the ocean and 1 km in
the atmosphere, this horizontal length scale is on the orderof 50 km and 500 km in the ocean
and atmosphere, respectively. At this length scale, stratification and rotation go hand in hand.
Later on (Chapter15), it will be shown that the scale defined above is none other than the
so-calledinternal radius of deformation.
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Analytical Problems

11-1. The Gulf Stream waters are characterized by surface temperatures around 22◦C. At
a depth of 800 m below the Gulf Stream, temperature is only 10◦C. Using the value
2.1× 10−4 K−1 for the coefficient of thermal expansion, calculate the stratification
frequency. What is the horizontal length at which both rotation and stratification play
comparable roles? Compare this length scale to the width of the Gulf Stream.

11-2. An atmospheric inversion occurs when the temperature increases with altitude, in con-
trast to the normal situation when the temperature decays with height. This corresponds
to a very stable stratification and, hence, to a lack of ventilation (smog, etc.). What is
the stratification frequency when the inversion sets in (dT/dz = 0)? TakeT = 290 K
andCp = 1005 m2/s2.K.

11-3. A meteorological balloon rises through the lower atmosphere, simultaneously measur-
ing temperature and pressure. The reading, transmitted to the ground station where
the temperature and pressure are, respectively, 17◦C and 1028 millibars, reveals a gra-
dient∆T/∆p of 6◦C per 100 millibars. Estimate the stratification frequency.If the
atmosphere were neutral, what would the reading be?

11-4. A wind blowing at a speed of 10 m/s encounters an extinct volcano (of approximately
conical shape) 500 m high and 20 km in diameter. The air stratification provides a
stratification frequency on the order of 0.02 s−1. How do vertical displacements com-
pare to the height of the volcano? What does this imply about the importance of the
stratification? Is the Coriolis force important in this case?

11-5. Redo Problem 11-4 with the same wind speed and stratificationbut with a mountain
range 1000 m high and 500 km wide.JMB from⇓

11-6. Vertical soundings of the atmosphere provided temperatureprofiles of Figure11-7.
Analyze the static stability of each profile.JMB to⇑

Numerical Exercises

11-1. Usemedprof.m to read average Mediterranean temperature and salinity profiles and
calculateN2 for various sizes of averaging boxes. What do you conclude? (Hint: use
ies80.m for the state equation).

11-2. Use the diffusion-equation solver of Exercise 5-4 with a turbulent diffusion coefficient
that changes locally from 10−4 m2/s to 10−2 m2/s wheneverN2 is negative. Simulate
the evolution of a 50 m heigh water column with an initially stable vertical temperature
gradient of 0.3◦C/m. Cool the system at the surface by a heat loss of100 W/m2.
Salinity is considered constant. Study the effect of changes in∆z and∆t.
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Figure 11-7 Vertical profiles of tem-
perature with lapse rate (dashed line) of
fluid parcel (dot) and ambient tempera-
ture (solid line).

11-3. Implement the algorithm outlined in Section11.4, removing any static instability in-
stantaneously. Keep the turbulent diffusion constant at 10−4 m2/s and simulate the
same problem as in Exercise 11-2.



David Brunt
1886 – 1965

As a bright young British mathematician, David Brunt began acareer in astronomy, analyzing
the statistics of celestial variables. Then, turning to meteorology during World War I, he
became fascinated with weather forecasting and started to apply his statistical methods to
atmospheric observations in the search for primary periodicities. By 1925, he had concluded
that weather forecasting by extrapolation of cyclical behavior was not possible and turned his
attention to the dynamic approach, which had been initiatedin the late nineteenth century by
William Ferrel and given new impetus by Vilhelm Bjerknes in recent years.

In 1926, he delivered a lecture at the Royal Meteorological Society on the vertical oscil-
lations of particles in a stratified atmosphere. Lewis F. Richardson then led him to a paper
published the preceding year by Finnish scientist Vilho Väisälä, in which the same oscillatory
frequency was derived. This quantity is now jointly known asthe Brunt–Väisälä frequency.

Continuing his efforts to explain observed phenomena by physical processes, Brunt con-
tributed significantly to the theories of cyclones and anticyclones and of heat transfer in the
atmosphere. His studies culminated in a textbook titledPhysical and Dynamical Meteorology
(1934) and confirmed him as a founder of modern meteorology. (Photo credit: LaFayette,
London)
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Vilho V äisälä
1889 – 1969

Text of second bio (here)
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Chapter 12

Layered Models

(October 18, 2006)SUMMARY : Advantage is taken of the assumption of density conser-
vation by fluid parcels to change the vertical coordinate from depth to density. The new
equations allow for a clear discussion of potential-vorticity dynamics and lend themselves to
discretization in the vertical. The result is a layered model. Splitting stratification in a series
of layers may be interpreted as a vertical discretization inwhich the vertical grid is a material
surface of the flow. This naturally leads to the discussion ofgeneral Lagrangian approaches.
Note: To avoid problems of terminology, we restrict ourselves here to the ocean. The case
of the atmosphere follows with the replacement of depth by height and density by potential
density.

12.1 From depth to density

Since a stable stratification requires a monotonic increaseof density downward, density can
be taken as a surrogate for depth and used as the vertical coordinate. If density is conserved by
individual fluid parcels, as it is approximately the case formost geophysical flows, consider-
able mathematical simplification follows, and the new equations present a definite advantage
in a number of situations. It is thus worth expounding on thischange of variables at some
length.

In the original Cartesian system of coordinates,z is an independent variable and density
ρ(x, y, z, t) is a dependent variable, giving the water density at location (x, y), time t, and
depthz. In the transformed coordinate system(x, y, ρ, t), density becomes an independent
variable, andz(x, y, ρ, t) has become the dependent variable giving the depth at which density
ρ is found at location(x, y) and at timet. A surface along which density is constant is called
an isopycnal surface, or isopycnicfor short.

From a differentiation of the expressiona = a(x, y, ρ(x, y, z, t), t), wherea is any vari-
able, the rules for the change of variables follow:
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∂
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∂t

∣∣∣
z
.

Then, application toa = z gives0 = zx + zρρx, 1 = zρρz, etc. (where a subscript indicates
a derivative). This provides the rule to change the derivative ofρ at z constant to that ofz at
ρ constant. Fora other thanz, we can write:

∂a

∂x

∣∣∣
z

=
∂a

∂x

∣∣∣
ρ
− zx

zρ

∂a

∂ρ
, (12.1)

with similar expressions wherex is replaced byy or t, and

∂a

∂z
=

1

zρ

∂a

∂ρ
. (12.2)

Here, subscripts denote derivatives. Figure12-1depicts a geometrical interpretation of rule
(12.1).
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Figure 12-1 Geometrical interpre-
tation of equation (12.1). The x-
derivatives of any functiona at con-
stant depthz and at constant densityρ
are, respectively,[a(B) − a(A)]/∆x
and[a(C)−a(A)]/∆x. The difference
between the two,[a(C) − a(B)]/∆x,
represents the vertical derivative ofa,
[a(C) − a(B)]/∆z, times the slope
of the density surface,∆z/∆x. Fi-
nally, the vertical derivative can be split
as the ratio of theρ-derivative of a,
[a(C)− a(B)]/∆ρ, by ∆z/∆ρ.

The hydrostatic equation (4.19) readily becomes

∂p

∂ρ
= − ρg

∂z

∂ρ
(12.3)

and leads to the following horizontal pressure gradient:

∂p
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∣∣∣
z

=
∂p

∂x

∣∣∣
ρ
− zx

zρ
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ρ

+ ρg
∂z
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=

∂P
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∣∣∣
ρ
.
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Similarly, ∂p/∂y at constantz becomes∂P/∂y at constantρ. The new functionP , which
plays the role of pressure in the density-coordinate system, is defined as

P = p + ρgz (12.4)

and is called theMontgomery potential1. Later on, when there is no ambiguity, this potential
may loosely be called pressure. WithP replacing pressure, the hydrostatic balance, (12.3),
now takes a more compact form:

∂P

∂ρ
= gz, (12.5)

further indicating thatP is the natural substitute for pressure when density is the vertical
coordinate.

Beyond this point, all derivatives with respect tox, y, and time are meant to be taken at
constant density, and the subscriptρ is no longer necessary.

With the use of (12.1)–(12.3) plus the obvious relation∂ρ/∂x|ρ = 0, the density-conser-
vation equation, (4.21e) in the absence of diffusion, can be solved for the vertical velocity

w =
∂z

∂t
+ u

∂z

∂x
+ v

∂z

∂y
. (12.6)

This last equation simply tells that the vertical velocity is that necessary for the particle to
remain at all times on the same density surface, in analogy with surface fluid particles having
to remain on the surface [see Equation (7.15)]. Armed with expression (12.6), we can now
eliminate the vertical velocity throughout the set of governing equations. First, the material
derivative (3.5) assumes a simplified, two-dimensional-like form:

d

dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
, (12.7)

where the derivatives are now taken at constantρ. The absence of an advective term in the
third spatial direction results from the absence of motion across density surfaces.

In the absence of friction and in the presence of rotation, the horizontal-momentum equa-
tions (4.21a) and (4.21b) become

du

dt
− fv = − 1

ρ0

∂P

∂x
(12.8a)

dv

dt
+ fu = − 1

ρ0

∂P

∂y
. (12.8b)

We note that they are almost identical to their original versions. The differences are nonethe-
less important: The material derivative is now along density surfaces and expressed by (12.7),
the pressurep has been replaced by the Montgomery potentialP defined in (12.4), and all
temporal and horizontal derivatives are taken at constant density. Note, however, that the
componentsu andv are still the true horizontal velocity components and are not measured
along sloping density surfaces. This property is importantfor the proper application of lateral
boundary conditions.

1In honor of Raymond B. Montgomery who first introduced it in 1937. See his biography at the end of this
chapter.
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To complete the set of equations, it remains to transform thecontinuity equation (4.21d)
according to rules (12.1) and (12.2). Further elimination of the vertical velocity by using
(12.6) leads to

∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0, (12.9)

where the quantityh is introduced for convenience and is proportional to∂z/∂ρ, the deriva-
tive of depth with respect to density. For convenience, we want h to have the dimension of
height, and so we introduce an arbitrary but constant density difference,∆ρ, and define:

h = − ∆ρ
∂z

∂ρ
. (12.10)

In this manner,h can be interpreted as the thickness of a fluid layer between the densityρ and
ρ + ∆ρ. At this point, the value of∆ρ is arbitrary, but later, in the development of layered
models, it will be chosen as the density difference between adjacent layers.

The transformation of coordinates is now complete. The new set of governing equations
consists of the two horizontal-momentum equations (12.8a) and (12.8b), the hydrostatic bal-
ance (12.5), the continuity equation (12.9), and the relation (12.10). It thus forms a closed
5-by-5 system for the dependent variables,u, v, P , z, andh. Once the solution is known, the
pressurep and the vertical velocityw can be recovered from (12.4) and (12.6).

Since the aforementioned work of Montgomery (1937), the substitution of density as the
vertical variable has been implemented in a number of applications, especially by Robinson
(1965) in a study of inertial currents, by Hodnett (1978) in astudy of the permanent oceanic
thermocline, and by Sutyrin (1989) in a study of isolated eddies. A review in the meteorolog-
ical context is provided by Hoskinset al. (1985).

12.2 Layered models

A layered modelis an idealization by which a stratified fluid flow is represented as a finite
number of moving layers, stacked one upon another and each having a uniform density. Its
evolution is governed by a discretized version of the systemof equations in which density,
taken as the vertical variable, is not varied continuously but in steps: density is restricted to
assume a finite number of values. A layered model is the density analogue of alevel model,
which is obtained after discretization of the vertical variablez.

Each layer (k = 1 tom, wherem is the number of layers) is characterized by its density
ρk (unchanging), thicknesshk, Montgomery potentialPk, and horizontal velocity compo-
nentsuk andvk. The surface marking the boundary between two adjacent layers is called
an interfaceand is described by its elevationzk, measured (negatively downward) from the
mean surface level. The displaced surface level is denotedz0 (Figure12-2a). The interfacial
heights can be obtained recursively from the bottom2

2Note that contrary to our general approach to use indexes which increase with the Cartesian coordinate direc-
tions, we choose to increase the indexk downward, in agreement with the traditional notation for isopycnal models
and with the fact that our new vertical coordinate isρ increasing downward, too.
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zm = b, (12.11)

upward:

zk−1 = zk + hk, k = m to 1. (12.12)

This geometrical relation can be regarded as the discretized version of (12.10) used to define
h.

In a similar manner, the discretization of hydrostatic relation (12.5) provides another re-
cursive relation, which can be used to evaluate the Montgomery potentialP from the top,

P1 = patm + ρ0gz0, (12.13)

downward:

Pk+1 = Pk + ∆ρgzk, k = 1 tom− 1. (12.14)

In writing (12.13), we have selected the uppermost densityρ1 as the reference densityρ0.
Gradients of the atmospheric pressurepatm rarely play a significant role, and the contribution
of patm to P1 is usually omitted. If the layered model is for the lower atmosphere,patm

represents a pressure distribution aloft and may, too, be taken as an inactive constant.
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Figure 12-2 A layered model withm active layers: (a) with free surface, (b) with rigid lid.

When thereduced gravity,
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Table 12.1 LAYERED MODELS.

One layer:
z0 = h1 + b P1 = ρ0g(h1 + b)
z1 = b

Two layers:
z0 = h1 + h2 + b P1 = ρ0g(h1 + h2 + b)
z1 = h2 + b P2 = ρ0gh1 + ρ0(g + g′)(h2 + b)
z2 = b

Three layers:
z0 = h1 + h2 + h3 + b P1 = ρ0g(h1 + h2 + h3 + b)
z1 = h2 + h3 + b P2 = ρ0gh1 + ρ0(g + g′)(h2 + h3 + b)
z2 = h3 + b P3 = ρ0gh1 + ρ0(g + g′)h2

z3 = b. +ρ0(g + 2g′)(h3 + b)

g′ =
∆ρ

ρ0
g, (12.15)

is introduced for convenience, the recursive relations (12.12) and (12.14) lead to simple ex-
pressions for the interfacial heights and Montgomery potentials. For up to three layers, these
equations are summarized in Table12.1.

In certain applications, it is helpful to discard surface gravity waves, which travel much
faster than internal waves and near-geostrophic disturbances. To do so, we eliminate the
flexibility of the surface by imagining that the system is covered by a rigid lid (Figure12-2b).
This is called therigid-lid approximation, which had already been introduced in the study
of barotropic motions in section7.5. In such a case,z0 is equal to zero, and there are only
(m − 1) independent layer thicknesses. In return, one of the Montgomery potentials cannot
be derived from the hydrostatic relation. If this potentialis chosen as the one in the lowest
layer, the recursive relations yield the equations of Table12.2.

In some other instances, mainly in the investigation of upper-ocean processes, the lowest
layer may be imagined to be infinitely deep and at rest (Figure12-3). Keepingm as the
number of moving layers, we assign to this lowest (abyssal) layer the index (m + 1). The
absence of motion there implies a uniform Montgomery potential, the value of which can be
set to zero without loss of generality:Pm+1 = 0. For up to three active layers, the recursive
relations provide equations of Table12.3.

In this table,z1 = −h1 is an approximation that begs for an explanation. The free surface
is not atz = z0 = 0 but given by (12.13) when we arrive at the surface integrating upward.
For a single layer this yields, in the absence of atmosphericpressure

P2 = 0→ P1 = −∆ρgz1 = ρ0gz0. (12.16)
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Table 12.2 RIGID-LID MODELS.

One layer:
z1 = −h1 P1 variable
h1 = h, fixed

Two layers:
z1 = −h1 P1 = P2 + ρ0g

′h1

z2 = −h1 − h2 P2 variable
h1 + h2 = h, fixed

Three layers:
z1 = −h1 P1 = P3 + ρ0g

′(2h1 + h2)
z2 = −h1 − h2 P2 = P3 + ρ0g

′(h1 + h2)
z3 = −h1 − h2 − h3 P3 variable
h1 + h2 + h3 = h, fixed.

Hencegz0 = −g′z1. Sinceh1 = z0 − z1 we get(1 − g′/g)z1 = h1 and from there
z0 = η = −g′/gz1, leading to a surface lifting in light water lenses for example. This must
be the case in order to preserve a constant pressure in the lowest layer: if lighter waters take
the place of deep waters, the lost weight must be compensatedby an addition of water on top.
Because these expressions do not involve the full gravityg but only its reduced valueg′, this
type of model is known as areduced-gravity model.

Generalization to more than three moving layers is straightforward. When a configuration
with few but physically relevant layers is desired, the preceding derivations may be extended
to non-uniform density differences from layer to layer. Mathematically, this would corre-
spond to a discretization of the vertical density coordinate in unevenly spaced gridpoints.

Once the layer thicknesses, interface depths, and layer pressures (more precisely, the
Montgomery potentials) are all related, the system of governing equations is completed by
gathering the horizontal-momentum equations (12.8a) and (12.8b) and the continuity equa-
tion (12.9), each written for every layer.

In Section11.6, the lengthL = NH/Ω was derived as the horizontal scale at which rota-
tion and stratification play equally important roles. It is noteworthy at this point to formulate
the analogue for a layered system. IntroducingH as a typical layer thickness in the system
(such as the maximum depth of the uppermost layer at some initial time) and∆ρ as a density
difference between two adjacent layers (such as the top two), an approximate expression of
the stratification frequency squared is

N2 = − g

ρ0

dρ

dz
' g

ρ0

∆ρ

H
=

g′

H
, (12.17)

whereg′ = g ∆ρ/ρ0 is the reduced gravity defined earlier. Substitution of (12.17) in the
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Table 12.3 REDUCED GRAVITY MODELS.

One layer:
z1 = −h1 P1 = ρ0g

′h1

Two layers:
z1 = −h1 P1 = ρ0g

′(2h1 + h2)
z2 = −h1 − h2 P2 = ρ0g′(h1 + h2)

Three layers:
z1 = −h1 P1 = ρ0g

′(3h1 + 2h2 + h3)
z2 = −h1 − h2 P2 = ρ0g

′(2h1 + 2h2 + h3)
z3 = −h1 − h2 − h3 P3 = ρ0g

′(h1 + h2 + h3).

definition ofL yieldsL ' (g′H)1/2/Ω. Finally, because the ambient rotation rateΩ enters
the dynamics only via the Coriolis parameterf , it is more convenient to introduce the length
scale

R =

√
g′H

f
, (12.18)

called theradius of deformation. To distinguish this last scale from its cousin (9.12) de-
rived for free-surface homogeneous rotating fluids (where the full gravitational acceleration
g appears), it is customary in situations where ambiguity could arise to use the expressions
internal radius of deformationandexternal radius of deformationfor (12.18) and (9.12), re-
spectively. Because density differences within geophysical fluids are typically a percent or
less of the average density, the internal radius is most often less than one-tenth the external
radius.

When the model consists of a single moving layer above a motionless abyss, the govern-
ing equations reduce to

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = − g′ ∂h

∂x
, (12.19a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = − g′ ∂h

∂y
, (12.19b)

∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0. (12.19c)

The subscripts indicating the layer have become superfluousand have been deleted. The
coefficientg′ = g(ρ2 − ρ1)/ρ0 is called thereduced gravity. Except for the replacement
of the full gravitational acceleration,g, by its reduced fraction,g′, this system of equations
is identical to that of the shallow-water model over a flat bottom [Equations (7.20)] and is
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ρ1 = ρ0
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∞
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no motion

Figure 12-3 A reduced-gravity lay-
ered model. The assumption of a very
deep ocean at rest can be justified by
the need to keep the transporthum+1

and kinetic energyhu2
m+1 bounded so

that velocities must vanish as the depth
of the last layer increases to infinity.
In this case, the pressure in the deeper
layer tends towards a constant, which
we can choose zero.

thus called theshallow-water reduced-gravity model. Because the vertical simplicity of this
model permits the investigation of a number of horizontal processes with a minimum of
mathematical complication, it will be used in some of the following chapters. Finally, recall
that the Coriolis parameter,f , may be taken as either a constant (f -plane) or as a function of
latitude (f = f0 + β0y, beta plane).

12.3 Potential vorticity

The relative vorticityζ is defined as

ζ =
∂v

∂x
− ∂u

∂y
. (12.20)

In layered models, the expression for potential vorticity is

q =
f + ζ

h

=
f + ∂v/∂x− ∂u/∂y

h
, (12.21)
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which is similar to the expression for a barotropic fluid, except that the denominator is now a
differential thickness given by (12.10) rather than the full thickness of the system.

Interpretation (Figure12-4)
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Figure 12-4 Conservation of volume and circulation in a fluid undergoingdivergence (squeezing) or
convergence (stretching). The products ofh ds and(f + ζ) ds are conserved during the transformation.

12.4 Two-layer models

Text of section
Expand the equations to showη and amplitude of interface displacementa? Mode de-

composition into baroctropic and baroclinic part would be interesting for the numerical mode-
splitting interpretation

Energy conservation in a two-layer model? Useful to prepareQG models of two-layer
system for baroclinic instability?

12.5 Wind-induced seiches and resonance in lakes

Use 2-layer model with flat bottom, no rotation (f = 0) and two lateral boundaries. Conclude
by mentioning the Taylor solution in a bay, with amphidromicpoint.
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12.6 Numerical layered models

The development of numerical models based on the governing equations written in isopycnal
coordinates is simplified by the fact that we already performed a discretization on the vertical
coordinate through the layering illustrated in Section12.2. Indeed, we arrived at governing
equations for a series ofm layers, for each of which no vertical coordinate appears anymore.
In other words, we replaced a three-dimensional problem bym coupled two-dimensional
problems. Since there is no difficulty to generalize the layering and use different∆ρ for
each layer, we can easily place the layers so as to follow welldefined water masses at our
will. After choosing the adequate∆ρ that define the layers, the only discretization that re-
mains then to be done is related to the two-dimensional “horizontal” structure, an exercise
we already performed in the framework of shallow-water equations (Section9.7 and9.8).
Since the governing equations of each isopycnal layer are very similar to those of the inviscid
shallow-water equations, all we have to do is to “repeat” theimplementation of the shallow-
water equations for each layer, adapting the pressure forcecalculation. Here we can notice
how easily pressure can be calculated in the layered system once the layer heights are known
simply integrating (12.14) or its straightforward generalization when density differences vary
between layers. To calculate layer heights, the volume-conservation equations are at our dis-
posal and are also similar to those of the shallow-water system. Finally, as for shallow-water
equations, additional processes neglected up to now can be reinstated. Bottom stress and
wind stress can be taken into account at the lowest and uppermost layer by adding a friction
term as for the shallow-water equations. Also friction between layers can be accommodated
for and the corresponding momentum exchange then appears asan additional term depend-
ing on the velocity difference across the interface. This internal friction terms appears with
opposite sign for the two layers on each side of the isopycnalinterface. Also any unresolved
horizontal sub-grid scale process can be parameterized, typically using a lateral diffusion.
Here an important points is to be mentioned because any lateral diffusion formulated in the
new coordinate system (remember that∂/∂x are derivatives at fixedρ) leads to an associ-
ated mixing which is by construction acting along isopycnals rather than onz levels (see
also Section20.8). This is generally considered advantageous if we considersmaller-scale
movements easier to generate in an environment at uniform density and zero buoyancy. The
parameterization of sub-grid scale processes as a diffusion along isopycnal is calledisopy-
cnal diffusionand is thus naturally included in the governing equations ofdensity-layered
models by adding a Laplacian term. No diffusion across the layer interfaces is then present
in the model. Since velocities act only in thex andy direction of the layer, any numerical
diffusion also acts along these coordinate lines and no numerical diffusion across isopycnal
surfaces will occur. In other words, no diapycnal diffusionand erosion of stratification will
take place so that water masses are conserved. This is at the same time one of the major
strength and weaknesses of the formulation. It is an advantage if the physical system presents
no mixing, because in that case, the model allows to simulatethe movements and oscillations
of the system without any artificial destruction of stratification, otherwise a common problem
of models. On the other hand, if there is vertical mixing in the physical system, the layered
models need to add some “entrainment” of water masses from one layer into another, and
more fundamentally, when a columns starts to get well mixed,some of the layers of a given
density will not be present anymore because the corresponding isopycnal interface outcrops
or intercepts the bottom (Figure12-5). In other words, for each layer the lateral extend can
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change in time, a non-trivial problem to deal with. The problem is even worse when static
instabilities are present because then the coordinate change is not valid anymore. The prob-
lems associated with strong mixing and static instabilities explain why isopycnal models are
rarely used for atmospheric models, were static instabilities are much more frequent than in
the ocean. Therefore most of our analysis was oriented towards the isopycnal ocean models.
Another difficulty of purely isopycnal ocean models is related to the fact that by construction
density is constant within a layer so that temperature and salinity cannot vary independently
anymore while physical boundary conditions for both are independent. Finally, isopycnal
models are not easily applied when both the deep ocean and coastal seas are to be covered
because of the very different density structures and hence vertical resolution associated with
the layers.

bottom

w
el

lm
ix

ed
outcropping

isopycnal exchanges

diapycnal
exchanges

Figure 12-5 The application of a lay-
ered model of constant-density layers
needs some special care when isopyc-
nals intercept the surface (outcropping)
or the bottom. Such situations typi-
cally arise near frontal systems or dur-
ing strong mixing events.

For numerical layered models, we can chose the original model, the rigid-lid approxima-
tion or the reduced gravity version. This choice will have some influence on the numerical
properties. For example, we can note that the reduced gravity model has replaced gravityg
by g′ � g in all equations. As a consequence, such models will not allow anymore for the
propagation of gravity waves which precisely involve the gravity. This can be desirable and
has a nice side-effect on numerical stability. Indeed, stability requirements of shallow-water
models are typically of the type √

gh∆t

∆x
≤ O(1) (12.22)

depending on the particular discretization choses (see Section 9.7). Since gravity is replaced
by reduced gravity in the models with infinitely-deep lower layers, the stability constraint
related to surface waves disappears and for a reduced-gravity model with a single layer dis-
cretized as a shallow-water model, the stability constraint would be

√
g′h∆t

∆x
≤ O(1) (12.23)

much less stringent than (12.22). Also for rigid-lid models, gravity has disappeared as such
and no stability condition as (12.22) applies.
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For the original layered model, using neither rigid-lid approximation nor the reduced-
gravity approach, surface gravity waves are possible within the system of governing equa-
tions and stability condition (12.22) can be very constraining compared to other stability
conditions so that some optimization has to be done. A brute force approach would request
an implicit treatment of the term responsible for the stability constraint. The velocity field in
the governing equation for layer height should therefore betaken implicit as well as the the
surface height in the momentum equations. The latter appears in all momentum equations
because at the surfacez0 = η pressure isP1 = patm + ρ0gη according to (12.13) and
the integral (12.14) makes appearη in all layers. Therefore, all equations would have to be
solved simultaneously, leading to a rather large, though sparse, linear system to be solved. A
more subtle approach is obtained by recalling that surface gravity waves have already been
encountered as a solution of the shallow-water two-dimensional equations. Physically, they
are created by surface displacements and divergence-convergence of the vertically integrated
transports, which we can try to make appear from the equations of a layered model. We take
the governing equation (12.9) for the layer thickness and sum over all layers to obtain the
equation governing the total height of the column, including η:

∂h

∂t
+

∂Ũ
∂x

+
∂Ṽ
∂y

= (12.24)

∂η

∂t
+

∂Ũ
∂x

+
∂Ṽ
∂y

= 0, (12.25)

h = h1 + h2 + h3 + ... + hm = H − b + η (12.26)

Ũ = h1u1 + h2u2 + h3u3 + ... + hmum (12.27)

Ṽ = h1v1 + h2v2 + h3v3 + ... + hmvm (12.28)

We easily recognize the discrete integrals defining transports. A governing equation for trans-
ports can now be obtained by multiplying each momentum equation by its corresponding
layer depth and summing over the layers. For easier calculation, equations can first be re-
casted in conservative form by multiplying with the layer thickness and then exploiting (12.9).
Concerning the pressure gradient, we can first isolate the surface pressure as follows:

P1 = patm + ρ0gη (12.29)

Pk = Pk−1 + ∆ρzk−1

= P1 + ∆ρ (z1 + z2 + ...+ zk−1)︸ ︷︷ ︸
= P1 + Pk (12.30)

Then, summing the pressure gradients multiplied by the layer thickness we get

h1
∂P1

∂x
+ h2

∂P2

∂x
+ h3

∂P3

∂x
+ ...+ hm

∂Pm
∂x

=

h
∂P1

∂x
+ h2

∂P2

∂x
+ h3

∂P3

∂x
+ ...+ hm

∂Pm
∂x

= h
∂P1

∂x
+Gx (12.31)

with a straightforward definition ofGx. We see that we performed the numerical equivalent
of a double integral, a first one to getPk and a second one to calculateGx, the integrated
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effect of density variations on the vertically-average pressure gradient. The summing of the
advection term in conservative form can be performed in a similar way:

Ax =
∂(h1u1u1)

∂x
+
∂(h2u2u2)

∂x
+ ...+

∂(hmumum)

∂x

+
∂(h1u1v1)

∂y
+
∂(h2v2u2)

∂y
+ ...+

∂(hmumvm)

∂y
(12.32)

If the velocity components were to be independent ofz , then the sum would take the familiar
form

∂(huu)

∂x
+
∂(huv)

∂y
. (12.33)

Therefore we can defineBx as the difference ofAx and the advection term related to the
average velocitȳu = Ũ/h. The vertically integrated advection forx momentum from which
the barotropic part is eliminated therefore reads

Bx =
∂(h1u

′
1u
′
1)

∂x
+
∂(h2u

′
2u
′
2)

∂x
+ ...+

∂(hmu
′
mu
′
m)

∂x

+
∂(h1u

′
1v
′
1)

∂y
+
∂(h2u

′
2v
′
2)

∂y
+ ...+

∂(hmu
′
mv
′
m)

∂y
(12.34)

whereu′1 = u1 − ū and so on. The barotropic part

∂(hūū)

∂x
+
∂(hūv̄)

∂y
(12.35)

is then to be added to the governing equation of the transportwe can finally write out:

∂

∂t
(hū) +

∂

∂x
(hūū) +

∂

∂y
(hūv̄) − fhv̄ = − h

ρ0

∂P1

∂x
+ Gx + Bx (12.36)

and similarly for thẽV = hv̄ component. This is very similar to the shallow-water equations,
with two additional terms. One is related to the density variations (Gx) and the other to the
vertical shear (Bx). Because the shallow-water equations were build on the assumption that
those processes can be neglected, their appearance here should not be much of a surprise. We
can now come back to the problem of time stepping. First, we observe thatGx does not vary
much during the passage of a gravity wave, because, according to Section7.4, the positions
of the density interfaces are only changed as a fraction of the changes inη. Since inP1,
changes inη are multiplied by gravity, the changes inGx, where changes inη are multiplied
by reduced gravity, can safely be neglected. In other words,on a short time scale,Gx can be
considered constant. Similarly,Bx contains only components from the vertical shear which
are unaffected by a frictionless gravity waves, changing only the barotropic part. Therefore,
keeping an explicit time-discretization for those two terms is not likely to cause a problem
compared to the problem of heaving to deal with the fast gravity waves. In other words,
we have isolated the effect of gravity waves into a set of equations similar to shallow-water
equations. We could solve these equations in an implicit way(see Exercise 12-4), because
there are now only three coupled equations to be solved conjointly instead of3m. The time
evolution of these equations would therefore allow to calculateηn+1 from the older values
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with a large time step and once this surface elevation known,all layer equations could be
calculated with the time-step imposed by the 3D motions. Using a large time-step in the
gravity wave propagation deteriorates however the propagation properties of the numerical
solution and another approach, calledmode splittingcan be used. The time-step restriction
associated with gravity waves is only penalizing insofar all equations are solved with a small
time step. But we can use the small time step only with the subset of equations governing the
gravity-wave evolution and take a fractionN of the overall time step. Hence,N steps on the
shallow-water equations will forward in time elevationη towards the new overall time step
(Figure12-6). In view of the typical values ofg andg′, the 3D time step is typically an order
of magnitude larger than the time step associated with gravity waves, and since the solution
of the shallow-water equations with the small time step involves only 3 equations instead
of 3m, an order of magnitude in terms of computational cost can be gained by the mode-
splitting approach. At the end of theN shallow-water equation steps and the subsequent 3D
step, a problem might occur: The momentum equations of each layer calculated with the
new elevationηn+1 from the shallow-water equation will lead to velocities at the new time
level un+1

k , vn+1
k . When summing up those velocities, weighted by the layer thickness, we

can calculate the transport. Unfortunately, the transportfrom this calculation will in general
be different from the transport that comes out from the shallow-water equations after the
N sub-steps, because of nonlinearities in the equations. If nothing is done to correct for
this incoherence, instabilities can occur (e.g., Killworth et al. 1991). To avoid the problem,
we can for example write governing equations for the shear componentsu′k, v

′
k, with the

different terms in the governing equation exactly canceling out when summing over all layers.
This is rather complicated and a simpler approach is to correct the velocity fields obtained
after solving the layer equations so as to make sure their weighted sum equals the predicted
transport from the shallow-water equations. This approachcan also be applied to level models
or any 3D model dealing with a free surface, the general idea being to integrate vertically the
governing equations to make appear the barotropic components solved with a smaller time
step than the rest of the equations.

Except for the problems mentioned, we can retain the distinct advantage of aligning coor-
dinate lines (and hence numerical grids) with dynamically significant features. This explains
the success of numerical models based on the isopycnal layerapproach and several widely
used numerical isopycnal models are based among others on the initial implementations of
Hulburt and Thompson (1980), Blecket al. (1992) and Hallberg (1995). Today’s tendency is
to abandon purely isopycnal models in realistic applications in favor of more general vertical
coordinate models we will see in Section20.7.

12.7 Lagrangian approach

In the case of the isopycnal model, we noted that the conservation equation forρ was sim-
plified because we choose the coordinate surfaces to be material surfaces of the flow. This is
a Lagrangian approach (following a flow parcel) rather then an Eulerian one (observing the
system from a fixed point) which can be generalized to calculation of individual fluid parcels.
In the isopycnal model, the choice of a material surface as vertical coordinate system elim-
inated vertical velocity from the advection part. A fully Lagrangian approach will therefore
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Figure 12-6 At a given time step, information from the layer positions allow to calculate the baroclinic
forcing terms of the barotropic equations. The corresponding shallow-water type equations can then
be integrated forward in time over several small time-steps, until the overall time step∆t is covered.
Then, the surface heightη at the new time level can be used in all layers to forward in time the layer
structures.

be most interesting in reducing the problems associated with the advection discretization.
The astute reader may already have wondered in Section6.4why we went through all these
complicated Eulerian schemes to find the solution of a pure advection problem, which, when
written using a material derivative

dc

dt
= 0 (12.37)

is simplyc = c0 for a particle with initial valuec0. First we have to stress that the solution
applies to a given, tagged, water parcel which moves with thecurrent along its trajectory.
Therefore to have access to the full information, we need notonly to know the concentration
c0 of the water mass but also its position at any time. To calculate its position we need to
integrate its trajectory by using the definition of velocityof a given water parcel:

dx

dt
= u(x(t), y(t), z(t), t ), (12.38a)

dy

dt
= v(x(t), y(t), z(t), t ), (12.38b)

dz

dt
= w(x(t), y(t), z(t), t ). (12.38c)

The positionx(t), y(t), z(t) of a particle starting from an initial positionx0, y0, z0 is thus
obtained by integrating three ordinary differential equations if the velocity field is known.

A single fluid parcel does however not provide the concentration field at any moment ev-
erywhere in the domain but only at the location of the fluid parcel. To assess concentrations
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everywhere, we can instead of following a single particle calculate the evolution of an ensem-
ble of particles, each of which is launched initially at a different location. The concentration
at any point of the domain can be obtained by interpolation from the closest particles or av-
eraging in grid cells (binning). In both approaches, in order the method to work, the domain
must at any moment be covered by a sufficient amount of particles, distributed as uniformly
as possible. If there are regions void of particles, concentrations there cannot be inferred
anymore. This is a first problem of theLagrangian approachthat follows individual parcels:
For an initially relatively uniform distribution of particles, complex flow pattern concentrate
water parcels in some regions while other parts a depopulated (Figure12-7). Therefore com-
plex algorithms eliminating redundant particles in some regions and adding new particles in
empty regions are needed. Roughly speaking, ifL andH are the horizontal length scale and
vertical length scale of the process to resolve in a three-dimensional domain of surfaceS
and depthD we need at leastDS/(L2H) particles, which is roughly the requirement on the
number of grid boxes needed in an Eulerian model (1.17). However, because the Lagrangian
particles have a tendency to from clusters and leave regionswith lower coverage, one to two
order of magnitude more particles are needed to resolve the solution.

The time integration itself also imposes some constraints on the method: For accurate
time integration of (12.38) we must be able to follow the spatial variations of the velocity
field during a time-step which requires

U∆t ≤ L, (12.39)

otherwise the trajectory calculation will be inaccurate. For the same reason, we also must
follow the time variations of the current∆t � T , if the current varies with a time scale
T . Another important aspect is related to the integration of the trajectories. In addition to
the above mentioned accuracy requirement, two sources of errors are encountered: the time
discretization itself does generally not ensure a reversible calculations. If time or currents are
reversed, the numerical integration does not bring the particle back to its initial condition (see
Exercise 12-5). Therefore some dispersion can be associated with the integration. The sec-
ond source of error is related to the knowledge of the velocity field, itself generally calculated
by a model and thus available only on a discrete grid. Therefore, assuming the velocity field
is given on a regular grid, to calculate the trajectories, the velocity at an arbitrary location
(x(t), y(t), z(t)) must be retrieved by interpolation of the nearest surrounding velocity infor-
mation. An error due to this interpolation will then affect the trajectories and induce some
additional dispersion of particles.

Except those restrictions, the Lagrangian approach is easily implemented. Also diffu-
sion can be taken into account by simulating the mixing effect as a random displacement of
particles, also calledrandom walk, according to

xn+1 = xn +

∫ tn+1

tn

[
u(x(t), y(t), z(t), t ) +

∂A
∂x

]
dt +

√
2∆tA ξ (12.40)

whereξ is a random variable of Gaussian distribution with zero meanand unit standard
deviation (e.g., Gardiner 1997).3 It can be shown (e.g., Gardiner 1997, Spagnolet al. 2002)

3It can be noted that in most models the random variable has nota Gaussian distribution but a uniform distribu-
tion. This is acceptable as long as time-steps are sufficiently small, because in this case, adding up a large number
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Figure 12-7 Calculation of particle displacement in a current field similar to the one used in Figure
6-18. Usetraj2D.m for an animation. Particles follow the stationary streamfunction (solid line) and
make some regions void of data.

that this stochastic equation leads to particle distributions consistent with

∂c

∂t
+ u

∂c

∂x
=

∂

∂x

(
A ∂c
∂x

)
(12.41)

A large number of particles moved according to (12.40) then mimic the concentration evo-
lution of (12.41). The role of the term∂A/∂x can easily be understood and illustrated in a
situation of a local minimum ofA within the domain of interest, such as near a pycnocline
(Exercise 12-8).

Analytical Problems

12-1. Generalize the theory of the coastal Kelvin wave (Section9.2) to the two-layer system
over a flat bottom and under a rigid lid. In particular, what are the wave speed and
trapping scale?

12-2. In the case of the shallow-water reduced-gravity model, derive an energy-conservation
principle. Then, separate the kinetic and potential energycontributions.

12-3. Show that a steady flow of the shallow-water reduced-gravitysystem conserves the
Bernoulli functionB = g′h+ (u2 + v2)/2.

12-4. Establish the equations governing motions in a one-layer model above an uneven bot-
tom and below a thick, motionless layer of slightly lesser density.

of time steps amounts to add up a large number of random process. In this case thecentral limit theorem(e.g., Riley
et al. 1997) proves that the combined random processes have a Gaussian distribution irrespectively of the individual
random process’ distributions.
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12-5. Seek a solution to the shallow-water reduced-gravity modelof the typeh(x, t) =
A(t)x2 + 2B(t)x + C(t), u(x, t) = U1(t)x + U0(t), v(x, t) = V1(t)x + V0(t). To
what type of motion does this solution correspond? What can you say of its temporal
variability? (Takef = constant.)

12-6. Using the rigid-lid approximation in the shallow-water equations (i.e., a single density
layer), analyze the dispersion relation of waves on theβ plane. Show that there are
no gravity waves and that the only dispersion relation that remains can be compared to
the dispersion relation of planetary waves (9.27). How can the difference in dispersion
relation be interpreted in terms of the hypotheses used in the rigid-lid approximation?
Hint: Look again at Section7.5. JMB from⇓

12-7. Atlantic waters flow along the Algerian coast, being slightly lighter than the Mediter-
ranean waters. If a typical density difference is 1 kg/m3 and the thickness of the layer
of Atlantic waters 150 m, how large is the sea surface displacement associated with the
intrusion of the lighter waters?Hint: Assume the lower layers at rest. JMB to⇑

Numerical Exercises

12-1. Adapt the shallow-water equation model developed in Problem 9-3 to simulate the
seiche in a lake where a reduced gravity model can be applied to describe the evolution
of the surface layer.

12-2. Discretize in time and horizontal space the linearized two-layer model on an Arakawa
grid of your choice. Use a discretization that does not require the solution of a linear
system. Provide a stability analysis neglecting Coriolis force.

12-3. Implement the discretization of Exercise 12-2 and calculate the numerical solution of
Section12.5.

12-4. Analyze the implicit treatment of surface elevation in the barotropic components of the
layer equations (Equations (12.25), (12.36) and the corresponding equation forv̄). Use
a C-grid and an implicit treatment of both the divergence term in volume conservation
and pressure gradient in the momentum equation. Neglect Coriolis force. Eliminate the
yet unknown velocity components from the equations to arrive at an equation forηn+1.
Compare the approach with the pressure calculation in the rigid-lid approximation of
Section7.6and interpret what happens when you take very large time-steps.

12-5. Use different time-integration techniques to calculate trajectories associated with the
2D current field:

u = − cos(πt) y, v = cos(πt) x (12.42)

from t = 0 to t = 1 and interpret the results. Prove that the trapezoidal scheme is
reversible.
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12-6. Implement a random walk into the calculation of the trajectories of Problem 12-5 and
verify the dispersive nature of the random walk.Hint: Use a large number of particles
concentrated at the same initial position.

12-7. Try to use a large number of particles to advect the tracer field of Figure6-18 by
distributing them initially on a regular grid with adequateconcentration values. Look
at tvdadv2D.m to see how the velocity field and initial concentration distribution are
defined. Which problem due you face when you need to calculateconcentration at an
arbitrary position at a later moment?

12-8. Implement (12.40) without advection in a periodic domain betweenx = −10L and
x = 10L. Diffusion is given by

A = A0tanh2(x/L) (12.43)

Start with a uniform distribution of particles forx < 0 and zero particles forx > 0.
Simulate the evolution with and without the term∂A/∂x and discuss. TakeL = 1000
km andA0 = 1000 m2/s.Hint: Periodicity of the domain can be ensured by adequate
positioning of particles when crossingx = −10L or x = 10L.



Raymond Braislin Montgomery
1910 – 1988

A student of Carl-Gustav Rossby, Raymond Braislin Montgomery earned a reputation as a
brilliant descriptive physical oceanographer. Applying dynamic results derived by his mentor
and other contemporary theoreticians to observations,he developed precise means of charac-
terizing water masses and currents. By his choice of analyzing observations along density
surfaces rather than along level surfaces, an approach thatled him to formulate the potential
now bearing his name, Montgomery was able to trace the flow of water masses across ocean
basins and to arrive at a lucid picture of the general oceaniccirculation. Montgomery’s lec-
tures and published works, marked by an unusual attention toclarity and accuracy, earned
him great respect as a critic and reviewer. (Photo by Hideo Akamatsu — courtesy of Mrs. R.
B. Montgomery)
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Chapter 13

Internal Waves

(October 18, 2006) SUMMARY: This chapter treats internal gravity waves supported by
a vertical stratification. After the derivation of the dispersion relation and an examination
of wave properties, the chapter also considers mountain waves and nonlinear effects. The JMB from⇓
vertical-mode analysis of internal waves leads to trapped waves and an eigenvalue problem
treated numerically. JMB to⇑

13.1 From surface to internal waves

Starting at an early age, everyone has seen, experienced, and wondered about surface waves.
Sloshing of water in bathtubs and kitchen sinks, ripples on apond, surf at the beach, and
swell further offshore are all manifestations of surface water waves. Sometimes we look
at them with disinterest, and sometimes they fascinate us. But, whatever our reaction or
interest, their mechanism relies on a simple balance between gravity and inertia. When the
surface of the water is displaced upward, gravity pulls it back downward, the fluid develops
a vertical velocity (potential energy turns into kinetic energy) and, because of inertia, the
surface penetrates below its level of equilibrium. An oscillation results. A change in the
phase of the oscillations from place to place causes the waveto travel. Because surface waves
carry energy and no volume, they naturally occur wherever there is agitation that causes no
overall water displacements, such as the shaking of a half-full bottle, the throwing of a stone
in a pond, or a storm at sea.

The gravitational force continuously strives to restore the water surface to a horizontal
level, because the water density is greater than that of the air above. It goes almost with-
out saying that the same mechanism is at work whenever two fluid densities differ. This
frequently occurs in the atmosphere when warm air overlies cold air; waves may then be
manifested by cloud undulations, which may at times be remarkably periodic (Figure13-1).
An oceanic example, known as the phenomenon of dead water (Figure1-4), is the occurrence
of waves at the interface between an upper layer of relatively light water and a denser lower
layer. Those waves, although unseen from the surface, can cause a sizable drag on a sailing
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Figure 13-1 Evidence of internal waves in the atmosphere. The presence of moisture causes conden-
sation in the rising air (wave crests), thus revealing the internal wave as a periodic succession of cloud
bands. (Photo by the authors, February 2005, Tassili N’Ajjer, Algeria)

vessel (Section1.3).
But the existence of such interfacial waves is not restricted to fluids with two distinct den-

sities and a single interface. With three densities and two interfaces, two internal wave modesJMB from⇓
JMB to⇑ are possible; if the middle layer is relatively thin, the vertical excursions of the interfaces

interact, letting energy pass from one level to the other. Atthe limit of a continuously strati-
fied fluid, an infinite number of modes is possible, and wave propagation has both horizontal
and vertical components (Figure13-2). Regardless of the level of apparent complexity in
the wave pattern, the mechanism remains the same: There is a continuous interplay between
gravity and inertia and a continuous exchange between potential and kinetic energy. (See alsoJMB from⇓
Problem 13-6).JMB to⇑

13.2 Internal-wave theory

To study internal waves in their purest form, a few assumptions are necessary: There is no
ambient rotation, the domain is infinite in all directions, there is no dissipative mechanism of
any kind, and, finally, the fluid motions and wave amplitudes are small. This last assumption
is made to permit the linearization of the governing equations. However, we reinstate a term
previously neglected, namely, the vertical acceleration term∂w/∂t in the vertical momentum
equation. We do so anticipating that vertical accelerations may play an important role in
gravity waves. (Recall the discussion in Section11.2 on the vertical oscillations of fluid
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Figure 13-2 Surface manifestation of oceanic internal waves. The upward energy propagation of
internal waves modifies the properties of surface waves rendering them visible from space. In this
sunglint photograph taken from the space shuttleAtlantison 19 November 1990 over Simbutu Passage
in Malyasia (5◦N, 119.5◦E), a large group of tidally-generated internal waves is seen to propagate
northward into the Sulu Sea. (NASA Photo STS-38-084-060)
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parcels in a stratified fluid, which included the vertical acceleration.) The inclusion of this
term breaks the hydrostatic balance, but so be it! Finally, we decompose the fluid density as
follows

Actual fluid density= ρ0 + ρ̄(z) + ρ′(x, y, z, t), (13.1)

whereρ0 is the reference density (a pure constant),ρ̄(z) is the ambient equilibrium stratifica-
tion, andρ′(x, y, z, t) is the density fluctuation induced by the wave (lifting and lowering of
the ambient stratification). The inequality| ρ̄ |� ρ0 is enforced to justify the Boussinesq ap-
proximation (Section3.7), whereas the further inequality| ρ′ |�| ρ̄ | is required to linearize
the wave problem. The total pressure field can be decomposed in a similar manner.

With the preceding assumptions, the governing equations become (Section4.4)

∂u

∂t
= − 1

ρ0

∂p′

∂x
, (13.2a)

∂v

∂t
= − 1

ρ0

∂p′

∂y
, (13.2b)

∂w

∂t
= − 1

ρ0

∂p′

∂z
− 1

ρ0
gρ′, (13.2c)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (13.2d)

∂ρ′

∂t
+ w

dρ̄

dz
= 0. (13.2e)

The factordρ̄/dz in the last term can be transformed by introducing the stratification fre-
quency (alias the Brunt–Väisälä frequency) defined earlier in (11.3):

N2 = − g

ρ0

dρ̄

dz
. (13.3)

For simplicity, we will assume it to be uniform over the extent of the fluid. This corresponds
to a linear density variation in the vertical. Because all coefficients in the preceding linear
equations are constant, a wave solution of the form

ei (kxx+kyy+kzz−ωt)

is sought. Transformation of the derivatives into products(e.g.,∂/∂x becomesi kx) leads
to a 5-by-5 homogeneous algebraic problem. The solution is non-zero if the determinant
vanishes, and this requires that the wave frequencyω be given by

ω2 = N2 k2
x + k2

y

k2
x + k2

y + k2
z

(13.4)

in terms of the wavenumbers,kx, ky, andkz, and the stratification frequency,N . This is the
dispersion relation of internal gravity waves.

A number of wave properties can be stated by examination of this relation. First and
foremost, it is obvious that the numerator is always smallerthan the denominator, meaning
the wave frequency will never exceed the stratification frequency; that is,
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ω ≤ N (13.5)

for positive frequencies. The reason for this upper bound can be traced back to the presence
of the vertical acceleration term in (13.2c). Indeed, without that term the denominator in
(13.4) reduces fromk2

x + k2
y + k2

z to onlyk2
z , implying that the non-hydrostatic term can be

neglected as long ask2
z +k2

y � k2
z . This occurs for waves with horizontal wavelengths much

longer than their vertical wavelengths; the frequency of those waves is much less thanN . For
progressively shorter waves, the correction becomes increasingly important, the frequency
rises but saturates at the valueN . We may then ask what would happen if we agitate a
stratified fluid at a frequency greater than its own stratification frequency. The answer is that,
with such short periods, particles do not have the time to oscillate at their natural frequency
and instead follow whatever displacements are forced upon them; the disturbance is local,
and no energy is carried away by waves.

Another important property derived from the dispersion relation (13.4) is that the fre-
quency does not depend on the wavenumber magnitude (and thuson the wavelength) but
only on its angle with respect to the horizontal plane. Indeed, noting thatkx = k cos θ cosφ,
ky = k cos θ sinφ, andkz = k sin θ, wherek = (k2

x + k2
y + k2

z)
1/2 is the wavenumber

magnitude,θ is its angle from the horizontal (positive or negative), andφ is the angle of its
horizontal projection with thex-axis, we obtain

ω = ± N cos θ, (13.6)

proving that the frequency depends only on the pitch of the wavenumber, and, of course, the
stratification frequency. The fact that two signs are allowed indicates that the wave can travel
in one of two directions, upward or downward along the wavenumber direction. On the other
hand, if the frequency is imposed, all waves, regardless of wavelength, propagate at fixed
angles from the horizontal. The lower the frequency, the steeper the direction. At the limit of
very low frequencies, the phase propagation is purely vertical (θ = 90◦).

13.3 Structure of an internal wave

Let us rotate thex andy axes so that the wavenumber vector is contained in the (x, z) vertical
plane (i.e., ky = 0 and there is no variation in they-direction and nov velocity component).
The solutions for the remaining two velocity components andthe density fluctuation are

u = − gωkz
ρ0N2kx

A sin(kxx+ kzz − ωt) (13.7a)

w = +
gω

ρ0N2
A sin(kxx+ kzz − ωt) (13.7b)

p′ = − gkz
k2
x + k2

z

A sin(kxx+ kzz − ωt) (13.7c)

ρ′ = + A cos(kxx+ kzz − ωt). (13.7d)
JMB from⇓
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Figure 13-3 Vertical structure of an internal wave.

Benoit why not non -dimensional version:

ρ′ = + Aρ0 cos(kxx+ kzz − ωt).

and corresponding other components?JMB to⇑
Forkx, kz , andω all positive, the structure of the wave is depicted on Figure13-3. The areas
of upwelling (crests) and downwelling (troughs) alternateboth horizontally and vertically,
and lines of constant phase (e.g., following crests) tilt perpendicularly to the wavenumber
vector. The trigonometric functions in solution (13.7d) tell us that the phasekxx+ kzz − ωt
remains constant with time if one translates in the direction (kx, kz) of the wavenumber at
the speed (see Appendix B):

c =
ω√

k2
x + k2

z

. (13.8)

This is the phase speed, at which lines of crests and troughs translate. Because the velocity
components,u andw, are in quadrature with the density fluctuations, the velocity is nil at
the crests and troughs but is maximum a quarter of a wavelength away. The signs indicate
that when one component is positive, the other is negative, implying downwelling to the
right and upwelling to the left, as indicated in Figure13-3. The ratio of velocities (−kx/kz)
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further indicates that the flow is everywhere perpendicularto the wavenumber vector and thus
parallel to the lines connecting crests and troughs. Internal waves are transverse waves. A
comparison of the signs in the expressions ofw andρ′ reveals that rising motions occur ahead
of crests and sinking motions occur ahead of troughs, eventually forming the next crests and
troughs, respectively. Thus, the wave moves forward and, because of the inclination of its
wavenumber, also upward.

The propagation of the energy is given by the group velocity,which is the gradient of the
frequency with respect to the wavenumber (Appendix B):

cgx =
∂ω

∂kx
= +

ωk2
z

kx(k2
x + k2

z)
(13.9)

cgz =
∂ω

∂kz
= − ωkz

(k2
x + k2

z)
. (13.10)

The direction is perpendicular to the wavenumber (kx, kz) and is downward. Thus, although
the crests and troughs appear to move upward, the energy actually sinks. The reader can
verify that, irrespective of the signs of the frequency and wavenumber components, the phase
and energy always propagate in the same horizontal direction (though not at the same rates)
and in opposite vertical directions.

Let us now turn our attention to the extreme cases. The first one is that of a purely
horizontal wavenumber (kz = 0, θ = 0). The frequency is thenN , and the phase speed
is N/kx. The absence of wavelike behavior in the vertical directionimplies that all crests
and troughs are vertically aligned. The motion is strictly vertical, and the group velocity
vanishes, implying that the energy does not travel. The opposite extreme is that of a purely
vertical wavenumber (kx = 0, θ = 90◦). The frequency vanishes, implying a steady state.
There is then no wave propagation. The velocity is purely horizontal and, of course, laterally
uniform. The picture is that of a stack of horizontal sheets each moving, without distortion,
with its own speed and in its own direction. If a boundary obstructs the flow at some depth,
none of the fluid at that depth, however remote from the obstacle, is allowed to move. This
phenomenon, occurring at very low frequencies in highly stratified fluids, is none other than
the blocking phenomenon discussed at the end of Section11.5and presented as the stratified
analogue of the Taylor column in rotating fluids.

In stratified and rotating fluids, the lowest possible internal-wave frequency is not zero but
the inertial frequencyf (see Problem 13-3). At that limit, the wave motion assumes the form
of inertial oscillations, wherein fluid parcels execute horizontal circular trajectories (Section
2.3). Such limiting behavior is an attribute of inertia-gravity waves in homogeneous rotating
fluids (Section9.3) and is not surprising, since internal waves in stratified rotating fluids are
the three-dimensional extensions of the inertia-gravity waves of homogeneous rotating fluids.

13.4 Vertical modes and eigenvalue problems

Up to now, we analyzed the internal waves in the rather schematic situation of an unbounded
non-rotating domain of uniform stratification. This is tantamount of analyzing waves of wave-
length much shorter than the length scales of the ambient fluid (horizontal wavelength much
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smaller than geometric length scales, vertical wavelengthmuch smaller than depth or scales
of variations ofN2) and for which the frequency is sufficiently high not to be influenced by
earth rotation.

If we look at real vertical profiles of density and associatedBrunt-Väisälä frequency (Fig-
ure13-4) it could be questionable that real internal waves can be described for all wavelength
by the previous internal-wave theory. To assess to which extend the presence of non-uniform
stratification modifies the conclusions from the previous theory, we will now analyze the situ-
ation of a vertically varying stratification. To simplify the analysis, we will assume a constant
depth and eliminate surface waves by the rigid-lid approximation (Sections7.5 and12.2).
We take advantage of this additional analysis to reinstate rotation effects by thef -plane ap-
proximation, but suppose that stratification is sufficiently strong so thatN2(z) > f2 holds
everywhere as it is generally the case in nature.

Within this framework, the governing equations of the perturbations associated with the
wave in an ambient stratification̄ρ(z) of Brunt-Väisälä frequency

N2(z) = − g

ρ0

∂ρ̄

∂z
> f2 > 0 (13.11)

are now

∂u

∂t
= fv − 1

ρ0

∂p′

∂x
, (13.12a)

∂v

∂t
= fu− 1

ρ0

∂p′

∂y
, (13.12b)

∂w

∂t
= − 1

ρ0
g ρ′ − 1

ρ0

∂p′

∂z
, (13.12c)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (13.12d)

∂ρ′

∂t
+ w

∂ρ̄

∂z
= 0. (13.12e)
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As before, we did not make use of the hydrostatic approximation. For a uniform topography,
we can apply the technique of separation of variables and search for solutions of the following
type:

u = F(z)U(x, y)e−iωt, (13.13a)

v = F(z)V(x, y)e−iωt, (13.13b)

p′ = ρoF(z)P(x, y)e−iωt, (13.13c)

w = iωW(z)P(x, y)e−iωt, (13.13d)

ρ′ = −N2 ρ0

g
W(z)P(x, y)e−iωt. (13.13e)

Replacing these expressions into the governing equations (13.12), we realize that (13.12e) is
trivially satisfied and that the four remaining equations read after simplifications assuming
non-zero solutions

− iω U = fV − ∂P
∂x

, (13.14a)

−iω V = −fU − ∂P
∂y

, (13.14b)

(ω2 −N2)W = −∂F
∂z

, (13.14c)

1

P

(
∂U
∂x

+
∂V
∂y

)
= −i

ω

F
∂W
∂z

. (13.14d)

The first two equation do not depend onz, the third one does not depend onx andy, while in
the last one, the left hand side depends only onx, y, whereas the right hand side depends only
on z. This can only be true if both terms are constant. For dimensional reasons we call this
constantiω/gh(i), whereh(i) has the dimension of depth and is commonly calledequivalent
depth, the reason for which will become clear rapidly. Substitution of the result of (13.14d)

−i
1

F
∂W
∂z

=
i

gh(i)

into thez dependent equation (13.14c) leads to the equation governing the vertical modeW

d2W
dz2

+
(N2 − ω2)

gh(i)
W = 0. (13.15)

while the horizontal structureU ,V,P is solution of (13.14a), (13.14b) completed with the
result of (13.14d)

∂U
∂x

+
∂V
∂y

=
iω

gh(i)
P. (13.16)

These three equations have in fact the same structure as the wave equations of a shallow-water
system of constant depth (Section9.1). We simply observe thatP/g plays the same role here
as does surface elevationη in a shallow-water system of constant depthh(i). Therefore, we
can immediately recover the wave solutions of the shallow-water theory and verify that for a
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horizontal wave-like solution(U ,V,P) = (U, V, P )ei (kxx+kyy) with constantU, V, P these
waves obey the dispersion relation of Poincaré waves:

ω2 = f2 + gh(i)(k2
x + k2

y). (13.17)

For horizontally finite domains (see Problem 13-10), only discrete sets ofkx, ky are allowed,
but we will not further analyze these possibilities and considerkx, ky to be given.

13.4.1 Vertical eigenvalue problem

As we know how to find the horizontal structure of the wave solution, we now have to find its
vertical structure, which can be done by substituting the horizontal dispersion relation (13.17)
in the vertical mode equation (13.15). This leads to the following eigenvalue problem:

d2W
dz2

+ (k2
x + k2

y)
N2(z)− ω2

ω2 − f2
W = 0, (13.18)

with the boundary conditions of a rigid-lid system

W = 0 in z = 0 andz = H. (13.19)

We are in the presence of a homogeneous differential equation and homogeneous boundary
conditions. The solution of such a system isW = 0 except for some special values of
ω. For those values non-zero solution can be found, satisfying both boundary conditions.
Those special values ofω are the eigenvalues and the corresponding non-zero solutionsW
the eigenfunctions or vertical modes.

13.4.2 Bounds on frequency

We anticipate that there should be some bounds on the frequencies in view of the physical
interpretation of the boundω2 < N2 in Section13.2. In order to find such bounds, we
will apply again integral techniques similar to those used to analyze stability of shear flows
(Section10.2).

If we multiply (13.18) by the complex conjugateW∗, integrate vertically across the do-
main, perform an integration by part on the first term and use boundary conditions (13.19),
we get ∫ H

0

∣∣∣∣
dW
dz

∣∣∣∣
2

dz = (k2
x + k2

y)

∫ H

0

N2 − ω2

ω2 − f2
|W|2 dz. (13.20)

If ω is real, we immediately see that only values within the range

f2 ≤ ω2 ≤ N2
max (13.21)

are permitted, since outside this range, the right hand sideof (13.20) is always negative
(assumingN2 ≥ f2), while the left hand side is always positive.

We could now question ourselves if there could be complex values ofω. A purely imag-
inary solution is not possible in our case since forω = iωi, the right hand side of (13.20) is
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again always negative1. To analyze the most general caseω = ωr + iωi, it is sufficient to
analyze the imaginary part involved in (13.20):

=
(
N2 − ω2

ω2 − f2

)
= −2ωrωi

N2 + f2

(ω2
r − ω2

i − f2)2 + 4ω2
rω

2
i

. (13.22)

We realize that if we assumeωi 6= 0, the right hand side is different from zero while the
left-hand side is zero, which is impossible. Therefore (13.20) allows only realω.

In conclusion, forN2 > f2, we find pure wave motions with frequencies that lie within
the range (13.21). This is to be compared to the internal wave frequency in an infinite domain
without rotation (13.5). We also note that as before, if a wave of frequencyω exists, so does
one of frequency−ω, corresponding to a propagation in the opposite direction.

Benoit: Do you have a simple physical explanation why now there is a LOWER bound
related to Coriolis force while without stratification,f2 is an UPPER bound?

13.4.3 Simple example of constantN2

We can readily analyze the case of uniform stratifiction treated in the unbounded, non-rotating
case (Section13.2). In the rotating bounded domain, the eigenvalue problem has the follow-
ing simple solution

W(z) = sin kzz, kz = i
π

H
, i = 1, 2, 3, ... (13.23)

with the dispersion relation

ω2 =
(k2
x + k2

y)N
2 + k2

z f
2

k2
x + k2

y + k2
z

. (13.24)

Due to the finite vertical domain size, the vertical wavenumberkz now takes discrete values
and the corresponding functionsW form a discrete set of eigenfunctions. We can verify that
frequencies all fall into the range (13.21) and recognize that the spatial structures of the modes
are the same as in the unbounded domain, except that only those wavelengths are permitted
that ensure the boundary conditions to be satisfied.

Concerning the separation constantgh(i), we can now calculate the discrete set of values
it takes

gh(i) =
ω2 − f2

k2
x + k2

y

=
N2 − f2

k2
x + k2

y +
(
i πH
)2 . (13.25)

Sincegh(i) plays the same role for the horizontal structures asgH in a shallow water system,
we can calculate the equivalent to the Rossby radius of deformation.

Ri =

√
gh(i)

f
. (13.26)

The so-called internal radius of deformation plays the samerole as the (external) radius of
deformation in a shallow-water system and characterizes for example the horizontal scale

1We assumed from the beginningN2 ≥ f2 ≥ 0; the interested reader could also analyze the caseN2 < 0,
corresponding to the statically unstable case. In this casehe would recover the possibility of complexω and therefore
unstable solutions, as to be expected on physical grounds.
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at which both rotation and gravitation, here through stratification, come into play. Also the
lateral scale of a Kelvin wave is characterized by this scale(see Problem 13-8). By virtue of
ω2/f2 = 1 + (k2

x + k2
y)R

2
i , waves with a shorter wavelength than the deformation radius

are dominantly influenced by stratification, while those with larger scales are dominated by
rotation. The Rossby radius of deformation is thus the scaleat which both rotation and
stratification are at play for the given vertical wave mode. The waves that vary rapidly in
the vertical (i � 1) have a smaller radius of deformation and rotation plays a role for the
horizontal structure at smaller scales. On the other hand, waves with large vertical structures
also have the largest Rossby radius of deformation and need larger horizontal scales to be
influenced by rotation. For small aspect ratiosk2

x + k2
y � k2

z with strong stratification
N2 � f2, the expression of the deformation radius simplifies into

Ri ∼
NH

iπf
, i = 1, 2, ... (13.27)

The simple problem treated up to now has the advantage to showhow rotation and a finite
domain influence the dispersion relation compared to (13.4), but it is relatively simplistic if
we would like to know the eigenfrequencies of a system with a localized pycnocline. Though
analytical approximative methods exist to tackle the mathematical eigenvalue problem (for
example WKB methods, Bender and Orszag 1978), it is generally easier to resort to numerical
methods. This is even more true if the system to be analyzed isa real one, where the density
profile was measured or obtained from climatological databases at discrete levels.

13.4.4 Numerical approach for the general case

The discretization chosen here is a straightforward finite-difference technique. For the sake
of simplicity, uniform grid spacing∆z is assumed. The first and last grid points are chosen
on the rigid bottom and rigid-lid surface (Figure13-5), since a Dirichlet condition on the
unknown is imposed there. The discretized fieldw of the real solutionW at locationzk is wk
so that the discretization reads

wk+1 + wk−1− 2 wk+ ∆z2(k2
x + k2

y)
N2(zk)− ω2

ω2 − f2
wk = 0, k = 2, 3, ...,m− 1 (13.28)

w1 = 0, wm = 0 (13.29)

This problem can be written in a matrix form by collecting allwk into an arrayw:

A(ω2)w = 0, (13.30)

where the matrixA is tridiagonal as for the diffusion problem (see Section5.5), and depends
onω2. The allowed frequencies are then those which allow a non-zero vertical velocityw,
which can only be obtained when the system is singular

det (A) = 0. (13.31)

Basically the problem is then a problem of finding zeros of a given function, here the deter-
minant of the system. For each value ofω2 for which the determinant is zero, the discretized
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Figure 13-5 Discretization notations for the eigenvalue problem.

spatial eigenmodew is then the solution of (13.30). In linear algebra, finding this vector
for a given singular matrix this is a standard problem and amounts at finding the null-space
of the matrixA. The solution of our problem can therefore be obtained by searching those
values ofω2 for which the determinant ofA is zero and then using a linear algebra package
to calculate the null-space associated with the now singular matrix to retrieve the discretized
vertical structure of the internal wave.

However, finding zeros of a complicated function is not trivial and we are never sure not
to miss zeros, even if the theoretical bounds founds (13.21) for ω2 can guide the searching
algorithm. We can neither be sure that numerical solutions of (13.31) also fall into the same
range, though those falling outside could certainly be qualified non-physical.

We can illustrate the approach using standard linear algebra routines for this direct ap-
proach andiwnaive.m creates the matrixA and calculates its determinant for a large num-
ber of values forω2 (Figure13-6).

Even with a logarithmic scale, we see the difficulty to catch the very rapid variations in
the functiondet (A). For still resolved variations, the precision of the zeros found is obvi-
ously deteriorating whenω2 approachesf2. This should be no surprise, since those solutions
correspond to vertical structures with increasing vertical wavenumber as shown by the an-
alytical solution (13.23)-(13.24). We recover the property that functions with the highest
wavenumbers are poorly represented on a numerical grid. In order to find the eigenvalues
without the need for “manual” inspection of the functiondet (A), we can observe that the
problem formulation is not very different from a classic linear eigenvalue problem:

Ax = λx, (13.32)

for which a series of theorems on the number and locations of the eigenvaluesλ exist, as well
as robust algorithms calculating its solutions numerically.
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Figure 13-6 Determinant of matrixA for constantN2 in function of log ω2. The points marked with
+ are the locations of the exact eigenvalues of (13.24). Detail on the right panel.

Eigenvalue problem

We therefore will try to reformulate the problem (13.30) and write it as

− ω2

f2
[−wk+1 − wk−1 + (2 + ε)wk] +

[
−wk+1 − wk−1 +

(
2 + εN2

kf
−2
)

wk
]

= 0

(13.33)
with ε = ∆z2(k2

x + k2
y) > 0. We limit the unknown vector betweenk = 2 andk = m− 1,

since the boundary conditions are readily implemented and (13.33) can be written as a linear
problem:

Bw = λCw, λ =
ω2

f2
(13.34)

where matricesB andC are tridiagonal matrices independent ofω2. Both matrices have
−1 on the super- and subdiagonal, while on the diagonal,C is composed of2 + ε andB of
2 + εN2

kf
−2.

BothB andC are symmetric positive definite since they are diagonally dominant. Luckily
(13.34) is already a standard linear algebra problem (called generalized eigenvalue problem)
for which solvers and theorems exist (for example a Rayleigh-Ritz criteria given in Exercise
13-2). We can recast it in an even more familiar form by notingthat for a positive definite
matrix, its inverse exists and therefore, definingw̃ = Cw we recover a standard eigenvalue
problem

Aw̃ = λw̃, A = BC−1. (13.35)

Once the eigenvalues and eigenvectorsw̃ found, the discretized physical modew can be
recovered byw = C−1w̃.

We can easily demonstrate that the problem has only real solutions. Since bothB andC

are symmetric positive defininite, multiplying (13.34) for a given eigenvalueλi and eigenvec-

tor wi by the transposed complex conjugate
(
wi∗
)T

, we use the fact that both
(
wi∗
)T

Bwi

and
(
wi∗
)T

Cwi are real because of the positive definite nature ofB andC to show thatλi
must also be real.
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2 versus and exact physical valueω2

i . Left panel for 50 discrete
levels, middle panel for 450 modes. Right panel: numerical estimation of the third vertical mode as a
function ofz. The mode clearly corresponding tosin(3πz/H).

We observe that contrary to the analytical solution, where an infinite number of modes are
found, only a finite number (m−2) of eigenvalues and modes are calculated by the discretized
version. To verify the numerical method outlined, we can calculate the numerical solution for
the case of constantN2 and compare it with the known analytical solution (13.23)-(13.24).
As expected, the largest eigenvalues, corresponding the largest vertical wavelength, are well
represented, even for a moderate number of calculation points (Figure13-7). The frequen-
cies closer tof need however more vertical points to be recovered precisely, because of the
short wavelength associated. To represent modei correctly we would indeed need a spacing
i∆z << H .

13.5 A new physical process: Waves concentrated at a pyc-
nocline

The numerical method developed and partly validated for theuniform stratification can now
be used to analyze the pycnocline case. To do so, we take a schematic density profile (Figure
13-8), with a Brunt-Väisälä frequency varying betweenN0 andN1 with f2 < N2

0 < N2 <
N2

1 .
The first three modes (Figure13-8) correspond to the highest frequencies represented

by the vertical lines on the right panel together with the stratification frequency. We ob-
serve that the amplitude of the wave is concentrated at the pycnocline, while outside this
region, the amplitude decays rapidly. This can be understood in the light of the sign of
(N2 − ω2)/(f2 − ω2) which appears in (13.18). If this factor is positive, the eigenfunctions
are of oscillating nature, whereas if it is negative, they are of exponential nature. Since the
term changes sign within the domain ifN2

0 < ω2 < N2
1 , the solution changes from an oscil-

lating behavior (in regions whereω2 ≤ N2) to an exponential outside this regions, decreasing
towards zero at the boundaries of the domain. The point whereω2 = N2 is called aturning
point. The wave is thus concentrated at the pycnocline for such frequencies, simply because
the restoring force there has a frequency near the frequencyof the wave.

For higher modes (Figure13-9), ω2 decreases and approaches the lower limit ofN2. The
turning points move away from the pycnocline until they falloutside the domain of inter-
est. Thenω2 < N2 and the solution is of oscillatory behavior everywhere. However we
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the right panel.
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Figure 13-9 Non-uniform stratification and modes 10 to 12, left panel. Value ofω2 compared toN2

on the right panel).

now observe lower amplitudes within the pycnocline. This isdue to the fact that the eigen-
frequency of the restoring force is much further away fromω2 within the pycnocline than
outside. Resonant behavior is thus stronger outside the pycnocline and amplitudes higher.

At even higher modes and frequencies closer tof (Figure13-10), the regions above and
below the pycnocline start to be decoupled. Here the pycnocline acts as a barrier since both
regions now have a series of modes oscillating at frequencies nearf , which are decoupled
from the other layer. This is what can be observed for oscillations near the inertial frequency
in a two layer system.Benoit: more insight??

Finally the eigenvalue problem with a real profile allows us to estimate the internal radius
of deformation for the Western Mediterranean. Based on the climatologically averaged den-
sity profile (Figure13-4), we can use the same eigenvalue calculations for differenthorizontal
wavenumbersk2

x + k2
y. For longer waves, we expect the value of the radius of deformation to

converge to a constant value associated with the hydrostatic approximation (see also Problem
13-8). Indeed, this has been tested numerically (codeiwavemed.m and Figure13-11) and
leads to a value of the first internal radius of deformation of14 km (to be compared to the
external radius of3000 km).
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Figure 13-10 Non-uniform stratification and modes 26 to 28 left panel. Value ofω2 compared toN2

on the right panel).
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13.6 Lee waves

Internal waves in the atmosphere and ocean can be generated by a myriad of processes, almost
wherever a source of energy has some temporal or spatial variability. Oceanic examples
include the ocean tide over a sloping bottom, mixing processes in the upper ocean (such
as during a hurricane), instabilities of shear flows, and thepassage of a submarine. In the
atmosphere, one particularly effective mechanism is the generation of internal waves by a
wind blowing over an irregular terrain such as a mountain range or a hilly countryside. We
select the latter example to serve as an illustration of internal-wave theory because it has some
meteorological importance and lends itself to a simple mathematical treatment.

∞

z

x

Stratification frequency
N

Wind speed
U

2H

Wavelength2π/kx Figure 13-12 Legend

To apply the previous linear-wave theory, we naturally restrict our attention to small-
amplitude waves and, consequently, to small topographic irregularities. This restriction also
permits us to study a single topographic wavelength, from which the principle of linear su-
perposition would allow us to construct more general solutions. The model (Figure13-12)
consists of a stratified air mass of uniform stratification frequencyN flowing at speedU over
a slightly wavy terrain. The ground elevation is taken as a sinusoidal functionb = H cos kxx JMB from⇓
of amplitudeH (the trough-to-crest height difference is then2H) and wavenumberkx (the
wavelength is then2π/kx). The wind direction (along thex-axis of the model) is chosen to
be normal to the troughs and crests, so that the problem is two-dimensional.

Because our theory has been developed for waves in the absence of a main flow, we
translate thex-axis with the wind speed. The topography then appears to move at speedU in
the negativex-direction:

z = b(x+ Ut) = H cos[kx(x+ Ut)]

= H cos(kxx− ωt), (13.36)

where the frequency is defined as

ω = − kxU (13.37)
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and is a negative quantity. Because a particle initially on the bottom must remain there at all
times (no airflow through the ground), a boundary condition is

w =
∂b

∂t
+ u

∂b

∂x
at z = b, (13.38)

which can be immediately linearized to become

w =
∂b

∂t
= Hω sin(kxx− ωt) atz = 0, (13.39)

by virtue of our small-amplitude assumption.
The solution to the problem, which must simultaneously be oftype (13.7d) and meet

condition (13.39), can be stated immediately:

u = kzUH sin(kxx+ kzz − ωt) (13.40a)

w = −kxUH sin(kxx+ kzz − ωt) (13.40b)

p′ = −ρ0kzU
2H sin(kxx+ kzz − ωt) (13.40c)

ρ′ =
ρ0N

2H

g
cos(kxx+ kzz − ωt), (13.40d)

where the vertical wavenumberkz is determined by the dispersion relation (13.4):

k2
z =

N2

U2
− k2

x. (13.41)

The mathematical structure of this last expression shows that two cases must be distinguished:
EitherN/U > kx andkz is real, orN/U < kx andkz is imaginary. Note that solutionsJMB from⇓
(13.40) are formulated in the moving reference frame and that when we express it in the fixed
frame, a stationnary solution is obtained, corresponding to ω = 0.JMB to⇑

13.6.1 Radiating Waves

Let us first explore the former situation, which arises when the stratification is sufficiently
strong (N > kxU ) or when the topographic wavelength is sufficiently long (kx < N/U ).
Physically, the time2π/kxU taken by a particle traveling at the mean wind speedU to go
from a trough to the next trough (i.e., up and down once) is longer than the natural oscilla-
tory period2π/N , and internal waves can be excited. Solving (13.41) for kz , we have two
solutions at our disposal,

kz = ±
√
N2

U2
− k2

x , (13.42)

but because the source of wave energy is at the bottom of the domain, only the wave with
upward group velocity is physically relevant. According to(13.10) and (13.37), we select the
positive root.

The wave structure in the framework fixed with the earth (Figure 13-13) is steady and
such that all density surfaces undulate like the terrain, with no vertical attenuation but with



13.6. LEE WAVES 377

Figure 13-13 Structure.

an upwind phase tilt with height. The tilt angle between the wave fronts (lines joining crests)
and the horizontal,φ, is given byBenoit: Is there a reason you takeφ now, instead ofθ used JMB from⇓
for the internal wave structure? Also note that (13.42) can be written as1 = Fr−2 − δ2

with Froude number of wave and aspect ratio of wave. Could be interesting when discussing
non-linearities? JMB to⇑

sin φ =
kxU

N
, (13.43)

so thatkx = k sinφ, kz = k cosφ, with k = (k2
x + k2

z)
1/2. The group velocity in the

fixed frame is equal to the group velocity relative to the moving wind, given by (13.10) with
ω = −kxU , plus the velocityU in thex-direction:

cgx = −U k
2
z

k2
+ U = U sin2 φ (13.44)

cgz = U
kxkz
k2

= U sin φ cos φ. (13.45)

It tilts upward as required, and its direction coincides with that of the wavenumber (Figure
10-5). Energy is thus radiated upward and downwind. We shallnot calculate the energy
flux and will show only that the terrain exerts a drag force on the flowing air mass. The
Reynolds-stress expression for the wave stress is:

Drag force = − ρ0uw |z=0 = − 1

2
ρ0kxkzU

2H2,

where the overbar indicates an average over one wavelength.The minus sign indicates a
retarding force. The existence of this force is also relatedto the fact that the high pressures
are situated on the hill flanks facing the wind, and the lows are on the hill flanks in the wind’s
shadow.
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Figure 13-14 Structure.

13.6.2 Trapped Waves

The second case, leading to an imaginary value forkz, occurs for weak stratifications (N <
kxU ) or short waves (kx > N/U ). To avoid dealing with imaginary numbers we define the
quantitya as the positive imaginary part ofkz , that is,kz = ±i a with

a =

√
k2
x −

N2

U2
. (13.46)

The solution now contains exponential functions inz, and the physical nature of the problem
dictates that we retain only the function that decays away from the ground. In the reference
framework translating with the wind speedU , the solution is

u = aUH e−az cos(kxx− ωt) (13.47)

w = −kxUH e−az sin(kxx− ωt) (13.48)

p′ = −ρ0aU
2H e−az cos(kxx− ωt) (13.49)

ρ′ =
ρ0N

2H

g
e−az cos(kxx− ωt). (13.50)

The wave structure is depicted in Figure (13-14). Density surfaces undulate at the same
wavelength as the terrain, but the amplitude decays with height. There is also no vertical
phase shift. Because the waves are contained near the ground, in a boundary layer of thickness
on the order of1/a, there is no upward energy radiation. The absence of such energy loss is
corroborated by the absence of a drag force:

Drag force = − ρ0uw |z=0 = 0.

The Reynolds stress vanishes becauseu andw are now in quadrature. Physically, the high
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pressures are in the valleys, the lows are on the hilltops, and the pressure distribution causes
no work against the wind.

13.7 Nonlinear effects

Text of section

13.8 The Garrett-Munk Spectrum

Text of section

Analytical Problems

13-1. In a coastal ocean, the water density varies from 1028 kg/m3 at the surface to 1030
kg/m3 at a depth 100 m. What is the maximum internal-wave frequency? What is the
corresponding period?

13-2. Internal waves are generated along the coast of Norway by theM2 surface tide (period
of 12.42 h). If the buoyancy frequencyN is 2 × 10−3 s−1, at which possible angles
can the energy propagate with respect to the horizontal? (Hint: Energy propagates in
the direction of the group velocity.)

13-3. Derive the dispersion relation of internal gravity waves inthe presence of rotation,
assumingf < N . Show that the frequency of these waves must always be higherthan
f but lower thanN . Compare vertical phase speed to vertical group velocity.

13-4. A 10-m/s wind blows over a rugged terrain, and lee waves are generated. If the strat-
ification frequency is equal to 0.03 s−1 and if the topography is approximated to a
sinusoidal pattern aligned perpendicularly to the wind, with a 25-km wavelength and a
height difference from trough to crest of 500 m, calculate the vertical wavelength, the
angle made by the wave fronts (surfaces of constant phase) with the horizontal, and
the maximum horizontal velocity at the ground. Also, where is this maximum velocity
observed (at crests, at troughs, or at the points of maximum slope)?

13-5. A 75-km/h gale wind blows over a hilly countryside. If the terrain elevation is approxi-
mated by a sinusoid of wavelength 4 km and amplitude of 40 m andif the stratification
frequency of the air mass is 0.025 s−1, what are the vertical displacements of the air
particles at 1000 m and 2000 m above the mean ground level? JMBfrom⇓
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13-6. Calculate the kinetic and potential energy density of the pure internal-wave field.

13-7. Demonstrate that a single plane internal wave satisfying the dispersion relation is not
only solution of the linearized perturbative equations butof the full nonlinear set of
equations. What happens if two waves are present in the system?

13-8. Study internal waves in a stratified system of stratificationfrequencyN(z) in a verti-
cally bounded domain using the hydrostratic approximationin (13.12). Show that the
separation constant now appears as the eigenvalue to be calculated and that the asso-
ciated radius of deformation does not depend anymore on the horizontal wavenumbers
k2
x + k2

y.

13-9. Analyze the possibility of existence of an internal Kelvin wave by using the separa-
tion of constants approach. Use the long-wave (or hydrostatic) assumption adapting
(13.12). Particularize to the case of uniformN2.

13-10. A seiche with discrete sets of eigenvalues, unless already treated in layered models?
If problem discarded, need to discard reference in text to it.

13-11. Depsite the fact that system (13.2) has four time derivatives, we only analyzed a
dispersion relation with two eigenfrequencies. Can you explain?JMB to⇑

Numerical Exercises

13-1. Use the dispersion relation of pure internal waves (13.4) and show the superposition of
two waves by an animation in thex, z plane of extendLx, H . Can you see the group
velocity when using two waves of equal amplitude and the two wavenumber vectors
(kx = 35/Lx, kz = 10/H) and(kx = 40/Lx, kz = 12/H)?

13-2. For the matrices and eigenvalues of problem (13.34), prove

λmin ≤
xTBx

xTCx
≤ λmax. (13.51)

To prove this so-called Rayleigh-Ritz inequality (13.51) for symmetric positive definite
matricesB andC:

• assume that all eigenvalues are different

• demonstrate that
(
wi
)T

Bwj = δij and
(
wi
)T

Cwj = δij

• prove that all eigenvectorswi, i = 1, .... are linearly independent

• write any vectorx as a weighted sum of those independent vectors and using this
expression in the Rayleigh-Ritz quotient prove the Rayleigh-Ritz inequalities.



13.8. SPECTRUM 381

Adapt then the codeiwnum.m to provide estimates of the upper and lower bound using
a series of random vectorsx to calculate the Rayleigh-Ritz estimator(xTBx)/(xTCx)
and store the minima and maxima of the quotient found. Look how the bounds are
more and more precise the more random vectors you choose.

13-3. By substitution ofω2 = (1 + λ̃)f2 into (13.33) and redefiningB, show that all eigen-
valuesωi satisfyω2

i ≥ f2. Incidentally show that you can recast the problem into a
standard eigenvalue problem.

By substitution ofω2 = (1 − λ̃)N2
max into (13.33) and redefiningB, show that all

eigenvaluesωi satisfyω2
i ≤ N2

max.

Benoit: I just realized the problem can be recasted in an even simpler version by letting
λ = 1 + x. ThenB is diagonal. see exercise for the demonstration thatx > 0 (and
thusω2 > f2). Should I readapt the text and MATLAB  codes accordingly? I would
suggest not to do so, since for the baroclinic and barotropicstability problem, we would
rather obtain a similar structure to the present one. Possibly suggest to find the property
in exercise?

13-4. Adapt iwnummed.m to read temperature and salinity profiles from other oceano-
graphic data bases, such as the Levitus climatology, and calculate the radius of de-
formation for the Gulf Stream region.levitus.m to be done

13-5. Assess numerically the convergence rate for eigenvalues and eigenfunctions in the case
of a constant stratification by adaptingiwnum.m .

13-6. Discretize the eigenvalue problem of the sheared-flow instability (10.9) using the same
techniques as in Section13.4.4. What can you say about the positive-definite nature
of the matrices involved? Try to find the numerical eigenvalues and growth rates of
profiles you thought probably unstable in Exercise 12-2.



Walter Heinrich Munk
1917 –

Born in Austria and educated in the United States, Walter Heinrich Munk became interested
in oceanography during a summer project under Harald Sverdrup at the Scripps Institution of
Oceanography and quickly developed a fascination for oceanwaves. This interest in waves
arose partly because of the wartime need to predict sea and swell and also because Munk
found wave research a challenge of intermediate complexitybetween simple periodic oscil-
lations and hopeless chaos. As years went by, Munk eventually investigated all wavelengths,
from the small capillary waves responsible for sun glitter to the ocean-wide tides. His studies
of internal waves, in collaboration with Christopher Garrett, led him to propose a univer-
sal spectrum for the distribution of internal-wave energy in the deep ocean, now called the
Garrett–Munk spectrum. More recently, pursuing an interest in acoustic waves, Munk initi-
ated ocean tomography, a method for determining the large-scale temperature structure in the
ocean from the measure of acoustic travel times. (Photo by Jeff Cordia.)
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Adrian Edmund Gill
1937 – 1986

Born in Australia, Adrien Edmund Gill pursued his career in Great Britain. His publications
spanned a wide range of topics, including wind-forced currents, equatorially trapped ocean
waves, tropical atmospheric circulation, and the El Niño–Southern Oscillation phenomenon,
and culminated in his treatiseAtmosphere-Ocean Dynamics(Academic Press, 1982). His
greatest contributions relied on the formulation of simpleyet illuminating models of geo-
physical flows. It has been said (only half jokingly) that he could reduce all problems to a
simple ordinary differential equation with constant coefficients, with all the essential physics
retained. Although he never held a professorship, Gill supervised numerous students at the
Universities of Cambridge and Oxford. He is also rememberedfor his unassuming style and
for the generosity with which he shared his ideas with students and colleagues. (Photo credit:
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Gillman & Soame, Oxford.)



Chapter 14

Turbulence in Stratified Fluids

(October 18, 2006)SUMMARY : Whereas the previous chapter treated organized wave flows
in stratified fluids, the attention now turns to more complicated motions, such as vertical mix-
ing, flow instability, forced turbulence, and convection. Because the study of such phenomena
does not lend itself to detailed analytical solutions, the emphasis is on budgets and scale anal- JMB from⇓

JMB to⇑ysis. The numerical section presents a few schemes by which mixing and turbulence can be
represented in numerical models.

14.1 Mixing of stratified fluids

Mixing by turbulence generates vertical motions and overturning. In a homogeneous fluid,
the energy necessary is only that necessary to overcome mechanical friction (see Sections5.1 JMB from⇓
and8.1) , but in a stratified fluid work must also be performed to raiseheavy fluid parcels andJMB to⇑
lower light parcels. Let us consider, for example, the system pictured in Figure14-1. Initially,
it consists of two layers of equal thicknesses with fluids of different densities and horizontal
velocities. After some time, mixing is assumed to have takenplace, and the system consists
of a single layer of average density flowing with the average velocity1. Because the heavier
fluid (densityρ2) lies initially below the lighter fluid (densityρ1), the center of gravity falls
below mid-depth level, whereas in the final state it is exactly at mid-depth. Thus, the center of
gravity has been raised in the mixing process, and potentialenergy must have been provided
to the system. Put another way, work has been performed against the buoyancy forces. With
identical initial depthsH1 = H2 = H/2, the average density isρ = (ρ1 + ρ2)/2, and the
potential energy gain is

1Credit for this illustrative example goes to Prof. William K. Dewar
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ρ2

ρ1

U2

U1

H1

H2

H U

ρ

Figure 14-1 Mixing of a two-layer stratified fluid with velocity shear. Rising of dense fluid and low-
ering of light fluid both require work against buoyancy forces and thus lead to an increase in potential
energy. Concomitantly, the kinetic energy of the system decreases during mixing. Only when the
kinetic-energy drop exceeds the potential-energy rise canmixing proceed spontaneously.

PE gain =

∫ H

0

ρfinal gz dz −
∫ H

0

ρinitial gz dz

=
1

2
ρgH2 −

[
1

2
ρ2g

H2

4
+

1

2
ρ1g

3H2

4

]

=
1

8
(ρ2 − ρ1)gH

2. (14.1)

The question arises as to the source of this energy increase.Because human intervention
is ruled out in geophysical flows, a natural energy supply must exist or mixing would not
take place. In this case, kinetic energy is released in the mixing process, as long as the initial
velocity distribution is nonuniform. Conservation of momentum in the absence of external
forces and in the context of the Boussinesq approximation (ρ1 ' ρ2 ' ρ0) implies that the
final, uniform velocity is the average of the initial velocities:U = (U1 +U2)/2. This indeed
leads to a kinetic-energy loss

KE loss =

∫ H

0

1

2
ρ0u

2
initial dz −

∫ H

0

1

2
ρ0u

2
final dz

=
1

2
ρ0U

2
2

H

2
+

1

2
ρ0U

2
1

H

2
− 1

2
ρ0U

2H

=
1

8
ρ0(U1 − U2)

2H. (14.2)

Complete vertical mixing is naturally possible only if the kinetic-energy loss exceeds the
potential-energy gain; that is,

(ρ2 − ρ1)gH

ρ0(U1 − U2)2
< 1. (14.3)

Physically, the initial density difference should be sufficiently weak in order not to present
an insurmountable gravitational barrier, or alternatively the initial velocity shear should be
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Figure 14-2 Kelvin–Helmholtz in-
stability: (a) initial perturbation of
wavenumberk, (b) temporal evolution
of an unstable perturbation. The sys-
tem is always unstable to short waves,
which steepen, overturn and ultimately
cause mixing. As waves overturn,
their vertical and lateral dimensions are
comparable.

sufficiently large to supply the necessary amount of energy.When criterion (14.3) is not
satisfied, mixing occurs only in the vicinity of the initial interface and cannot extend over the
entire system. The determination of the characteristics ofsuch localized mixing calls for a
more detailed analysis.

For this purpose, let us now consider a two-fluid system of infinite extent (Figure14-2),
with upper and lower densities and velocities denoted, respectively, byρ1, ρ2 andU1, U2,
and let us explore interfacial waves of infinitesimal amplitudes. Mathematical derivations,
not reproduced here, show that a sinusoidal perturbation ofwavenumberk (corresponding to
wavelength2π/k) is unstable if (Kundu, 1990, Section 11-6)

(ρ2
2 − ρ2

1)g < ρ1ρ2k (U1 − U2)
2, (14.4)

or for a Boussinesq fluid (ρ1 ' ρ2 ' ρ0),

2(ρ2 − ρ1)g < ρ0k (U1 − U2)
2. (14.5)

In a stability analysis, waves of all wavelengths must be considered, and we conclude that
there will always be sufficiently short waves to cause instabilities. Therefore, a two-layer
shear flow is always unstable. This is known as theKelvin–Helmholtz instability. Among
other instances, this instability plays a role in the generation of water waves by surface winds.

The details of the analysis leading to (14.5) reveal that the interfacial waves induce flow
perturbations that extend on both sides of the interface across a height on the order of their
wavelength. Thus, as unstable waves grow, they form rolls ofheight comparable to their
width (Figures14-2, 14-3and14-4).
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Figure 14-3 Development of a Kelvin–Helmholtz instability in the laboratory. Here, two layers flowing
from left to right join downstream of a thin plate (visible onthe left of the top photograph). The upper
and faster moving layer is slightly less dense than the lowerlayer. Downstream distance (from left to
right on each photograph and from top to bottom panel) plays the role of time. At first, waves form
and overturn in a two-dimensional fashion (in the vertical plane of the photo) but, eventually, three-
dimensional motions appear that lead to turbulence and complete the mixing. (Courtesy of Greg A.
Lawrence. For more details on the laboratory experiment, see Lawrence et al., 1991.)
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The rolling and breaking of waves induces turbulent mixing,and it is expected that the
vertical extent of the mixing zone, which we denote by∆H , scales like the wavelength of
the longest unstable wave, that for which criterion (14.5) turns into an equality:

∆H ∼ 1

kmin
=

ρ0(U1 − U2)
2

2(ρ2 − ρ1)g
. (14.6)

If the fluid system is of finite depthH , the preceding theory is no longer applicable, but
we can anticipate, by virtue of dimensional analysis, that the results still hold, within some
numerical factors. For a fluid depthH greater than∆H , mixing must remain localized to a
band of thickness∆H , whereas for a fluid depthH less than∆H , that is,

H <
∼

ρ0(U1 − U2)
2

(ρ2 − ρ1)g
, (14.7)

mixing will engulf the entire system. Note the similarity between this last inequality, derived
from a wave theory, and inequality (14.3) obtained from energy considerations.

Figures14-5and14-6show atmospheric instances when Kelvin–Helmholtz instabilities
occurred and were made visible by localized cloud formation. Kelvin–Helmholtz instabilities
have also been observed to take place in the ocean (Woods, 1968).

14.2 Instability of a stratified shear flow: The Richardson
number

In the preceding section, we restricted our considerationsto a discontinuity of the density and
horizontal velocity, only to find that such a discontinuous stratification is always unstable.
Instability causes mixing, and mixing will proceed until the velocity profile has been made
stable. The question then is: For a gradual density stratification, what is the critical velocity
shear below which the system is stable and above which mixingoccurs? To answer this
question, we are led to study the stability of a stratified shear flow.

Let us consider a two-dimensional (x, z) inviscid and nondiffusive fluid with horizontal
and vertical velocities (u, w), dynamic pressurep, and density anomalyρ. In anticipation
of the important role played by vertical motions, we reinstate the acceleration term in the
vertical momentum equation and write (Section4.3)

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= − 1

ρ0

∂p

∂x
(14.8)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= − 1

ρ0

∂p

∂z
− ρg

ρ0
(14.9)

∂u

∂x
+

∂w

∂z
= 0 (14.10)

∂ρ

∂t
+ u

∂ρ

∂x
+ w

∂ρ

∂z
= 0. (14.11)
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Figure 14-4 Kelvin–Helmholtz instability generated in a laboratory with fluids of two different den-
sities and colours. (Adapted from GFD-online, Satoshi Sakai, Isawo Iizawa, EijiAramaki) Contact
GFD-online@gaia.h.kyoto-u.ac.jp

Figure 14-5 Kelvin–Helmholtz instability in the Algerian sky.Comment from a meteorologist?
Evening cooling hence stratification?(Photo by the authors)
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Figure 14-6 Kelvin–Helmholtz instability of the Sahara desertComment from a meteorologist?
(Photo by the authors)

Our basic state consists of a steady, sheared horizontal flow[u = ū(z), w = 0] in a vertical
density stratification [ρ = ρ̄(z)]. The accompanying pressure field̄p(z) obeysdp̄/dz =
−gρ̄(z). The addition of an infinitesimally small perturbation (u = ū + u′, w = w′, p =
p̄+ p′, ρ = ρ̄+ ρ′) and a subsequent linearization of the equations yield:

∂u′

∂t
+ ū

∂u′

∂x
+ w′

dū

dz
= − 1

ρ0

∂p′

∂x
(14.12)

∂w′

∂t
+ ū

∂w′

∂x
= − 1

ρ0

∂p′

∂z
− ρ′g

ρ0
(14.13)

∂u′

∂x
+

∂w′

∂z
= 0 (14.14)

∂ρ′

∂t
+ ū

∂ρ′

∂x
+ w′

dρ̄

dz
= 0. (14.15)

Introducing the perturbation streamfunctionψ via u′ = +∂ψ/∂z,w′ = −∂ψ/∂x, the buoy-
ancy frequencyN2 = −(g/ρ0)(dρ̄/dz), assumed to be constant, and a Fourier structure
exp[i k(x − ct)] in the horizontal, we can reduce the problem to a single equation for ψ in
terms of the remaining variablez:

(ū − c)
(
d2ψ

dz2
− k2ψ

)
+

(
N2

ū− c −
d2ū

dz2

)
ψ = 0. (14.16)

This is theTaylor–Goldstein equation(Taylor, 1931; Goldstein, 1931). It governs the vertical
structure of a perturbation in a stratified parallel flow. Note the formal analogy with the
Rayleigh equation (10.9) governing the structure of a perturbation on a horizontally sheared
flow in the absence of stratification and in the presence of rotation. Therefore, the same
analysis can be applied.

First, we state the boundary conditions. For a domain bounded vertically by two horizon-
tal planes, atz = 0 andz = H , we impose a zero vertical velocity there, or, in terms of theJMB from⇓

JMB to⇑
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streamfunction:

ψ(0) = ψ(H) = 0. (14.17)

Then, we recognize that the equation and its accompanying boundary conditions form an
eigenvalue problem: Unless the phase velocityc takes on a particular value (eigenvalue), the
solution is trivial (ψ = 0). In general, the eigenvalues may be complex, but ifc admits the
functionψ, then its complex conjugatec∗ admits the functionψ∗ and is thus another eigen-
value. This can be easily verified by taking the complex conjugates of (14.16) and (14.17).
Hence, complex eigenvalues come in pairs. In each pair, one of the two eigenvalues will
have a positive imaginary part and will correspond to an exponentially growing perturbation.
The presence of a non-zero imaginary part toc automatically guarantees the existence of at
least one unstable mode. Conversely, the basic flow is stableif and only if all possible phase
speedsc are purely real.

Because it is impossible to solve problem (14.16) and (14.17) in the general case of an
arbitrary shear flow̄u(z), we will limit ourselves, as in Section10.2, to deriving integral
constraints. A variety of such constraints can be established, but the most powerful one is
obtained when the functionφ, defined by

ψ =
√
ū− c φ, (14.18)

is used to replaceψ. Equation (14.16) and boundary conditions (14.17) become

d

dz

[
(ū − c) dφ

dz

]
−

[
k2(ū− c) +

1

2

d2ū

dz2

+
1

ū− c

(
1

4

(
dū

dz

)2

− N2

)]
φ = 0 (14.19)

φ(0) = φ(H) = 0. (14.20)

Multiplying equation (14.19) by the complex conjugateφ∗, integrating over the vertical extent
of the domain, and utilizing conditions (14.20), we obtain:

∫ H

0

[
N2 − 1

4

(
dū

dz

)2
]
|φ|2
ū− c dz

=

∫ H

0

(ū− c)
(∣∣∣∣
dφ

dz

∣∣∣∣
2

+ k2|φ|2
)
dz +

1

2

∫ H

0

d2ū

dz2
|φ|2 dz, (14.21)

where vertical bars denote the absolute value of complex quantities. The imaginary part of
this expression is

ci

∫ H

0

[
N2 − 1

4

(
dū

dz

)2
]
|φ|2
|ū− c|2 dz

= − ci

∫ H

0

(∣∣∣∣
dφ

dz

∣∣∣∣
2

+ k2|φ|2
)
dz, (14.22)
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whereci is the imaginary part ofc. If the flow is such thatN2 > 1
4 (dū/dz)2 everywhere,

then the preceding equality requires thatci times a positive quantity equalsci times a negative
quantity and, consequently, thatci must be zero. Defining theRichardson number

Ri =
N2

(dū/dz)2
, (14.23)

Benoit: Did you defineM the Prandtl frequency somewhere? I do not think so. Would be JMB from ⇓
useful later

M2 = (dū/dz)2 (14.24)

Ri = N2/M2 JMB to⇑
we can state that if the inequality

Ri >
1

4
(14.25)

holds everywhere in the domain, the stratified shear flow is stable.
Note that the criterion does not imply thatci must be non-zero if the Richardson number

falls below 1
4 somewhere in the domain. Hence, inequality (14.25) is a sufficient condition

for stability, while its converse is a necessary condition for instability. Atmospheric, oceanic,
and laboratory data indicate, however, that the converse of(14.25) is generally a reliable
predictor of instability.

If the shear flow is characterized by linear variations of velocity and density (note that a
linear density variation was already implicitly assumed when we restricted our attention to a
constantN2), with velocities and densities ranging fromU1 to U2 andρ1 to ρ2 (ρ2 > ρ1),
respectively, over a depthH , then

dū

dz
=

U1 − U2

H
, N2 =

g

ρ0

ρ2 − ρ1

H

and the Richardson criterion stated as the necessary condition for instability becomes:

(ρ2 − ρ1)gH

ρ0(U1 − U2)2
<

1

4
. (14.26)

The similarity to (14.3) is not coincidental: Both conditions imply the possibility of large
perturbations that could destroy the stratified shear flow. The difference in the numerical
coefficients on the right-hand sides can be explained by the difference in the choice of the
basic profile [discontinuous for (14.3), linear for (14.26)] and by the fact that the analysis
leading to (14.3) did not make provision for a consumption of kinetic energy by vertical
motions. The change from 1 in (14.3) to 1/4 in (14.26) is also coherent with the fact that JMB from⇓
condition (14.3) refers to a complete mixing situation, while (14.26) is a condition on the
onset of the instability. JMB to⇑

More importantly, the similarity between (14.3) and (14.26) imparts a physical meaning
to the Richardson number: It is essentially a ratio between potential and kinetic energies,
with the numerator being the potential-energy barrier thatmixing must overcome if it is to
occur and the denominator being the kinetic energy that the shear flow can supply by being
smoothed away. In fact, it was precisely by developing such energy considerations that British
meteorologist Lewis Fry Richardson first arrived, in 1920, to the dimensionless ratio that now
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rightfully bears his name. A first formal proof of criterion (14.25), however, did not come
until four decades later (Miles, 1961).

In closing this section, it may be worth mentioning that bounds on the real and imagi-
nary parts of the wave velocityc can be derived by the inspection of certain integrals. This
analysis, due to Louis N. Horward (see biography at end of Chapter 10), has already been
applied to the study of barotropic instability (Section10.3). Here, we summarize Howard’s
original derivation in the context of stratified shear flow. To begin, we introduce the vertical
displacementa caused by the small wave perturbation

∂a

∂t
+ ū

∂a

∂x
= w

or

(ū − c) a = − ψ. (14.27)

We then eliminateψ from (14.16) and (14.17) and obtain an equivalent problem for the
variablea:

d

dz

[
(ū − c)2

da

dz

]
+

[
N2 − k2(ū − c)2

]
a = 0 (14.28)

a(0) = a(H) = 0. (14.29)

A multiplication by the complex conjugatea∗ followed by an integration over the domain
and use of the boundary conditions yields

∫ H

0

(ū − c)2P dz =

∫ H

0

N2|a|2 dz, (14.30)

whereP = |da/dz|2 + k2|a|2 is a non-zero positive quantity. The imaginary part of this
equation implies that if there is instability (ci 6= 0), cr must lie between the minimum and
maximum values of̄u, that is,

Umin < cr < Umax. (14.31)

Physically, the growing perturbation travels with the flow at some intermediate speed, and
there exists at least one critical level in the domain where the perturbation is stationary with
respect to the local flow. This local coupling between the wave and the flow is precisely what
allows the wave to extract energy from the flow and to grow at its expense.

Now, the real part of (14.30),

∫ H

0

[(ū − cr)
2 − c2i ] P dz =

∫ H

0

N2|a|2 dz (14.32)

can be manipulated in a way similar to that used in Section10.3 to obtain the following
inequality:

(
cr −

Umin + Umax

2

)2

+ c2i ≤
(
Umax − Umin

2

)2

. (14.33)
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This implies that, in the complex plane, the numberc = cr+ici must lie within the circle that
has the rangēu as diameter on the real axis. Because instability requires apositive imaginary
valueci, the interest is restricted to the upper half of the circle (Figure10-1). This result is
called the Howard semicircle theorem. In particular, it implies thatci is bounded by(Umax−
Umin)/2, providing a useful upper bound on the growth rate of unstable perturbations:

kci ≤
k

2
(Umax − Umin). (14.34)

14.3 Turbulence closure:k-models

Reynolds averaging (Section4.1) showed that small-scale processes bear their effect on the
mean flow through so-called Reynolds stresses stemming fromthe nonlinear advection term.
Up to now, Reynold stresses were modeled by a diffusion law with an eddy viscosity, a pa-
rameter about which we remained rather evasive and imprecise. In particular, how to chose
the value of this parameter was not detailed, simply becausethe parameter is not related to a
unique fluid property as molecular viscosity is, but rather to a particular flow configuration.
The value of the eddy viscosity is therefore rarely a constant and on the contrary depends on
the large-scale fluid movements. Therefore its determination is in fact part of the problem’s
solution. So we have to come back to the question of estimating the Reynolds stresses appear-
ing in the averaged equations. A naive approach consists in calculating fluctuations such asu′

by taking the non-averaged equation (3.21) and subtracting the Reynolds-averaged equations
(4.7a) leading to an equation foru′ and similarly for the other variables. The solution of those
equations then allows to calculate products and Reynolds averages such as〈u′u′〉. Formally
with a linear operatorL for a very simplified equation of the type

∂u

∂t
+L (uu ) = 0 (14.35)

its Reynolds averaged equation is

∂ 〈u〉
∂t

+L ( 〈u〉 〈u〉 ) = −L ( 〈u′u′〉 ) (14.36)

and we obtain the equation governing fluctuationsu′ by their difference:

∂u′

∂t
+ 2L ( 〈u〉u′ ) +L (u′u′ )−L ( 〈u′u′〉 ) = 0. (14.37)

Solving this equation would provideu′ and would allow to calculate the Reynolds stress
〈u′u′〉 explicitly. This approach is clearly not realistic since wewanted to filter out smaller
scales or fluctuations and we are in fact solving the originalproblem (14.35) as we are calcu-
lating both the mean flow and its fluctuations. However the approach suggests a more subtle
idea. We are not interestedper sein the fluctuations but in their average products. Therefore
starting from the equations for the fluctuations (and not their solution), let us try to find a
governing equation for the Reynolds stresses. To do so, we multiply the governing equations
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for fluctuations byu′ and then take the average to yield an evolution equation for〈u′u′〉.
Applying this technique to (14.37) we get successively2

1

2

∂u′u′

∂t
+ 2u′L ( 〈u〉u′ ) + u′L (u′u′ )− u′L ( 〈u′u′〉 ) = 0 (14.38)

1

2

∂ 〈u′u′〉
∂t

+ 2
〈
u′L ( 〈u〉u′ )

〉
+
〈
u′L (u′u′ )

〉
= 0 (14.39)

exploiting the fact that〈u′〉 = 0 because on average, fluctuations are zero. For an operator
L representing the advection terms, it is possible to regroupthe variables under the opera-
tor and make appear desirable terms as〈u〉 〈u′u′〉 which can be calculated because we have
governing equations for〈u〉 and aim at providing one for〈u′u′〉, so that the product should
be accesible. Unfortunately, the last term of (14.39) makes appear a more annoying prod-
uct, 〈u′u′u′〉 which our governing equations does not provide. Should we try to establish
a governing equation for this triplet (or third-order term)with the same approach used to
write the governing equation for〈u′u′〉, it should be no surprise that even more complicated
products will appear. We have a so-calledclosure problemand we need at one moment to
parameterize the unknown higher-order products in terms ofthose we decide to calculate by
their governing equations. Such parameterizations must bedone in coherence with the phys-
ical phenomenology of turbulence and keep modeling errors small. Increasing the order of
products modeled by governing equations is hoped to reduce the overall modeling errors by
assuming that the importance of the higher-order terms alsocalledmomentsdecreases with
their order and hence any error in modeling higher-order terms is less critical than errors in
the parameterization of the lower-order moments. Here we will keep the level of parameter-
ization to eddy viscosity concepts and not provide evolution equations for all second-order
Reynolds stresses which are used presently only to simulatelaboratory fluid problems (e.g.,
Gibson and Launder, 1978; Pope, 2000). The latter models arefull second-moment closure
schemes orsecond-order closureschemes that calculate all Reynolds stresses involving prod-
ucts of variables by governing equations, using closure assumptions in triplets. Here we will
limit ourself in model complexity at the most to simplified versions of second-order schemes
where only some of the second-moment terms will be modelled with their governing equa-
tions and the others by algebraic equations. Such models arestill called second-order closure
schemes and are distinguished by explicitly naming the higher-order moments that are mod-
eled, so as thek modelwe will soon present. To do so, we have now to identify the key
features of turbulence that allow for a realizable closure scheme.

Benoit: I wrote this before your wrote turbulence contribut ions to chapter 5 and 8.
Maybe adaptation of notations and elimination of redundanttext is needed

The most obvious property of turbulent flows is their tendency to mix efficiently the fluid.
This is why we stir ourcafe au laitrather than to wait for molecular diffusion to distribute
milk into the black coffee. The enhanced mixing due to turbulence was the reason to chose a
diffusion model for the Reynolds stresses. The rapid fluctuations at the smallest scales seem
erratic and isotropic while the largest eddies reflect the anisotropy of the mean flow generating
instabilities and turbulence. A link between the two scalesmust be done, which is achieved

2Here we must assume that the average operation can be appliedbefore or after time and space derivatives. Also
double averages should be equal to averages. As already mentioned in Section 4.1, this is the case for statistical
ensemble averages. For time or space averaging, the properties might be broken, unless scales of the fluctuations are
clearly separated of the scales of the movements of interest(e.g., Burchard 2002).
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through the so-calledenergy cascade(Kolmogorov 1941, Figure14-7). For the eddies of
velocity scale̊u and length scalel within the cascade, the Reynolds number is very large so
that their evolution is fast compared to the decay time related to viscosity. The dominant
nonlinear advection therefore rapidly breaks the eddies upinto smaller ones, without any
viscous effects. The energy extracted at each moment from the mean flow by instability of
the base flow is thus transferred from the larger eddies to thesmaller ones without losses.
This energy must however be dissipated at some point and is therefore thedissipation rate
of the cascade. Because of the lack of dissipation during thecascade, the dissipation rate
is thus conserved across the cascade. Since viscosity does not influence the dissipation rate
within he cascade, the only parameters that can be related tothe dissipation rate notedε are
the velocity and length scale of the eddies, the time scale being determined by the turn-over
scalel/ů, henceε = ε(̊u, l). The dimensionally correct relation is

ε

(c0µ/4)3/4
=
ů3

l
(14.40)

where we introduced a calibration constantc0µ in a combination that will be useful later. We
recover the result of Section5.1, with notations adapted to current turbulence models. Also
the value ofε is the one that is extracted from the mean flow at velocity scaleum and length
scalelm, calledmacro scalesandε = ε(̊u, l) = ε(um, lm).

Relation (14.40) shows that for a given turbulence cascade,ů ∝ l1/3 and the smaller
eddies contain less kinetic energy, so that the bulk of kinetic energy is contained within the
largest eddies of sizelm (Figure14-7). The power spectrum of associated kinetic energy is
thus decreasing with increasing wavenumber and dimensional analysis provided relation (5.8)
of Section5.1. The turbulent cascade can also be interpreted in terms of vorticity. In three
dimensions, vortex tubes are twisted and stretched by the presence of other vortex tubes (at
first sight, this is similar to the the vortex interactions simulated numerically in Section10.7,
see figure10-12). Because of incompressibility, the stretching of vortex tubes is accompanied
by a decrease in cross section and, because of circulation conservation, by an increase in
vorticity and decrease in length scales. Therefore vorticity at progressively smaller scales is
observed when vortex tubes are stretched. This is only possible in three-dimensions so that
the cascade described here does not occur in two dimensions.Turbulence and eddy behavior
in two dimensions is indeed a rather special problem we will examine in Section18.3.

The cascade can of course not continue down to arbitrarily small scales and at one mo-
ment, molecular viscosity comes into the play. This is the case when friction is a dominant
part of the governing equation. Because the turbulence cascade is governed by the nonlinear
advection term, molecular viscosity dominates the dynamics of an eddy when its Reynolds
number, measuring advection versus molecular diffusion, is of order one:

u∂u/∂x

ν∂2u/∂x2
∼ u2

v/lv
νuv/l2v

∼ O(1) (14.41)

We are then in a so-calledviscous sinkwhere the length scalelv and velocity scaleuv of the
eddies, calledmicro scalesor viscous scalesreach

uvlv
ν
∼ 1. (14.42)
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Extraction from mean flow

C
as

ca
d

e

Dissipation

um, lm

uv, lv

ů3/l ∼ ε = C Figure 14-7 The famous quotethe big
whirls have little whirls that feed on
their velocities, and little whirls have
lesser whirls and so on to viscosity - in
the molecular sensefrom Richardson
(in his book of 1922, see also biogra-
phy at the end of this Chapter) perfectly
summarizes the idea used in turbulence
modeling according to which the turbu-
lence effect is to transfer energy from
the larger unstable flows to the smallest
eddies dissipating the excess energy.

Since (14.40) also holds at this scale

ε ∝ u3
v

lv
=
u3
m

lm
(14.43)

we can determine the range of scales of the cascade by eliminating uv between (14.43) and
(14.42) and by expressingum in terms of the Reynolds numberumlm/ν of the macroscales:

lm
lv
∼ Re3/4. (14.44)

This relation explains the broad range of eddy scales observed for heigh Reynolds number
flows. Alternatively we can express the scales at which dissipation takes places in function
of the dissipation rate and molecular viscosity by eliminating uv from (14.40) and (14.42)

lv ∼ ε−1/4ν3/4. (14.45)

The more energy is extracted from the mean flow, the smaller the eddies need to be in order to
be able to dissipate the energy. Or stated differently, the more strongly we stir our coffee, the
smaller the eddies and the more efficient mixing will be. Hereit is worth insisting again that
it is molecular viscosity that isin fine responsible for the diffusion. The turbulent cascade
simply increases the shearing and tearing on fluid parcels, increasing surfaces of contact
between two different fluid properties and increasing gradients because of smaller scales, so
that molecular diffusion can act more efficiently (Figure14-8).

Integrating the spectrum (5.8) between the largest eddies and the smallest ones yields the
total kinetic energy of the inertial range:

∫ π/lv

π/lm

Ekdk =
u2
m

2

(
1− Re−1/2

)
= ∼ u2

m

2
(14.46)
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Figure 14-8 Molecular diffusion acts
more rapidly when scales are smaller.
When eddies have been broken into
smaller eddies, for the same molecu-
lar diffusion coefficient, mixing is en-
hanced because the scales involved are
reduced and gradients increased. Also
surfaces between regions of different
flow characteristics are increased, en-
hancing molecular exchanges. (Figure
adapted from a suggestion by H. Bur-
chard)

and hence, the kinetic energy of the eddies is in a good approximation that from the largest
eddies.

Having now some ideas on how energy is extracted from the meanflow, we can come back
to the question on how to translate the effect of this cascadein a sensible way into a model
for the eddy viscosity. We limit our search to a parameterization in which the properties of
the turbulent cascade are purely local (so calledone-point closure model) and do not involve
remote parameters. For the mean flow, we suppose thatlm is the scale at which turbulence
extracts energy to finally dissipate it at viscous scales. Since we do not model the cascade
and associated velocity fluctuationsu′ explicitly, we have to ensure the dissipation introduced
by the eddy-viscosity extracts the energyε. To do so, the Reynolds number based on eddy
viscosity must be of order one at the largest eddies in order that turbulent dissipation occurs:

umlm
νE

∼ 1. (14.47)

Interestingly enough this relation is often used as an initial “Ansatz” of turbulent closure
schemes by using its analogy with molecular mixing and kinetic-theory of gas, where the
root mean square velocityvrms of molecules and their mean free pathλ between collisions
define the molecular diffusion, while eddy viscosity is given by (14.47):

ν =
vrmsλ

3
←→ νE ∼ umlm (14.48)

The eddy viscosity concept ensures in fact that fluid parcelsmoving with the eddy velocity
um over the average distancelm exchange momentum with other fluids parcels, similarly to
the molecular diffusion model where momentum exchange between individual molecules is
performed over the mean free pathλ. Within this context it is not surprising that the term
mixing lengthwas coined forlm.

With (14.47) we ensure that energy is extracted from the mean flow using aneddy viscos-
ity approach. However, another sensible requirement of theclosure is that we extract also the
correct amount of energy per unit of time. In other words, we must ensure that at the scales
lm we extract energy at a rate which is subsequently dissipatedin the viscous part,i.e., ε.
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Assuming we know this dissipation rate, we hence require

u3
m

lm
=

ε

(c0µ/4)3/4
. (14.49)

In summary: to calculate eddy viscosity we need to know scales um and lm. If we know
the dissipation rateε, we can use (14.49) to reduce the number of scales to be prescribed. If
in addition, we knew the kinetic energyk at the macroscale, this would add another relation
which determines the velocity scale

k =
u2
m

2
. (14.50)

This can also be used to calculate the dissipation rate (14.49) as follows

ε = (c0µ)
3/4 k3/2

lm
. (14.51)

Knowing k andε would thus allow the calculation of eddy viscosityνE and complete our
closure scheme. At that point the reader might object that calculating a macro-scale length
using micro-scale dissipation rate sounds contradictory,but the paradox is easily explained
by the fact the Kolmogorov theory shows that the dissipationrate at micro-scale is the one
extracted from the mean flow at the macro-scale, hence the link. This justification and most
of the previous reasoning rely on the idea of an equilibrium spectrum, for which at each
moment, input at low wavenumber and output at high wavenumber is in equilibrium.

One of the first successful attempts to quantify the eddy viscosity by means of a velocity
and length scale was made by Prandtl (see biography at the endof Chapter8). He analyzed a
horizontal flow〈u〉 which is vertically sheared and assumed the velocity fluctuations statisti-
cally random but with a correlation between velocity componentsu′ andw′. In this case

〈u′w′〉 = r

√
〈u′2〉

√
〈w′2〉 (14.52)

wherer is nothing else than the correlation coefficient of the two variablesu′ andw′ treated
as random fields. Assuming both velocity fluctuations proportional to the velocity scaleum
of the eddies with a constant correlation, he modeled therefore

〈u′w′〉 = c1u
2
m (14.53)

with a calibration constantc1. Since the eddy viscosity is defined by

〈u′w′〉 = νE
∂ 〈u〉
∂z

, νE = umlm (14.54)

combining (14.53) and (14.54) we obtain a first turbulence-closure model in which eddy
viscosity as calculated by mean flow characteristics:

νE = l2m

∣∣∣∣
∂ 〈u〉
∂z

∣∣∣∣ , um = lm

∣∣∣∣
∂ 〈u〉
∂z

∣∣∣∣ (14.55)

The absolute value was introduced to keep eddy viscosities positive and the only parameter
Prandtl still had to prescribe was the mixing length into which all calibration constants have
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been lumped into. We recognize that for increased shear, turbulent diffusion increases for
this model, in accordance with our intuition on the destabilizing effect of shear. The determi-
nation of the mixing length depends then on the problem at hand, in particular its geometry.
For example, for a flow above a rigid boundary, the sizelm of the largest eddies extracting
energy from the flow can be bigger far from a rigid boundary than near a wall. In terms of
the Reynolds stresses, because〈u′w′〉 must tend towards zero at a rigid boundary and equals
−l2m|∂ 〈u〉 /∂z|2 with our closure scheme, the mixing length must go to zero there because
the shear of the mean current does not. Therefore near a solidboundary it is observed that
lm = Kz wherez is the distance from the boundary andK the so-called Karman constant
(e.g., Nezu and Nakagaw, 1993; see also Section8.1). This algebraic closure scheme with a
mixing lengthlm can be modified so as to accommodate the stabilizing effect ofstratification
and generalized to three-dimensional mean flows. These topics will be covered later when
we will show that the Prandtl model can be obtained as a simplification of more complex tur-
bulence models. Such more complex turbulence models are necessary in most cases because
despite the advantage of the algebraic Prandtl closure schemes of being easily implemented
into a model and needing no additional evolution equation. Indeed, we must admit that in
this formulation the turbulence level is determined by the sole velocity scale of large-scale
flow. Also no memory effects of turbulence are included in theformulation and as soon as
the shear has disappeared by mixing, eddy viscosity is zero even if real turbulence is still
decaying. This is one of the problems of a so-calledzero-equation turbulence model.

To design more elaborated models, we will have to establish governing equations with
time derivatives, hence memory, for some of the second-moment terms. Here it is interesting
to note that the difference of volume conservation of the total flow (3.19) and the mean flow
(4.9) provides a constraint on the velocity fluctuations

∂u′

∂x
+

∂v′

∂y
+

∂w′

∂z
= 0 (14.56)

we can use during the manipulation of the governing equations for Reynolds stresses. The
obvious candidates for a governing equation are of course turbulent kinetic energyk and
the dissipation rate, because their knowledge directly determines the scales used in the eddy
viscosity approach. Here, we start by developing the so-called turbulent kinetic energyk
model3 where we define

k =
〈u′2〉+ 〈v′2〉+ 〈w′2〉

2
. (14.57)

In view of (14.40) and (14.46), the bulk of kinetic energy is contained within the largest
eddies so that we can use the velocity scale estimate of the largest eddies as

√
2k. We will now

establish a governing equation fork by applying a closure approach. We can obtain such an
equation by taking the difference between (3.21) and (4.7a) to obtain the evolution equation
for fluctuationsu′. We then multiply the equation byu′ and take the average exploiting also
(14.56). The same approach is then applied to the momentum equations iny andz directions
and we finally make the sum of the three equations to obtain after tedious calculations the
following equation

dk

dt
= Ps + Pb − ε −

(
∂qx

∂x
+
∂qy

∂y
+
∂qz

∂z

)
(14.58)

3In realityk is rather a kinetic energy per unit of mass. Because of the Boussinesq approximation we do not need
to be too purist at this point and use the name energy fork.
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where we rearranged terms so as to make appear whenever possible terms in a divergence
form. Note that the time derivative is the material derivative based on the mean flow

d

dt
=

∂

∂t
+ 〈u〉 ∂

∂x
+ 〈y〉 ∂

∂y
+ 〈w〉 ∂

∂z

and that Coriolis terms have disappeared from the equations(remember that the Coriolis
force does not provide mechanical work). Up to now, no approximations were invoked and
the different terms4 read

Ps = −〈u′u′〉 ∂ 〈u〉
∂x
− 〈u′v′〉 ∂ 〈u〉

∂y
− 〈u′w′〉 ∂ 〈u〉

∂z

−〈v′u′〉 ∂ 〈v〉
∂x
− 〈v′v′〉 ∂ 〈v〉

∂y
− 〈v′w′〉 ∂ 〈v〉

∂z

−〈w′u′〉 ∂ 〈w〉
∂x

− 〈w′v′〉 ∂ 〈w〉
∂y

− 〈w′w′〉 ∂ 〈w〉
∂z

(14.59)

Pb = −〈ρ′w′〉 g
ρ0

(14.60)

ε

ν
=

〈
∂u′

∂x

∂u′

∂x

〉
+

〈
∂u′

∂y

∂u′

∂y

〉
+

〈
∂u′

∂z

∂u′

∂z

〉

+

〈
∂v′

∂x

∂v′

∂x

〉
+

〈
∂v′

∂y

∂v′

∂y

〉
+

〈
∂v′

∂z

∂v′

∂z

〉

+

〈
∂w′

∂x

∂w′

∂x

〉
+

〈
∂w′

∂y

∂w′

∂y

〉
+

〈
∂w′

∂z

∂w′

∂z

〉
(14.61)

qx =
1

ρ

〈(
p′ +

u′
2
+ v′

2
+ w′

2

2

)
u′

〉
− ν ∂k

∂x
(14.62)

and similar expressions forqy andqz. All terms involve unknown averages on which we need
to make closure assumptions.Ps involves fields from both the mean flow and turbulence
and is thus related to the interaction between the two. Sincethe shear of the large-scale
flow appears, this term is calledshear production. The second term,Pb, clearly involves
the work performed by the turbulent buoyancy forces on the vertical stratification and is thus
related to the potential energy changes. For obvious reasons we call itbuoyancy production.
The dissipation rateε involves as expected the molecular viscous dissipation by turbulent
motions. Finally the last termqx and its cousins involve only turbulent parameters of pressure
and velocity and because of the divergence form of the terms is thus related to the spatial
redistrubution ofk by turbulence itself. All those terms must now be modeled in terms of
the state variables and in the case of thek equation, the closures are directly inspired by
the turbulence model we actually use. For example, the Reynolds stresses appearing in the
unknown terms are replaced with the eddy viscosity model already in use. By defining the

4Strictly speaking, dissipation should readε = 2ν‖D‖2 where the deformation tensorD of the fluctuations is
similar to (14.63). The definition used here is often called pseudo dissipation. Since the numerical values are almost
indistinguishable and the mathematical formulation only differs by a vector divergence term that we can lump into
the parameterization of vector(qx, qy, qz), we will retain the more compact definition.
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deformation tensor (or strain rate tensor)

D =
1

2




2∂u∂x

(
∂u
∂y + ∂v

∂x

) (
∂u
∂z + ∂w

∂x

)
(
∂u
∂y + ∂v

∂x

)
2∂v∂y

(
∂v
∂z + ∂w

∂y

)
(
∂u
∂z + ∂w

∂y

) (
∂v
∂z + ∂w

∂x

)
2∂w∂z


 (14.63)

and the Reynolds stress tensor

τ =



〈u′u′〉 〈u′v′〉 〈u′w′〉
〈u′v′〉 〈v′v′〉 〈v′w′〉
〈u′w′〉 〈v′w′〉 〈w′w′〉


 (14.64)

the eddy-viscosity model reads

τ = −2νED +
2k

3
I (14.65)

The additional term, with identity matrixI and proportional tok on the right-hand side has
been introduced for consistency reasons. Indeed, we make a (probably incorrect) model of
the Reynolds stresses but without the last terms, the model iscertainly incorrect, because the
least we can require is that the trace of the matrix on the left-hand side being equal to the
trace on the right-hand side. Such a realizability constraint demands the last term to be added
on the diagonal of the model matrix. In practice, the term is not very important but is in any
case acessible for ak model. Using (14.65) in (14.59) allows then the calculation of the shear
productionPs in terms of the mean flow characteristics.

For buoyancy productionPb, the velocity-density correlations are modelled with an eddy
diffusivity approach

〈ρ′w′〉 = −κE
∂ 〈ρ〉
∂z

= κE
ρ0

g
N2 (14.66)

and the termPb does not require further treatment ifκE is given as part of the closure scheme.
Since the termsqx, qy andqz appear in a flux form, integration over any volume shows

that the therm is only responsible of redistributingk in space. Since it involves turbulent
quantities, it seems natural to model this term as a turbulent diffusion flux of k, with eddy
viscosityνE in view of the velocity and pressure correlations involved5. The different terms
are thus now parameterized as

Ps = 2νE ‖〈D〉‖, (14.67)

Pb = −κEN2, (14.68)

qx = −νE
∂k

∂x
. (14.69)

We notice that the signs of the modeled termsPs andPb are coherent with the idea of turbu-
lence extracting energy from the mean flow and transferring it to turbulence, with stratifica-
tion inhibiting or reducing turbulence intensities because of the required increase of potential

5In real models, the eddy diffusivity for turbulent kinetic energy is the eddy diffusivity divided by the so-called
Schmidt numberσk.
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energy when mixing a stably stratified situation (Section14.2). We arrive thus finally at the
governing equation for turbulent kinetic energy

dk

dt
= Ps + Pb − ε + D(k) (14.70)

D(k) =
∂

∂z

(
νE
∂k

∂z

)
(14.71)

and knowing appropriate boundary conditions, we can predict the evolution ofk if we know
how to calculateε and the eddy viscosity/diffusivity. We can note that we keptthe turbulent
diffusion in D( ) only in the vertical direction, leaving the horizontal partfor subsequent
parameterizations of the horizontal subgrid scales. Ifε is calculated using (14.51) with a
prescribed mixing lengthlm, the turbulent closure scheme is called ak-model orone-equation
turbulence model. In view of its mathematical quadratic form,k must be required to be
positive in any closure scheme and a realizability condition of the model is that the solution
of (14.70) is always positive (Problem 14-8). Subsequent numerical discretization then also
should maintain the property (Exercise 14-2).

To summarize, with approximations coherent with our turbulence closure approach, we
now have an equation that allows to predict the energy of the turbulent eddies and gives a
coherent estimation of their velocity and hence the eddy viscosity

νE =
cµ(
c0µ
)3/4
√

k lm (14.72)

where the mixing length is to be provided on geometrical considerations of the flow from
which ε is provided by (14.43) and used in (14.70). In this contextc0µ used in (14.72) is the
same constant as in (14.43) andcµ a calibration parameter. Eddy diffusivityκE is obtained
in a similar way

κE =
c′µ(
c0µ
)3/4
√

k lm (14.73)

where the calibration constantc′µ is different fromcµ. The two parameters will later be
defined as functions. The ratio of the two parameters, also equal to the ratio ofνE andκE , is
called the turbulent Prandtl numberPr

Pr =
cµ
c′µ

=
νE
κE

. (14.74)

We introduced only two different turbulent diffusion coefficients though each state variable
could claim its own (e.g., Canutoet al., 2002). We keep a uniqueκE for diffusion of fields
related to scalar properties not directly related to pressure and velocity fluctuations but rather
to tracer velocity correlations because of the similar physical transport they are subjected to.
HenceκE is used for the diffusion of density, salinity, temperature, moisture and any tracer
concentration. Eddy viscosityνE is then generally used for the diffusion of velocities,k and
ε because of the similar dynamical nature and origin of the variables. If necessary, Schmidt
numbers can be introduced to modify the coefficients.

Before further increase the complexity of the closure schemes, we can verify how the
model behaves in simple flow structures and look at a sheared flow of uniform density in a
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〈u〉
p1 p2

L

H

x
z

Figure 14-9 Flow in a channel forced
by a prescribed pressure gradient.

channel with averaged fields independent ofx andy (Figure14-9). In this case the velocity
field isu = 〈u〉+ u′, w = w′ and the mean flow only depending inz obeys

∂ 〈u〉
∂t

= − 1

ρ0

∂ 〈p〉
∂x

+
∂

∂z

(
ν
∂ 〈u〉
∂z
− 〈u′w′〉

)
(14.75)

where the pressure gradient is uniform along the channel andover the distanceL the pressure
difference isp2 − p1. The total kinetic energyE of the flow is

〈
(u2 + v2 + w2)

〉
/2 or

E =
〈u〉2
2

+ k. (14.76)

The first term is the kinetic energy of the mean flow and the second term the turbulent kinetic
energy. Multiplying (14.75) by 〈u〉 we will establish the governing equation for the kinetic
energy of the mean flow. For the fluctuation equations we couldto the same calculation on
the governing equations ofu′ which would lead to the equations fork simplified to take into
account the mean flow structure depends solely onz and we obtain

∂

∂t

(
〈u〉2
2

)
= − 1

ρ0

∂ 〈p〉 〈u〉
∂x

+
∂

∂z

[
〈u〉
(
ν
∂ 〈u〉
∂z
− 〈u′w′〉

)]

− ν

(
∂ 〈u〉
∂z

)2

+ 〈u′w′〉 ∂ 〈u〉
∂z

∂k

∂t
= −〈u′w′〉 ∂ 〈u〉

∂z
− ε +

∂qz

∂z
. (14.77)

The underlined term of the first equation is nothing else thanthe shear production of tur-
bulence appearing in the second equation with changed sign.We clearly see how the shear
production term is an energy transfer term between kinetic energy of the mean flow and the
turbulence. With our eddy viscosity approach the shear production reads

Ps = −〈u′w′〉 ∂ 〈u〉
∂z

= νE

(
∂ 〈u〉
∂z

)2

(14.78)

and energy is extracted from the mean flow to the turbulence for positive eddy viscosity. Note
thatPs scales as

Ps ∼ νE
u2
m

l2m
∼ u3

m

lm
(14.79)
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if we assume that the scales still resolved by the Reynolds averaging are at macroscale. If we
integrate the energy equations over a distanceL and the channel height, assume stationary
solutions, exploit the fact the velocities (both mean and turbulent) are zero inz = 0 and
z = H and finally use the closure schemes, we obtain

(
p1 − p2

ρ0

)
UH

L
=

∫ H

0

(ν̃ + ν)

(
∂ 〈u〉
∂z

)2

dz (14.80)

whereU = 1/H
∫ H
0
〈u〉 dz is the average velocity over the inflow and outflow section. For

the stationary turbulent kinetic energy equation we have the budget

∫ H

0

ε dz =

∫ H

0

ν̃

(
∂ 〈u〉
∂z

)2

dz. (14.81)

In the absence of turbulence and eddy viscosity, the first equation shows that for an increased
energy input trough higher pressure gradients, the flow mustgenerate increasingly larger
shears needed for molecular diffusion to dissipate all energy. Such strong shears lead to
instabilities create turbulence and now eddy viscosity canextract energy from the mean flow
at much lower values of the shear because of the presence ofνE � ν. As shown by (14.81),
the extracted energy is then dissipated in the viscous sink by ε still acting with molecular
viscosity but at much smaller scales as indicated by (14.61).

14.4 Other closures:k− ε or k− klm

The previous one-equation turbulence model still needed a mixing length to be prescribed by
an algebraic,a priori known function to have a closed system. As indicated before,should
we be able to provide the governing equation for eitherε or lm, the closure would not need
anymore such empirical algebraic closures. Therefore, there have been efforts to establish a
governing equation for a combination ofk andlm, or equivalently a combination ofk andε
so as to have two governing equations for turbulent parameters and an algebraic relationship
(14.51) allowing to calculatek, ε andlm and hence eddy viscosity.

Since dissipation rates are now measured by microprofilers (e.g., Osborne, 1974; Luecket
al. 2002),ε is an attractive candidate for a second equation in turbulence modeling and when
trying to establish an equation forε by manipulating the governing equations for velocity
fluctuations in a similar way as before, we reach a governing equation of the type

dε

dt
= Q (14.82)

where, without approximations, the right-hand side contains a series of complicated expres-
sions most of which involving unknown correlations similarto the Reynolds stresses (e.g.,
Rodi, 1980; Burchard, 2002). Contrary to thek equation however, those terms are not nat-
urally and coherently modeled using the eddy-viscosity approach itself, but require strong
additional hypotheses, not to say educated guesses. The most common approach is to use the
energy production related terms from thek equation and use a linear combination of them to
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model the energy dissipation source terms, while terms related to redistribution in space are
as usual modeled by a turbulent diffusion. Hence, the modeled governing equation forε reads

dε

dt
=

ε

k
(c1 Ps + c3 Pb − c2 ε) + D(ε) (14.83)

where the termsPs andPb are those of thek equation and coefficientsc1, c2 andc3 calibration
constants,c1 ≈ 1.44, c2 ≈ 1.92, c3 ∈ [−0.6, 0.3]. Because the two turbulent parameters cal-
culated arek andε, it is useful to express eddy-viscosity in function of thesetwo parameters
by eliminating the mixing lengthlm between (14.72) and (14.51)

νE = cµ
k2

ε
(14.84)

This a particulartwo-equation turbulence modelwithin a series of possible ones. Instead
modeling the governing equation forε an equation forlm or a combination oflm andk can
be established, with (14.51) allowing to relate the three variablesk, ε, lm. The most famous
model in the context of geophysical flows is the so-calledk − klm model of Mellor and
Yamada (1982). Their governing equation forklm reads, using notations adapted to our
previous models,

dklm
dt

=
lm
2

[
E1 Ps + E3 Pb −

(
1− E2

l2m
l2z

)
ε

]
+ D(klm) (14.85)

whereE1, E2 andE3 are calibration constants. As for (14.83) the source term is a linear
combinationPs, Pb andε, with the appearence of a prescribed length scalelz that is needed
in this formulation to enforcelm to decrease towards zero near solid boundaries. In thek− ε
model, this is achieved “automatically” if correct boundary conditions are applied (Burchard
and Bolding, 2001). Except for this difference, the models are structurally identical since
because of (14.51), in the absence of spatial variations, (14.83) and (14.85) are equivalent.
The difference between the formulations lies in the quantity that is considered transported by
the flow, in thek−εmodel it is dissipation (coherently with the Kolmogorov idea of conserved
dissipation rate), while in the Mellor-Yamada model it isklm. In fact, it is possible to establish
a generic evolution equation forkaεb whith constantsa andb (a=0,b=1 corresponding to the
k−εmodel anda=5/2,b=-1 to thek−klm model) and consider this variable to be transported
by the flow (Umlauf and Burchard 2003). Whatever combinationis choosen such models
are called for obvious reasonstwo-equation modelsand except forlz do not need further
prescribed spatial functions.

We will not increase complexity of turbulence modeling further but will finish the de-
scription of general turbulence modeling with the observation that all closure schemes de-
scribed here were based on local analysis, never using remote information to model Reynolds
stresses. Such models are calledone-point closurescheme while schemes that use informa-
tion in remote locations to infer local turbulence are referred to as two-point closure schemes
(e.g., Stull 1993). Since we will not look further into turbulencemotions, we also come back
to the notations without making the distinction between average flow properties and turbulent
properties so that from here on,u stands again for the average or mean velocity.
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14.5 Mixed-layer modeling

The turbulence models presented in the previous two sections are applicable in three-dimensional
flows, but can generally be simplified for geophysical flows byexploiting the small aspect ra-
tio of the mean flows under investigation (e.g., Umlauf and Burchard 2005). In particular, the
strain rate is simplified

D =
1

2



∼ 0 ∼ 0 ∂u

∂z

∼ 0 ∼ 0 ∂v
∂z

∂u
∂z

∂v
∂z ∼ 0


 (14.86)

and the shear production reads

Ps = νEM
2 M2 =

(
∂u

∂z

)2

+

(
∂v

∂z

)2

(14.87)

where the Prandtl frequencyM is the direct generalization of (14.24). Also the turbulent dif-
fusion itself is acting essentially in the vertical direction because of the shorter length scales
alongz. On the other hand, analyzing flows with small aspect ratios inevitably eliminates a
series of horizontal subgrid scale processes, whose effects are modeled as before by a hori-
zontal diffusion with diffusion coefficientA

D() =
∂

∂x

(
A ∂

∂x

)
+

∂

∂y

(
A ∂

∂y

)
+

∂

∂z

(
νE

∂

∂z

)
(14.88)

Is is now quite clear thatνE is modeling actual turbulence, whileA tries to take into account
horizontally unresolved processes at larger scales thanlm but smaller scales than the length
scales of the problem or the numerical grid used to solve it. Assuming a cascade in this case
a possible closure is

A ∼ (∆x)4/3ε
(1/3)
H , (14.89)

directly inspired byνE ∼ l
(4/3)
m ε1/3 obtained by (14.72) and (14.51). For the estimation of

A, εH is then the energy dissipation of the horizontally unresolved processes. According to
Okubo (1971), these dissipation rates are relatively uniform and allow to calculateA depend-
ing on the scales under investigation (Figure14-10) Another subgrid scale parameterization
of horizontal movements is directly inspired by the Prandtlmodel (e.g., Smagorinsky 1964),

A ∼ ∆x∆y

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+
1

2

(
∂u

∂y
+
∂v

∂x

)2
]1/2

(14.90)

where the mixing length is replaced by the average grid spacing, so as to ensure that all scales
below the grid size are effectively modeled is have being mixed by eddies. In view of the∆x2

appearing in the formulation and the1/∆x2 stemming from the numerical discretization of
the second derivative associated with the lateral diffusion, we can interprete the Smagorinsky
formulation as a numerical filter (Section10.6) acting at grid resolution with and intensity
depending on the local shear.

Because later subgrid scale parameterizations are less well established than classical tur-
bulence closure, we come now back to the vertical turbulencemodeling and will show that we
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Figure 14-10 Lateral diffusion in func-
tion of cut-off scales in the horizontal
grids (Okubo 1971).

can recover the Prandtl model if we assume there is not transport of turbulence and an instant
adaptation of the energy level to changes in the production.In this case (14.70) reduces to

Ps + Pb = ε. (14.91)

For the sheared flow〈u〉 alongz in a stratified fluid of Brunt-Väisälä frequencyN , the equi-
librium between production and dissipation yields indeed,using (14.72) and (14.51) for a
given mixing lengthlm and defining the flux Richardson number

Rf =
−Pb
Ps

=
c′µ
cµ

N2

M2
=
c′µ
cµ
Ri = PrRi (14.92)

k =
cµ

(c0µ)
3/2

l2mM
2(1−Rf ) (14.93)

from where the eddy viscosity

νE =

(
cµ
c0µ

)3/2

l2mM
√

1−Rf (14.94)

is obtained. We recover the Prandtl closure (14.55) with the eddy viscosity now taking into
account the stabilizing effect of the stratification. We seethat our simplest models are partic-
ular cases of the more complex models.

Further adaptations to the mixed layer flows can be done by introducing so-calledsta-
bility functionsinto the parameterizations. The derivation of such formulations, starts with
the complete second-moment equations for Reynolds stresses. Then simplifying hypotheses
on the unknown higher-order moments are used and possibly either neglecting spatial and
temporal variations (similar to the equilibrium hypothesis (14.91)) or assuming rather heuris-
tically an advection-diffusion transport proportional tolocal productions, so-calledalgebraic
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Table 14.1 PARAMETERS USED IN THE CLOSURE SCHEME DERIVED FROMCANUTO et al. 2001

s0 s1 s2 s4 s5 s6
0.10666 0.01734 -0.00012 0.11204 0.00451 0.00088
d1 d2 d3 d4 d5 c0µ

0.2554 0.02871 0.00522 0.00867 -0.00003 0.0768

Reynolds-stress modelsare obtained, generally under the form of a possibly nonlinear alge-
braic system to be solved. When solved or approximated to provide the Reynolds stresses in
function of the mean flow characteristics, formulations as (14.84) appear, where the function
cµ can now be quite complicated.

In all algebraic second order turbulent closure schemes they are formulated in function of
two dimensionless stability parameters :

αN =
k2

ε2
N2 αM =

k2

ε2
M2 (14.95)

Stability functions widely differ based on the different hypotheses used in the derivation
(e.g., Mellor and Yamada, 1982; Galperinet al., 1988; Kantha and Clayson, 1994; Canutoet
al., 2001). Here as an example stability functions from Umlauf and Burchard (2005) depicted
in figure14-11and given by

νE = cµ
k2

ε
, (14.96)

and

κE = c′µ
k2

ε
. (14.97)

with

cµ =
s0 + s1αN + s2αM

1 + d1αN + d2αM + d3αNαM + d4α2
N + d5α2

M

, (14.98)

c′µ =
s4 + s5αN + s6αM

1 + d1αN + d2αM + d3αNαM + d4α2
N + d5α2

M

, (14.99)

If Ps + Pb = ε is used in some parts of the derivation of stability functions, so-called
quasi-equilibrium versionsare obtained (Galperinet al., 1988); which generally have a more
robust behavior than other formulations (seee.g., Burchard and Deleersnijder, 2001 for a
discussion).

14.6 Patankar-type discretizations

During the treatment of advection problems (Section6.4), the reader might have wondered
why so much discussion was devoted to monotonic behavior. After all, if we know that the
solution must be positive and we find negative values in the numerical solution, we know
they are not real and can disregard them. For linear schemes,this is indeed a viable approach.
Negative values can however have dramatic effects if nonlinearities are present and the source
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Figure 14-11 Stability functionscµ andc′µ as functions ofαN andαM .

terms appearing in the governing equations for turbulent kinetic energy or the dissipation rate
should already give us some hints of the problems, such as taking a square root of turbulent
kinetic energy numerically not positive defined. Even for well defined mathematical opera-
tions, other problems can appear. Take the example of a quadratic sink for a tracerc without
any spatial dependence:

dc

dt
= −µc2. (14.100)

The solution starting from initial conditionc0 is

c(t) =
c0

1 + µt c0
, (14.101)

which tends gently to zero for positive initial conditions.Should the value ofc0 be neg-
ative, the solution tends however towards negative infinitein a finite time(−1/µc0). If a
discretization of such an equation, starting with positivevalues leads for some reason to a
negative value ofc, a problem is to be expected since from this moment on, the numerical
solution will explode rapidly since after all, it mimics thephysical solution, which diverges in
a finite time. Problems are even worse if the source term such as c3/2 is mathematically not
defined for negative arguments. Practically this generatesNaN(Not a Number) in calculation
codes that pollute rapidly all calculation arrays. In view of the above mentioned problems of
nonlinear source terms, solutions must be found to avoid occurrence of negative values when
the physical solution remains positive.

An implicit treatment of the nonlinear source or sink term would enhance stability and
therefore reduce over- or undershooting tendencies, but tobe able to calculate numerically the
value ofc̃n+1

i we need to invert or solve a nonlinear algebraic equation. This is rarely possible
in closed analytical form and we need to resort to numerical techniques. This amounts to find
zeros of a function, which can be achieved with standard iterative methods (Picard, Regula
Falsi, Newton-Raphsonetc., e.g., Dahlquist and Björck, 1974 or Stoer and Burlish 2002).
But since we need to solve such such an equation in each grid point and each time step, the
approach can become quite time consuming, not to speak aboutproblems of robustness in
finding roots that to not converge or converge to unphysical solutions.

Patankar (1960) introduced a method that makes the discretization of a nonlinear source
term somehow implicit without actually needing to solve a nonlinear algebraic equation. We
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start from the semi-discrete version of the governing equations for the model statex:

∂x

∂t
= Q (x) (14.102)

where the right-hand side regroups all spatial operators. Such a system can be discretized by
one of the many methods we already presented. The algorithm to update the numerical state
variablex is then for example

Axn+1 = Bxn + f, (14.103)

whereA andB are emerging from the discretization chosen andf may contain forcing terms.
If we now add a sink term to the governing equations

∂x

∂t
= Q (x)−Kx (14.104)

where the matrixK = diag(Ki) is a diagonal matrix with differentKi if the decay rate is if
different for the different components of the state vector.Then an explicit discretization of
the sink term would lead to the adapted algorithm

Axn+1 = (B− b)xn + f , (14.105)

whereb = diag(Ki∆t) is also a diagonal matrix. An implicit treatment of the sink term
would lead to

(A + b)xn+1 = Bxn + f . (14.106)

To use an implicit scheme for thelinear sink, all we have to do is to modify the matrix to
invert, the modified matrix being not more complicated to invert than the original one since
only the diagonal is changed. If no system is to be solved initially, A = I and the scheme
including the implicit source term can locally be inverted simply by multiplying the right-
hand side bydiag( 1/(1 +Ki∆t) ).

Patankar’s simple yet powerful trick is to assume that thenonlinear sourceQ can be
written in a pseudo-linear fashion:

Q = −K(c) c, (14.107)

which is always the case (simply defineK by this relationship), as long asQ/c remains
bounded for allc. The discretization then uses for each grid point

Qi = −K(c̃ni ) c̃
n+1
i = Q(c̃ni )

c̃n+1
i

c̃ni
, (14.108)

which is a consistent discretization. All we have to do to calculatec̃n+1 is to modify the
system similarly to (14.106) by adding a termKi(c̃

n
i )∆t on the diagonal if a system is to be

solved or by dividing the right hand side by1 +Ki(c̃
n
i )∆t if all other terms are discretized

explicitly.
The method is simple, but how does this trick help to maintainvalues positive? Consider

a sink term whereK(c) > 0. Then the physical solution, in the absence of spatial operators,



14.6. PATANKAR-TYPE DISCRETIZATIONS 413

must decrease from a positive value towards zero without ever increasing during the adjust-
ment. Also the physical solution remains positive all the time. The explicit discretization
applied to a positive valuẽcn does not ensure such a behavior for arbitrary time steps because

c̃n+1 = c̃n −K(c̃n)∆t c̃n = (1−K(c̃n)∆t) c̃n

is negative wheneverK(c̃n)∆t > 1. The Patankar trick replaces the explicit calculation by

c̃n+1 = c̃n −K(c̃n)∆t c̃n+1 =
c̃n

1 +K(c̃n)∆t
,

which remains positive all the time and makes the solution always decrease in time. The
only requirement for the method to work isK(c) to be bounded forc → 0, otherwise, when
approaching zero, overflows in the numerical code will occur.

We might wonder why we not just requireK(c̃n)∆t ≤ 1 when a sink term is present in
order to ensure a correct behavior. For so-calledstiff problems,K may vary over a very large
range, in which the largest value ofK, and thus the most rapidly disappearing solution, will
enforce a very small time step, even if the fast process, by essence, disappears rapidly. In this
case, unless adaptive time-stepping is used, it is almost impossible to ensure a sufficiently
small time step that keeps̃c positive all the time without using excessively small time steps
in most of the calculations. Specially in coupled nonlinearequations, the stiffness is diffi-
cult to apprehend and ecosystem models are prone to non-positive behavior when explicit
discretizations are used because of the occasional presence of very fast processes.

We will now slightly generalize the Patankar method taking into account that sinks de-
crease values but the source terms increase them. For a single equation with a source (pro-
duction termP ≥ 0) and a sink (destruction termD ≥ 0) such thatQ = P −D

dc

dt
= P (c)−D(c), (14.109)

a discretizatioǹa la Patankar would read:

c̃n+1 = c̃n + ∆t

{
Pn

c̃n
(
αc̃n+1 + (1− α)c̃n

)
− Dn

c̃n
(
βc̃n+1 + (1 − β)c̃n

)}
(14.110)

whereα andβ are as usual implicitness factors. This equation can directly be solved for̃cn+1

or the linear system matrixA modified in accordance if implicit spatial operators are added.
For some problems, the solution of (14.109) tends towards an equilibrium solutionc∗ ,

P (c∗) = D(c∗) without oscillating around this equilibrium value. It is easy to show that this
is the case if

P (c) S D(c) if c T c∗. (14.111)

It is then possible to show (Exercise 14-8) that in order to have a numerical solution that, as
the physical solution, keeps concentrations positive and converges towards the equilibrium
valuec∗ without oscillating around it, we must ensure

1

∆t
≥ P −D

c∗ − c +
αP c − βDc

c
. (14.112)

To obtain the less restrictive time-steppingα = 0, β = 1 would be the best choice. For
example withP = cr andD = cr+1, we have an equilibrium positionc∗ = 1 for anyr > 0.
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If α = 0, β = 1, the Patankar scheme then yields a steady convergence towards this value
for arbitrary large time steps. The example is not an academic one, because the interested
reader might have realized thatr = 1/2 corresponds to the typical source/sink term of a
turbulent closure scheme using a fixed mixing length (Section 14.3), whiler = 1 refers to the
logistic equations of biological components. The method outlined here was recently adapted
to a set of coupled equations, ensuring conservation between components and higher-order
convergence than the Euler scheme shown here (Burchardet al. 2003, 2004), an approach of
interest for models transporting ecosystems.

14.7 Penetrative convection

Text of section See also numerical convective adjustment ofSection11.4This section was
alluded to in Section8.7

Analytical Problems

14-1. A stratified shear flow consists of two layers of depthH1 andH2 with respective
densities and velocitiesρ1, U1 andρ2, U2 (left panel of Figure14-2). If the lower
layer is three times as thick as the upper layer and the lower layer is stagnant, what is
the minimum value of the upper-layer velocity for which there is sufficient available
kinetic energy for complete mixing (right panel of Figure14-2)?

14-2. In the ocean, a warm current (T = 18◦C) flows with a velocity of 10 cm/s above a
stagnant colder layer (T = 10◦C). Both layers have identical salinities, and the thermal-
expansion coefficient is taken as 2.54× 10−4 K−1. What is the wavelength of the
longest unstable wave?

14-3. Formulate the Richardson number for a stratified shear flow with uniform stratification
frequencyN and linear velocity profile, varying from zero at the bottom to U at a
heightH . Then, relate the Richardson number to the Froude number andshow that
instabilities can occur only if the Froude number exceeds the value 2.

14-4. In an oceanic region far away from coasts and strong currents, the upper water column
is stably stratified withN = 0.015 s−1. A storm passes by and, during 10 h, exerts
an average stress of 0.2 N/m2. What is the depth of the mixed layer by the end of the
storm? (For seawater, takeρ0 = 1028 kg/m3.)

14-5. An air mass blows over a cold ocean at a speed of 10 m/s and develops a stable
potential-temperature gradient of 8◦C per kilometer in the vertical. It then encoun-
ters a warm continent and is heated from below at the rate of 200 W/m2. Assuming
that the air mass maintains its speed, what is the height of the convective layer 60 km
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inshore? What is then a typical vertical velocity of convection? (Takeρ0 = 1.20 kg/m3,
α = 3.5× 10−3 K−1, andCp = 1005 J/kg.K.)

14-6. For the growing atmospheric boundary layer, show that thermals rise faster than the
layer grows (w∗ > dh/dt) and that thermals have a temperature contrast less than the
temperature jump at the top of the layer [T∗ < (T − T0)/2].

14-7. Why eddy-viscosity is considered positive? What happens interms of energetics if
νE ≤ 0 ?

14-8. Consider the a governing equation fork that reads

∂k

∂t
= νEM

2 − κEN2 − ε

with (14.72), (14.73) and (14.51) for fixedM2 ,N2 , lm andPr = 0.7. Show that the
solution is always non-negative if the initial conditions are non-negative.

14-9.

Numerical Exercises

14-1. Assuming the governing equation fork is dominated by the local production and dis-
sipation, how would you define a staggered grid for a one-dimension model of a water
column?

14-2. Implement a numerical method that keepsk positive for a decaying turbulence in a
homogenousk− ε model.

14-3. Show that for turbulence in equilibrium, stability functions depend only on the Richard-
son number

14-4. Revisit our estimate of the computing powers needed to simulate earth fluid dynamics
down to the dissipation range, with micro-scale in mind and typical values ofε = 10−7

W/kg.

14-5. What to you think should be the a requirement on a vertical grid spacing∆z compared
to lm.

14-6. Implement a complete 1D model including ak − ε closure scheme. If in trouble look
at kepsmodel.m , but do not cheat.

14-7. Use the program developed in Exercise 14-6 orkepsmodel.m to simulate the wind
entrainment case of Problem 14-4. In particular, look at theevolution of the surface
velocity as a function of time on a hodograph (u, v axes), with or without Coriolis
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Figure 14-12 A uniform stratification
is perturbed by a constant surface wind.
In the absence of rotation the mixed
layer deepens (two later profiles are
shown at regular time-intervals). When
rotation is present, the mixed layer sta-
bilizes and the pycnocline is stronger.

force. Then repeat the exercise but do not allow the wind to stop. Again, compare the
situations with or without Coriolis force. To do so, observein both cases the mixed-
layer depth evolution as shown in Figure14-12.

14-8. Prove that (14.112) is the sufficient condition to ensure that the numerical solution
obtained with (14.110) converges toward the equilibrium valuec∗, remains positive
and never crosses the valuec = c∗.

14-9. Convection case withN =. Destabilizing heat loss of 200 w m−2 at the surface (equiv-
alent to the atmospheric heating from below). Translate heat flux into density anomaly
flux and apply the 1D model without rotation. Start from rest Implement a method to
detect the mixed layer depth and show the evolution of this depth as a function of time.
Do the same for the wind entrainment in Exercise 14-7. Compare to the theoretical
results (???)

14-10. Apply real atmospheric conditions for a density profile ?? PAPA? (Get from GOTM
setup?)



Lewis Fry Richardson
1881 – 1953

Unlike many scientists of his generation and the next, LewisFry Richardson did not become
interested in meteorology because of a war. On the contrary,he left his secure appointment
at the Meteorological Office in England during World War I to serve in a French ambulance
convoy and tend the wounded. After the war, he returned to theMeteorological Office (see
historical note at the end of Chapter 1), only to leave it again when it was transferred to the
Air Ministry, deeply convinced that “science ought to be subordinate to morals”.

Richardson’s scientific contributions can be broadly classified in three categories: finite-
difference solutions of differential equations, meteorology, and mathematical modeling of
nations at war and in peace. The marriage of his first two interests led him to conceive of
numerical weather forecasting well before computers were available for the task (see Section
1.9). His formulation of the dimensionless ratio that now bearshis name is found in a series
of landmark publications during 1919–1920 on atmospheric turbulence and diffusion. His
mathematical theories of war and peace were developed in search of rational means by which
nations could remain in peace.

According to his contemporaries, Richardson was a clear thinker and lecturer, with no
enthusiasm for administrative work and a preference for solitude. He confessed to being “a
bad listener because I am distracted by thoughts.” (Photo by Bassano and Vandyk, London)
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George L. Mellor
19xx –

George Mellor’s career has been devoted to fluid turbulence in its many forms. His early in-
terest in aerodynamics of jet engines and turbulent boundary layers soon yielded to a stronger
interest in the turbulence of stratified geophysical flows.

Something about numerical modeling and the Princeton OceanModel, used across the
world to simulate ocean dynamics, particularly in coastal regions where dynamics are com-
plex and turbulence is crucial.

In the mid 1970s with Ted Yamada, he developed a closure scheme to model turbulence
in stratified flows, which is being used worldwide for atmospheric and oceanographic appli-
cations. Their joint 1982 publication inReviews of Geophysics and Space Physicsis one of
the most widely cited papers in its field.

Include few words about GFDL, Princeton University.
Author of textbook “Introduction to Physical Oceanography” (American Institute of Physics,

1996).
(yet to be approved by George himself) (credit for source of photo)
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Chapter 15

Dynamics of Stratified Rotating
Flows

(October 18, 2006)SUMMARY : Geostrophic motions can arise during the adjustment to
density inhomogeneities and maintain a stratified fluid awayfrom gravitational equilibrium.
The key is a relationship between the horizontal density gradient and the vertical velocity
shear, called the thermal-wind relation. Coastal upwelling in the ocean is also considered as
it is another example of rotating dynamics of a stratified fluid. Since large gradients and even JMB from⇓
discontinuities (fronts) can form during geostrophic adjustment, the numerical section shows
how to treat large gradients in numerical models. JMB to⇑

15.1 Thermal wind

Consider a situation where a cold air mass is wedged between the ground and a warm air
mass (Figure15-1). The stratification has then both vertical and horizontal components.
Mathematically, the density is a function of both heightz and distancex (say, from cold to
warm). Now, assume that the flow is steady, geostrophic, and hydrostatic:

− fv = − 1

ρ0

∂p

∂x
(15.1)

∂p

∂z
= − ρg. (15.2)

Here,v is the velocity component in the horizontal directiony, andp is the pressure field.
Taking thez-derivative of (15.1) and eliminating∂p/∂z with (15.2), we obtain

∂v

∂z
= − g

ρ0f

∂ρ

∂x
. (15.3)
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Figure 15-1 Vertical shear of a flow
in the presence of a horizontal density
gradient. The change of velocity with
height is called thermal wind.

Therefore, a horizontal density gradient can persist in steady state if it is accompanied by a
vertical shear of horizontal velocity. Where density varies in both horizontal directions, the
following also holds:

∂u

∂z
= +

g

ρ0f

∂ρ

∂y
. (15.4)

These innocent-looking relations have profound meaning. They state that, due to the
Coriolis force, the system can be maintained in equilibrium, without tendency toward leveling
of the density surfaces. In other words, the rotation of the earth can keep the system away
from its state of rest without any continuous supply of energy.

Notice that the velocity field (u, v) is not specified, only its vertical shear,∂u/∂z and
∂v/∂z. This implies that the velocity must change with height. (Inthe case of Figure15-1,
∂ρ/∂x is negative and∂v/∂z is positive.) For example, the wind speed and direction at some
height above the ground may be totally different from those at ground level. The presence of
a vertical gradient of velocity also implies that the velocity cannot vanish, except perhaps at
some discrete levels. Meteorologists have named such a flow thethermal wind.1

In the case of pronounced density contrasts, such as across cold and warm fronts, a layered
system may be applicable. In this case (Figure15-2), the system can be represented by
two densities (ρ1 andρ2, ρ1 < ρ2) and two velocities (v1 andv2). Relation (15.3) can be
discretized into

∆v

∆z
= − g

ρ0f

∆ρ

∆x
,

where we take∆v = v1 − v2 and∆ρ = ρ2 − ρ1 to obtain

1Although thermal wind is a meteorological expression, oceanographers use it, too, to indicate a sheared current
in geostrophic equilibrium with a horizontal density gradient.

Figure 15-2 The layered version of
Figure 15-1, which leads to the Mar-
gules relation.
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v1 − v2 = − g

ρ0f
(ρ2 − ρ1)

∆z

∆x
. (15.5)

The ratio∆z/∆x is the slope of the interface. We can note that this discrete version is JMB from⇓
consistent with the continuous version, because in each layer, according to (15.3), a constant
density is accompagnied by a vertically uniform velocity. This discrete thermal wind equation JMB to⇑
is called theMargules relation(Margules, 1906), although a more general form of the relation
for zonal flows was obtained earlier by Helmholtz (1888).

The thermal-wind concept has been enormously useful in analyzing both atmospheric and
oceanic data, because observations of the temperature and other variables that influence the
density (such as pressure and specific humidity in the air, orsalinity in seawater) are typically
much more abundant than velocity data. For example, knowledge of temperature and mois-
ture distributions with height and of the surface wind (to start the integration) permits the
calculation of wind speed and direction above ground. In theocean, especially in studies of
large-scale oceanic circulation, for which sparse current-meter data may not be representative
of the large flow due to local eddy effects, the basinwide distribution may be considered as
unknown. For this reason, oceanographers typically assumethat the currents vanish at some
great depth (e.g., 2000 m) and integrate the “thermal-wind”relations from there upward to
estimate the surface currents. Although the method is convenient (the equations are linear
and do not require integration in time), we should keep in mind that the thermal-wind rela-
tion of (15.3) and (15.4) is rooted in an assumption of strict geostrophic balance. Obviously,
this will not be true everywhere and at all times.

15.2 Geostrophic adjustment

We may now ask how situations like the ones depicted in Figures 15-1and15-2can arise.
In the atmosphere, the temperature gradient from the warm tropics to the cold polar regions
create is a permanent feature of the global atmosphere, although storms do alter the magnitude
of this gradient in time and space. Ocean currents can bring in near contact water masses
of vastly different origins and thus densities. Finally, coastal processes such as fresh water
runoff can create density differences between saltier waters offshore and fresher waters closer
to shore. Thus a variety of mechanisms exists by which different fluid masses can be brought
in contact.

Oftentimes, the contact between different fluid masses is recent and the flow has not yet
had the time to achieve thermal-wind balance. An example is coastal upwelling: Alongshore JMB from⇓
winds create in the ocean an offshore Ekman drift and the depletion of surface water near theJMB to⇑
coast brings denser water from below (see later section in this chapter). Such a situation is
initially out of equilibrium and gradually seeks adjustment.

Let us explore in a very simple way the dynamical adjustment between two fluid masses
recently brought into contact. Let us imagine an infinitely deep ocean that is suddenly heated
over half of its extent (Figure15-3a). A warm upper layer develops on that side, while the
rest of the ocean, on the other side and below, remains relatively cold (Figure15-3b). (We
could also imagine a vertical gate preventing buoyant waterfrom spilling from one side to the
other.) After the upper layer has been created — or, equivalently, when the gate is removed —
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the ocean is not in a state of equilibrium, the lighter surface water spills over to the cold side,
and an adjustment takes place. In the absence of rotation spilling proceeds, as we can easily
imagine, until the light water has spread evenly over the entire domain and the system has
come to rest. But, this scenario, as we are about to note, is not what happens when rotational
effects are important.

localized
heating

densityρ0

ocean
air

(a) Initial state

ρ0

(b) Immediately after heating event

x
ρ1 = ρ0 −∆ρH

x =
0

ρ0

(c) After adjustment

x
ρ1

x
=
d fro

nt

h

v(
x)

ocean

Figure 15-3 A simple case of
geostrophic adjustment.

Under the influence of the Coriolis force, the forward acceleration induced by the ini-
tial spilling creates a current that veers (to the right in the Northern Hemisphere) and can
come into geostrophic equilibrium with the pressure difference associated with the density
heterogeneity. The result is a limited spill accompanied bya lateral flow (Figure15-3c).

To model the process mathematically, we use the reduced-gravity model (12.19) on anf -
plane and where the reduced-gravity constant isg′ = g(ρ0−ρ1)/ρ0 according to the notation
of Figure15-3b. We neglect all variations in they-direction, although we allow for a velocity,
v, in that direction, and write

∂u

∂t
+ u

∂u

∂x
− fv = − g′ ∂h

∂x
(15.6)

∂v

∂t
+ u

∂v

∂x
+ fu = 0 (15.7)

∂h

∂t
+

∂

∂x
(hu) = 0. (15.8)

The initial conditions (i.e., immediately after the warming event) areu = v = 0, h = H for
x < 0, andh = 0 for x > 0. The boundary conditions areu, v→ 0 andh→ H asx→ −∞,
whereas velocity componentu at the front is given by the material derivativeu = dx/dt inJMB from⇓
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h = 0 at x = d(t), the moving point where the interface outcrops. This nonlinear prob- JMB to⇑
lem cannot be solved analytically, but one property can be stated. The preceding equations
conserve the following form of the potential vorticity:

q =
f + ∂v/∂x

h
. (15.9)

Initially, all particles havev = 0, h = H and share the same potential vorticity:q = f/H .
Therefore, throughout the layer of light fluid and at all times, the potential vorticity keeps the
uniform valuef/H :

f + ∂v/∂x

h
=

f

H
. (15.10)

This property, it turns out, allows us to relate the initial state to the final state without having
to solve for the complex, intermediate evolution.

Once the adjustment is completed, time derivatives vanish.Equation (15.8) then requires
thathu be a constant; sinceh = 0 at one point, this constant must be zero, implying that
u must be zero everywhere. Equation (15.7) reduces to zero equals zero and tells nothing.
Finally, equation (15.6) implies a geostrophic balance,

− fv = − g′
dh

dx
, (15.11)

between the velocity and the pressure gradient set by the sloping interface. Alone, equation
(15.11) presents one relation between two unknowns, the velocity and the depth profile. The
potential-vorticity conservation principle (15.10), which still holds at the final state, provides
the second equation, thereby conveying the information about the initial disturbance into the
final state.

Despite the nonlinearities of the original governing equations (15.6) through (15.8), the
problem at hand, (15.10) and (15.11), is perfectly linear, and the solution is relatively easy to
obtain. Elimination of eitherv(x) or h(x) between the two equations yields a second-order
differential equation for the remaining variable, which admits two exponential solutions. Dis-
carding the exponential that grows forx→ −∞ and imposing the boundary conditionh = 0
atx = d lead to:

h = H

[
1 − exp

(
x− d
R

)]
(15.12)

v = −
√
g′H exp

(
x− d
R

)
, (15.13)

whereR is the deformation radius, defined by

R =

√
g′H

f
, (15.14)

andd is the unknown position of the outcrop (whereh vanishes). To determine this distance,
we must again tie the initial and final states, this time by imposing volume conservation.
Ruling out a finite displacement at infinity where there is no activity, we require that the
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depletion of light water on the left ofx = 0 be exactly compensated by the presence of light
water on the right; that is,

∫ 0

−∞

(H − h) dx =

∫ d

0

h dx, (15.15)

which yields a transcendental equation ford, whose solution is surprisingly simple:JMB from⇓
JMB to⇑

d = R =

√
g′H

f
. (15.16)

Thus, the maximum distance over which the light water has spilled is none other than the
radius of deformation, hence the name of the latter.

Notice thatR has the Coriolis parameterf in its denominator. Therefore, the spreading
distance,R, is less than infinity becausef differs from zero. In other words, the spreading is
confined because of the earth’s rotation via the Coriolis effect. In a non-rotating framework,
the spreading would, of course, be unlimited.

Lateral heterogeneities are constantly imposed onto the atmosphere and oceans, which
then adjust and establish patterns whereby these lateral heterogeneities are somewhat dis-
torted but maintained. Such patterns are at or near geostrophic equilibrium and can thus
persist for quite a long time. This explains why discontinuities such as fronts are common
occurrences in both the atmosphere and the oceans. As the preceding example suggests,
fronts and the accompanying winds or currents take place over distances on the order of the
deformation radius. To qualify the activity observed at that length scale, meteorologists refer
to thesynoptic scale, whereas oceanographers prefer to use the adjectivemesoscale.

We can vary the initial, hypothetical disturbance and generate a variety of geostrophic
fronts, all being steady states. A series of examples, takenfrom published studies, is provided
in Figure 15-4. They are, in order: surface-to-bottom front on a flat bottom, which can
result from sudden and localized heating (or cooling); surface-to-bottom front at the shelf
break resulting from the existence of distinct shelf and deep water masses; double, surface-
to-surface front; and three-layer front as the result of localized mixing of an otherwise two-
layer stratified fluid. The interested reader is referred to the original articles by C. G. Rossby
(1937, 1938), the article by Veronis (1956), the review by Blumen (1972), and other articles
on specific situations, by Stommel and Veronis (1980), Hsuehand Cushman-Roisin (1983),
and van Heijst (1985). Ou (1984) considered the geostrophicadjustment of a continuously
stratified fluid and showed that, if the initial condition is sufficiently away from equilibrium,
density discontinuities can arise during the adjustment process. In other words,fronts can
spontaneously emerge from earlier non-discontinuous conditions.

The preceding applications dealt with situation in which there is no variation in one of
the two horizontal directions. The general case (see Hermann et al., 1989) may yield a time-
dependent flow that is nearly geostrophic.

15.3 Energetics of geostrophic adjustment

The preceding theory of geostrophic adjustment relied on potential-vorticity and volume
conservation principles, but nothing was said of energy, which must also be conserved in
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Figure 15-4 Various examples of geostrophic adjustment.

a nondissipative system. All we can do, now that the solutionhas been obtained, is to check
on the budget, where a surprise is awaiting us!

Initially, the system is at rest and there is no kinetic energy (KEi = 0), whereas the initial
potential energy (per unit length in the transverse direction) is

PEi =
1

2
ρ0

∫ 0

−∞

g′H2 dx. (15.17)

Benoit: I do not think we proved that expression of potential energy is given by (15.17).
Maybe in Section 12.4 as limiting case for second layer to infinity? Or exercise?
(Although this expression is infinite, only the difference with the final potential energy will
interest us. So, there is no problem.) At the final state, the velocity u is zero, leaving the
kinetic energy to be
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KEf =
1

2
ρ0

∫ a

−∞

hv2 dx, (15.18)

and the potential energy is

PEf =
1

2
ρ0

∫ a

−∞

g′h2 dx. (15.19)

During the spreading phase, some of the lighter water has been raised and some heavier
water has been lowered to take its place. Hence, the center ofgravity of the system has been
lowered, and we expect a drop in potential energy. Calculations yield

∆PE = PEi − PEf =
1

4
g′H2R. (15.20)

Some kinetic energy has been created by setting a transversecurrent. The amount is

∆KE = KEf − KEi =
1

12
g′H2R. (15.21)

Therefore, as we can see, only one-third of the potential-energy drop has been consumed
by the production of kinetic energy, and we should ask: What has happened to the other
two-thirds of the released potential energy? The answer lies in the presence of transients,
which occur during the adjustment: Some of the time-dependent motions are gravity waves
(here, internal waves on the interface), which travel to infinity, radiating energy away from
the region of adjustment. In reality, such waves dissipate along the way, and there is a net
decrease of energy in the system. The ratio of kinetic-energy production to potential-energy
release varies from case to case (Ou, 1986) but tends to remain between 1/4 and 1/2. TheJMB from⇓
reason we used a volume-conservation constraint to determine the frontal position and allow
for energy to be lost at infinite and not the inverse is rooted in the very different nature of mass
and energy propagation. The latter can be transported by waves, without net displacement of
fluid parcels, while the former would need a net advection by aflow.JMB to⇑

An interesting property of the geostrophically adjusted state is that it corresponds to the
greatest energy loss and thus to a level of minimum energy. Let us demonstrate this proposi-
tion in the particular case at hand. The energy of the system is at all times

E = PE + KE =
ρ0

2

∫ a

−∞

[g′h2 + h (u2 + v2)] dx, (15.22)

and we know that the evolution is constrained by conservation of potential vorticity:

f +
∂v

∂x
=

f

H
h. (15.23)

Let us now search for the state that corresponds to the lowestpossible level of energy, (15.22),
under constraint (15.23) by forming the variational principle:

F(h, u, v, λ) =
ρ0

2

∫ 0

−∞

[
g′h2 + h(u2 + v2)− 2λ

(
f +

∂v

∂x
− fh

H

)]
dx(15.24)

δF = 0 for anyδh, δu, δv, andδλ. (15.25)
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Because expression (15.22) is positive definite in the absence of the constraint , the extremumfrom⇓
to ⇑ will be a minimum. The variations with respect to the three state variablesh, u, andv and

the Lagrange multiplierλ yield, respectively:

δh : g′h +
1

2
(u2 + v2) +

f

H
λ = 0 (15.26)

δu : hu = 0 (15.27)

δv : hv +
∂λ

∂x
= 0 (15.28)

δλ : f +
∂v

∂x
− f

H
h = 0. (15.29)

Equation (15.27) providesu = 0, whereas the elimination ofλ between (15.26) and (15.28)
leads to

∂

∂x

(
g′h +

1

2
v2

)
+

f

H
(−hv) = 0,

or,

g′
∂h

∂x
+ v

(
∂v

∂x
− f

H
h

)
= 0.

Finally, use of (15.29) reduces this last equation to

g′
∂h

∂x
− fv = 0.

In conclusion, the state of minimum energy is the state in whichu vanishes, and the cross-
isobaric velocity is geostrophic — that is, the steady, geostrophic state.

It can be shown that the preceding conclusion remains valid in the general case of ar-
bitrary, multilayer potential-vorticity distributions,as long as the system is uniform in one
horizontal direction. Therefore, it is a general rule that geostrophically adjusted states cor- JMB from⇓

JMB to⇑respond to levels of minimum energy. This may explain why geophysical flows commonly
adopt a nearly geostrophic balance.

15.4 Coastal upwelling

15.4.1 The upwelling process

Winds blowing over the ocean generate Ekman layers and currents. The depth-averaged
currents, called the Ekman drift, forms an angle with the wind, which was found to be 90◦ (to
the right in the Northern Hemisphere) according to a simple theory (Section8.6). So, when a
wind blows along a coast, it generates an Ekman drift directed either onshore or offshore, to
which the coast stands as an obstacle. The drift is offshore if the wind blows with the coast on
its left (right) in the Northern (Southern) Hemisphere (Figure15-5). If this is the case, water
depletion occurs in the upper layers, and a low pressure setsin, forcing waters from below
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Figure 15-5 Schematic development of coastal upwelling.

to move upward and replenish at least partly the space vacated by the offshore drift. This JMB from⇓
JMB to⇑phenomenon is calledcoastal upwelling. The upward movement calls for a replenishment at

the lower levels, which is accomplished by an onshore flow. Torecapitulate, a wind blowing
along the coast (with the coast on the left or the right in, respectively, the Northern or the
Southern Hemisphere) sets an offshore current in the upper levels, an upwelling at the coast,
and an onshore current at lower levels.

This circulation in the cross-shore vertical plane is not the whole story, however. The
low pressure created along the coast also sustains, via geostrophy, a longshore current, while
vertical stretching in the lower layer generates relative vorticity and a shear flow. Or, from aJMB from⇓
different perspective, the vertical displacement create lateral density gradients, which in turn
call for a thermal wind, the shear flow. Thus, the flow pattern is rather complex.JMB to⇑

At the root of coastal upwelling is a divergent Ekman drift. And, we can easily conceive of
other causes besides a coastal boundary for such divergence. Two other upwelling situations
are noteworthy: one along the equator and the other at high latitudes. Along the equator,
the trade winds blow quite steadily from East to West. On the northern side of the Equator,
the Ekman drift is to the right, or away from the Equator, and on the southern side, it is to
the left, again away from the Equator (Figure15-6). Consequently, horizontal divergence
occurs along the equator, and mass conservation requires upwelling (Yoshida, 1959; Gill,
1982, Chapter 11).

At high latitudes, upwelling frequently occurs along the ice edge, in the so-called marginal
ice zone. A uniform wind exerts different stresses on ice andopen water; in its turn, the mov-
ing ice exerts a stress on the ocean beneath. The net effect isa complex distribution of stresses
and velocities at various angles, with the likely result that the ocean currents at the ice edge
do not match (Figure15-6). For certain angles between wind and ice edge, these currents
diverge, and upwelling again takes place to compensate for the divergence of the horizontal
flow (Häkkinen, 1990).

The upwelling phenomenon, especially the coastal type, hasbeen the subject of consid-
erable attention, chiefly because of its relation to biological oceanography and, from there, to
fisheries. In brief, small organisms in the ocean (phytoplankton) proliferate when two con-
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Figure 15-6 Other types of upwelling: (a) equatorial upwelling, (b) upwelling along the ice edge.

ditions are met: sunlight and a supply of nutrients. In general, nutrients lie in the deeper
waters, below the reach of sunlight, and so the waters tend tolack either nutrients or sunlight.
The major exceptions are the upwelling regions, where deep,nutrient-rich waters rise to the
surface, receive sunlight, and stimulate biological activity. Upwelling-favorable winds most
generally occur along the west coasts of continents where the prevailing winds blow toward
the Equator. For a review of observations and a discussion ofthe biological implications of
coastal upwelling, the interested reader is referred to thevolume edited by Richards (1981).

15.4.2 A simple model of coastal upwelling

Consider a reduced-gravity ocean on anf -plane (f > 0), bounded by a vertical wall and
subjected to a surface stress acting with the wall on its left(Figure15-5a). The upper moving
layer, defined to include the entire vertical extent of the Ekman layer, supports an offshore
drift current. The lower layer is, by virtue of the choice of areduced-gravity model, infinitely
deep and motionless. In the absence of longshore variations, the equations of motion are

∂u

∂t
+ u

∂u

∂x
− fv = − g′ ∂h

∂x
(15.30a)

∂v

∂t
+ u

∂v

∂x
+ fu =

τ

ρ0h
(15.30b)

∂h

∂t
+

∂

∂x
(hu) = 0, (15.30c)

wherex is the offshore coordinate,τ is the longshore wind stress, and all other symbols are
conventional (Figure15-5b).

Despite its apparent simplicity, the preceding set of equations is nonlinear, and no ana-
lytical solution is known. We therefore linearize these equations by assuming that the wind
stressτ and, in turn, the ocean’s reaction are weak. Noting

h = H − a, whereH is the depth of the undisturbed upper layer anda the small upward
displacement of the interface, we write
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∂u

∂t
− fv = g′

∂a

∂x
(15.31)

∂v

∂t
+ fu =

τ

ρ0H
(15.32)

− ∂a

∂t
+ H

∂u

∂x
= 0. (15.33)

This set of equations contains two independentx-derivatives and thus calls for two boundary
conditions. naturally,u vanishes at the coast (x = 0) anda vanishes far offshore (x→ +∞).

The solution to the problem depends on the initial conditions, which may be taken to
correspond the state of the rest (u = v = a = 0). Yoshida (1955) is credited with the
first derivation of this solution (extended to two moving layers). However, because of the
fluctuating nature of winds, upwelling is rarely an isolatedevent in time, and we prefer to in-
vestigate the periodic solutions to the preceding linear set of equations. Takingτ = τ0 sin ωt,
whereτ0 is a constant in both space and time, we note that the solutionmust be of the type
u = u0(x) sin ωt, v = v0(x) cos ωt anda = a0(x) cos ωt. Substitution and solution of the
remaining ordinary differential equations inx yield

u =
fτ0

ρ0H (f2 − ω2)

[
1 − exp

(
− x

Rω

)]
sin ωt (15.34)

v =
ωτ0

ρ0H (f2 − ω2)

[
1 − f2

ω2
exp

(
− x

Rω

)]
cos ωt (15.35)

a =
−fRωτ0
ρ0g′Hω

exp

(
− x

Rω

)
cos ωt, (15.36)

whereRω is a modified deformation radius defined as

Rω =

√
g′H

f2 − ω2
(15.37)

From the preceding solution, we conclude that the upwellingor downwelling signal is
trappedalong the coast within a distance on the order ofRω. Far offshore (x → ∞), the
interfacial displacement vanishes, and the flow field reduces to the Ekman drift

uEK =
τ0

ρ0fH
sin ωt, vEK = 0, (15.38)

on which are superimposed inertial oscillations. At long periods such as weeks and months
(ω � f), the distanceRω becomes the radius of deformation, the vertical interfacial dis-
placements become very large (indeed, the wind blows more steadily in one direction before
it reverses), and the far-field inertial oscillations become much smaller than the Ekman drift.

At superinertial frequencies(ω > f), the quantityRω becomes imaginary, indicating
that the solution does not decay away from the coast but instead oscillates. Physically, the
ocean’s response is not trapped near the coast and inertia-gravity waves (Section9.3) are
excited. These radiate outward, filling the entire basin.
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15.4.3 Finite-amplitude upwelling

If the wind is sufficiently strong or is blowing for a sufficiently long time, the density in-
terface can rise to the surface, forming a front. Continued wind action displaces this front
offshore and exposes the colder waters to the surface. This mature state is calledfull up-
welling (Csanady, 1977). Obviously, the previous linear theory is not applicable in such case.

Because of the added complications arising from the nonlinearities, let us now restrict
our investigation to the final state of the ocean after a wind event of finite duration. Equation
(15.30b), expressed as

d

dt
(v + fx) =

τ

ρ0h
, (15.39)

whered/dt = ∂/∂t+ u∂/∂x is the time derivative following a fluid particle in the offshore
direction, can be integrated over time to yield:

(v + fx)at end of event − (v + fx)initially = I. (15.40)

Thewind impulseI is the integration of the wind-stress term,τ/ρ0h, over time and following
a fluid particle. Although the wind impulse received by everyparcel cannot be precisely
determined, it can be estimated by assuming that the wind event is relatively brief. The time
integral can then be approximated by using the local stress value and replacingh byH : JMB from⇓

JMB to⇑
I ' 1

ρ0H

∫

event

τ dt. (15.41)

If the initial state is one of rest, relation (15.40) implies that a particle initially at distance
X from the coast is at distancex immediately after the wind ceases and has a longshore
velocityv such that

v + fx − fX = I. (15.42)

During the oceanic adjustment that follows until equilibrium is reached, Equation (15.39)
(with τ = 0) implies that the quantityv + fx is a conserved quantity, and relation (15.42)
continues to hold beyond the time when the wind ceased.

If the wind is laterally uniform while it blows, no vorticityis imparted to fluid parcels,
Benoit: Did we show this? Is physically obvious for us, but have we already proved it JMB from⇓
somewhere? If so, reference to section or Exercise?? JMB to⇑

and potential vorticity is conserved during the wind event as well as during the following
adjustment:

1

h

(
f +

∂v

∂x

)
=

f

H
. (15.43)

Once a steady state has been achieved, there is no longer any offshore velocity (u = 0),
according to (15.30c). The remaining equation, (15.30a), reduces to a simple geostrophic
balance, which together with (15.43) provides the solution:
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h = H − A exp
(
− x

R

)
(15.44)

v = A

√
g′

H
exp

(
− x

R

)
, (15.45)

whereR is now the conventional radius of deformation (
√
g′H/f . The constant of integra-

tion A represents the amplitude of the upwelled state and is related to the wind impulse via
(15.42). Two possible outcomes must be investigated: Either the interface has not risen to
the surface (Figure15-7, case I) or it has outcropped, forming a front and leaving cold waters
exposed to the surface near the coast (Figure15-7, case II).
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Figure 15-7 The two possible out-
comes of coastal upwelling after a
longshore wind of finite duration. After
a weak or brief wind (case I), the inter-
face has upwelled but not to the point
of reaching the surface. A strong or
prolonged wind event (case II) causes
the interface to reach the surface, where
it forms a front; this front is displaced
offshore, leaving cold waters from be-
low exposed to the surface. This latter
case corresponds to a mature upwelling
that favors biological activity.

In case I, the particle initially against the coast (X = 0) is still there (x = 0), and relation
(15.42) yields v(x = 0) = I. Solution (15.45) meets this condition ifA = I(H/g′)1/2.
The depth along the coast,h(x = 0) = H − A, must be positive requiringA ≤ H ; that is,
I ≤ (g′H)1/2. In other words, the no-front situation or partial upwelling of case I occurs
if the wind is sufficiently weak or sufficiently brief that itsresulting impulse is less than the
critical value (g′H)1/2.

In the more interesting case II, the front has been formed, and the particle initially against
the coast (X = 0) is now at some offshore distance (x = d ≥ 0), marking the position
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of the front. There the layer depth vanishes,h(x = d) = 0, and solution (15.44) yields
A = H exp(d/R). The longshore velocity at the front is, according to (15.45), v(x = d) =
(g′H)1/2. Finally, relation (15.42) leads to the determination of the offshore displacementd
in terms of the wind impulse:

d =
I

f
− R. (15.46)

Since this displacement must be a positive quantity, it is required thatI ≥ (g′H)1/2. Phys-
ically, if the wind is sufficiently strong or sufficiently prolonged, so that the net impulse is
greater than the critical value(g′H)1/2, the density interface rises to the surface and forms a
front that migrates away from shore, leaving cold waters from below exposed to the surface.
Note how the conditions for the realizations of cases I and IIcomplement each other.
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Figure 15-8 Decomposition of the formation of a coastal-upwelling front as a two-stage process: first,
an offshore Ekman drift in response to the wind, followed by abackward geostrophic adjustment.

Formula (15.46) has a simple physical interpretation, as sketched in Figure 15-8. The
offshore Ekman velocityuEK is the velocity necessary for the Coriolis force to balance the
longshore wind stress:

uEK =
τ

ρ0fh
, (15.47)

according to (8.34a). Integrated over time, this yields a net offshore displacement propor-
tional to the wind impulse

xEK =
I

f
. (15.48)

If we were now to assume that the wind is responsible for an offshore shift of this magnitude,
while the surface waters are moving as a solid slab, we would get the intermediate structure
of Figure15-8. But such a situation cannot persist, and an adjustment mustfollow, causing an
onshore spread similar to that considered in Section15.2— that is, over a distance equal to
the deformation radius. Hence we have the final structure of Figure15-8and formula (15.46).
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15.4.4 Variability of the upwelling front

Up to this point, we have considered only processes operating in the offshore direction or,
equivalently, an upwelling that occurs uniformly along a straight coast. In reality, the wind is
often localized, the coastline not straight, and upwellingnot at all uniform. A local upwelling
sends a wave signal along the coast, taking the form of an internal Kelvin wave, which in the
Northern Hemisphere propagates with the coast on its right.This redistribution of informa-
tion not only decreases the rate of upwelling in the forced region but also generates upwelling
in other, unforced areas. As a result, models of upwelling must retain a sizable portion of the
coast and both spatial and temporal variations of the wind field (Crépon and Richez, 1982;
Brink, 1983).

Adding to this variability are intrinsic instabilities of the upwelling front, because the
front is a region of highly sheared currents. In the two-layer formulation presented in the
previous section, this shear is manifested by a discontinuity of the current at the front. The
warm layer develops anticyclonic vorticity (i.e., counter to the rotation of the earth) under the
influence of vertical squeezing and flows alongshore in the direction of the wind. On the other
side of the front, the exposed lower layer is vertically stretched, develops cyclonic vorticity
(i.e., in the same direction as the rotation of the earth) and flows upwind. The currents on
each side of the front thus flow in opposite directions, causing a large shear, which, as we
have seen (Chapter10), is vulnerable to instabilities. In addition to the kinetic-energy supply
in the horizontal shear (barotropic instability), potential energy can also be released from
the stratification by a spreading of the warm layer (baroclinic instability; see Chapter17).
Offshore jets of cold, upwelled waters have been observed toform near capes; these jets cut
through the front, forge their way through the warm layer, and eventually split to form pairs
of counterrotating vortices (Flament et al., 1985). This explains why mesoscale turbulence
is associated with upwelling fronts (Figure15-9). The situation is complex and demands
careful modeling. Irregularities in the topography and coastline may play influential roles
and require adequate spatial resolution, while accurate simulation of the instabilities is only
possible if the numerical dissipation of the model is not excessive.

15.5 Atmospheric frontogenesis

Text of section

15.6 Numerical handling of large gradients

A common characteristic of the preceding sections is the appearance and involvement of
strong gradients of density. If such a gradient appears in the horizontal plane, we are in the
presence of a frontal structure. Should we need to apply numerical techniques on a Eulerian
grid to describe the front, we are immediately facing the problem of needing very high res-
olution in the grid spacing to ensure∆x � L, because the length scaleL can become quite
small across the front. Such a high resolution covering the whole model domain is generally
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Figure 15-9 SeaWiFS satellite image of the North American Pacific coast showing the occurence of
coastal upwelling from Baja California (Mexico) to Vancouver Island (Canada). Colors indicate the
amount of chlorophyll concentration in the water, with highvalues (red and orange colors) in regions
of high biological activity and low values (blue and purple colors) in biologically inactive waters. Note
how instabilities greatly distort the upwelling front (transition from yellow to light blue color). (Com-
posite image provided courtesy of Dr. Andrew Thomas, Schoolof Marine Sciences, University of Maine,
USA)
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computationally very expensive, and it would be preferableto use the high resolution only
near the frontal region. This can be achieved bynestingapproaches, embedding higher res-
olution models into coarser resolution models at the location of interest (e.g., Barth et al.,
2005). In this case, an abrupt change in grid size is present at the interface between the two
models, which can lead to numerical problems (Exercise 15-9), which require particular care.
Here we present therefore a method that allows gradually changing grid spacings. Such a
variable resolution was already suggested in the time discretization (see Figure4-10) when
processes are suddenly varying more rapidly. It is now appropriate to formalize a method to
place or distribute discrete calculation points in an optimal way. We will first try to distribute
a series of discrete pointsxi to follow at best a given and known functionf(x). The optimal-
ity criterion could be to distribute the points so that on average, differences off between grid
points are uniform. In this way, regions with very large variations will be covered with more
grid points than regions with weak variations. In other words, it would be advantageous to
keep variations constant

|fi+1 − fi| ∼ C (15.49)

by placing the grid pointsi adequately. Mathematically we look for a coordinate transforma-
tion

x = x(ξ, t), ξi = i (15.50)

where the new coordinateξ is uniformly discretized in the computational domain, while the
discrete pointsxi = x(ξi) are non-uniformly covering the real domain. In terms of the new
coordinateξ, the variations off that should be kept uniform are

∣∣∣∣
∂f

∂ξ

∣∣∣∣ ∼ C (15.51)

or by taking the derivative with respect toξ

∂

∂ξ

∣∣∣∣
∂f

∂ξ

∣∣∣∣ = 0. (15.52)

If we express the variations off in terms of physical gradients, we therefore should findx(ξ)
solution of

∂

∂ξ

(∣∣∣∣
∂f

∂x

∣∣∣∣
∂x

∂ξ

)
= 0. (15.53)

Since we are interested in discretizing anyway and can assume without loss of generality
∆ξ = 1, we can directly search for the discrete positionsxi solution of

∣∣∣∣
∂f

∂x

∣∣∣∣
i+1/2

(xi+1 − xi)−
∣∣∣∣
∂f

∂x

∣∣∣∣
i−1/2

(xi − xi−1) = 0. (15.54)

This equation is nonlinear since derivatives must be calculated in unknown grid-point posi-
tions. To solve the equation, an iterative method or pseudo-time approach can be used (see
iterative solvers of Section5.6):

x
(k+1)
i = x

(p)
i + ∆tα

[∣∣∣∣
∂f

∂x

∣∣∣∣
i+1/2

(x
(k)
i+1 − x

(k)
i )−

∣∣∣∣
∂f

∂x

∣∣∣∣
i−1/2

(x
(k)
i − x

(k)
i−1)

]
= 0. (15.55)
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This can be interpreted as the numerical solution of a pseudo-evolution equation for the grid-
nodes.

∂x

∂t
= α

∂

∂ξ

(∣∣∣∣
∂f

∂x

∣∣∣∣
∂x

∂ξ

)
, (15.56)

where the coefficientα scales with the distanceL over with functionf changes by its typical
valueF

α =
L

TF
(15.57)

and where the time-scaleT determines how fast the stationary solutions should be obtained.
If the numerical calculation of gradients is performed in a straightforward approach with the
function sampled atx(k)

i denoted byf (k)
i = f(x

(k)
i ), our grid relocation algorithm reads

x
(k+1)
i = x

(k)
i + ∆tα

[∣∣∣f (k)
i+1 − f

(k)
i

∣∣∣−
∣∣∣f (k)
i − f (k)

i−1

∣∣∣
]
. (15.58)

The algorithm is complemented with prescribed values ofx on the known boundary positions.
A problem with this formulation appears when the functionf is constant in large parts of the
domain. By construction, such regions will be void of grid nodes because no variations of
f are detected. Therefore a tendency to maintain a uniform background distribution of grid
nodes should be required. This can be achieved by the following approach

x
(k+1)
i = x

(k)
i + ∆tα

[
wi+1/2(x

(k)
i+1 − x

(k)
i )− wi−1/2(x

(k)
i − x

(k)
i−1)

]
= 0 (15.59)

where the weighting function can be calculated as

w =
∂f

∂x
+ β

F

L
. (15.60)

In this approachβ controls the tendency to reach a uniform grid distribution.If scalesF and
L are chosen correctly,β � 1 leads to the stationary equation∂2x/∂ξ2 = 0 and would lead
to a uniform grid, whileβ � 1 is equivalent to the original version (15.55). The grid posi-
tions can thus be obtained by repeated application of the diffusion-like equation (15.59). This
is not to be confused with a physical diffusion. Here only positions of the grid nodes are cal-
culated. Later, dynamic equations, possibly without any diffusion, are then to be discretized
on this grid. Applying this adapting technique we can then follow strong gradients with some
residual grid nodes in the other regions (Figure15-10). Other techniques to place grid points
in regions of interest exist (e.g., Thompsonet al., 1985; Liseikin, 1999), the general approach
being to reduce some measure of the discretization errors.

The non-uniform grids can be used in a fixed or time-adaptive way. In the frozen version,
the grids are created once and the calculation points kept attheir initial location. This allows
to focus on features whose position is knowna priori, such as topographic particularities
and associated dynamics. Or it simply allows to zoom into a given region of interest. In the
adaptive version, the grid is allowed to move in time, following if possible, the dynamically
relevant structures (e.g., Beckers and Burchard, 2004). In this case, in addition to the need
of using discrete operators on a non-uniform grid, appears the difficulty of a moving grid,
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Figure 15-10 Grid nodes sampling a strongly varying function and linear interpolation between nodes.
On the left panel the standard uniform grid and on the right panel the adapted grid with higher resolution
near the front.

which needs to be reflected in the discretization operators.The modification to the standard
methods can be illustrated on the one-dimensional tracer equation in physical space

∂c

∂t
+

∂(uc)

∂x
=

∂

∂x

(
A ∂c
∂x

)
. (15.61)

The moving grids requires additional treatment which we canintroduce mathematically via a
coordinate transformation similar to the isopycnal coordinate change. For the one-dimensional
problem we will calculatec(ξ(x, t), t). Note that our grid generation providesx(ξ, t) so
that we should try to express coordinate-transformation rules in terms of metrics∂x/∂t and
∂x/∂ξ we can calculate numerically when knowing the positionsx(ξi, t

n). Using the same
mathematical approach as in Section12.1, and exploiting

∂ξ

∂t
= −

∂x
∂t
∂x
∂ξ

,
∂ξ

∂x
=

1
∂x
∂ξ

(15.62)

we obtain the governing equation forc in the coordinate system (ξ, t)

∂x

∂ξ

∂c

∂t
− ∂x

∂t

∂c

∂ξ
+

∂(uc)

∂ξ
=

∂

∂ξ

(
A
(
∂x

∂ξ

)−1
∂c

∂ξ

)
. (15.63)

Derivatives are performed in the new coordinate system, in which the numerical grid is now
fixed and uniform, so that we can apply our standard discretization techniques. For this, it is
advantageous to provide a flux form of the equation exploiting ∂2x/∂ξ∂t = ∂2x/∂t∂ξ:

∂

∂t

(
∂x

∂ξ
c

)
+

∂

∂ξ

[(
u− ∂x

∂t

)
c

]
=

∂

∂ξ

(
A
(
∂x

∂ξ

)−1
∂c

∂ξ

)
. (15.64)

∂x/∂ξ is readily interpreted as the grid spacing when∆ξ = 1, whereas the termud = ∂x/∂t
is the velocity at which the grid nodes move in physical space. In the numerical space, the
advection term involves(û = u − ud) which is the velocity relative to the moving grid and
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which is needed to advect the information relative to the nodes. Obviously if we move the
grid with the current velocity, relative velocity is zero and we are in a Lagrangian framework.
But for grid adaptations, the movement of the grid does not need to be related to the flow
velocity but can be freely chosen. Care must however be takento ensure stability of the
scheme because of the changed apparent velocity field withinthe numerical grid.

Instead of the mathematical coordinate change in the governing equations, we can also
establish discrete equations on a moving grid by directly applying the space integration in
physical space between two moving grid-pointsxa(t) andxb(t). When integrating between
two such points, in coherence with the finite volume approach(Section3.9), we write

∫ xb(t)

xa(t)

∂c

∂t
dx + qb − qa = 0 q = uc−A ∂c

∂x
. (15.65)

Here we must take into account that the integration boundaries move and use Leipnitz rule to
treat the time derivative so as to make appear the numerical unknown,i.e., the time variation
of the grid averaged/integrated concentration

∂

∂t

∫ xb(t)

xa(t)

cdx + c(xa, t)
∂xa
∂t
− c(xb, t)

∂xb
∂t

+ qb − qa = 0. (15.66)

Defining the flux

q̂ =

(
u− ∂x

∂t

)
c−A ∂c

∂x
(15.67)

the finite volume equation on the moving grid reads

∂

∂t

∫ xb(t)

xa(t)

cdx + q̂b − q̂a = 0, (15.68)

where the velocityud = ∂x/∂t of the grid appears again. This is already a discrete for-
mulation in space and we can obtain the same by integrating (15.64) in the fixed numerical-
coordinate space where no Leipnitz rule needs to be applied.We therefore obtain for both
approaches the semi-discrete equation

∂

∂t
[(xi+1/2 − xi−1/2)c̃i] + q̂b − q̂a = 0, (15.69)

where the fluxeŝq are discretized as usual in the numerical space. Generalization to three-
dimensional equations are obtained by replacing the physical velocity fieldu byu−ud, where
ud is the grid velocity that can be calculated at each moment when the grid-node positions
are known at each moment. Subtilities in the implementationare then related to the choice of
discrete positions that define the grid (interfaces or volume centers in 1D, corners or centers of
finite volumes in 2D or 3D, see Exercises 15-4 and 15-5) and theway the changing grid size
is discretized in time. As usual, mathematical properties used to obtain the budget equations
are not necessarily shared by the numerical operators and inparticular, it must be ensure that
discretization of (15.69) conserves the volumes∂x/∂ξ of the numerical grid in the sense that
for constantc, equation (15.69) is identically satisfied. Mathematically this is the case but
it also must hold in the discrete case, otherwise an artificial source ofc will appear. This
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is similar to the advection problem in which the divergence operator of the fluxes had to be
coherent with the one used in the physical volume conservation (Section6.6).

The reader might have identified that a particular case of an adaptive grid is the layered
model of Section12, where the vertical positions of discrete levels are moved in a Lagrangien
way to follow density interfaces instead of moving them depending on local properties of the
solution as in (15.59). Rather than to follow the fronts with moving grids, we alsocan try to
capture the strong gradients in a fixed grid but with appropriate numerical discretizations that
preserve fronts such as the TVD advection schemes alluded toin Section6.4.

15.7 Nonlinear advection schemes

There is intense research going on to design advection schemes in several dimensions that
are monotonic but more accurate than the upwind scheme. Several approaches can be men-
tioned : Flux-Corrected Transport methods (FCT) (Boris andBook, 1973; Zalesak, 1979)
make two passes on the numerical grid, the first one with an upwind scheme and then a
second pass adding as much antidiffusion as possible without generating new extrema. Flux-
limiter methods (presented hereafter in more detail, Sweeby, 1984; Hirsch, 1990) degrade the
higher-order flux calculations towards upwind fluxes near problem zones. Finally Essentially
Non-Oscillatory methods (ENO, Harten 1982) adapt different interpolation functions near
discontinuities.

The common characteristic of these methods (e.g., Thuburn, 1996) is that they allow
the scheme to change its functioning depending on the local solution itself. This nonlinearity
avoids the consequence of the Godunov theorem (see Section6.4) by to not adhering to one of
its hypotheses. It also means that since consistency is maintained as a basic requirement, we
need to look for nonlinear schemes to circumvent the Godunovtheorem even if the underlying
physical process is linear! The nonlinearity will be activated when over- or undershooting are
likely to occur in which case the scheme will be adapted to increase numerical diffusion. In
a situation with a very smooth solution, the scheme is however allowed to remain of higher
order.

To design such a scheme, we define a measure of the variation ofthe solution and call it
TV, Total Variation:

TVn ≡
∑

i

|c̃ni+1 − c̃ni |. (15.70)

A scheme is said TVD (Total Variation Diminishing) if

TVn+1 ≤ TVn. (15.71)

The TV value is clearly related to a quantification of the wiggles that appeared in the leapfrog
or Lax-Wendroff advection scheme. Suppose now the numerical scheme can be casted into
the following form

c̃n+1
i = c̃ni − ai−1/2

(
c̃ni − c̃ni−1

)
+ bi+1/2

(
c̃ni+1 − c̃ni

)
, (15.72)

where the coefficientsa andb can depend oñc. We will prove that the so-defined scheme is
TVD when

0 ≤ ai+1/2 and0 ≤ bi+1/2 andai+1/2 + bi+1/2 ≤ 1. (15.73)
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Note thatbi+1/2 appears withai+1/2 in the TVD condition but withai−1/2 in the numerical
scheme. The scheme (15.72) can also be written in pointi+ 1

c̃n+1
i+1 = c̃ni+1 − ai+1/2

(
c̃ni+1 − c̃ni

)
+ bi+3/2

(
c̃ni+2 − c̃ni+1

)
,

from which we can subtract (15.72) to make appear the variations

c̃n+1
i+1 − c̃n+1

i = (1− ai+1/2 − bi+1/2)
(
c̃ni+1 − c̃ni

)

+bi+3/2

(
c̃ni+2 − c̃ni+1

)
+ ai−1/2

(
c̃ni − c̃ni−1

)
.

Taking the absolute value on each side, assuming the TVD condition (15.73) is satisfied,
using the fact that the absolute value of a sum is smaller thanthe sum of absolute values and
summing over the domain we obtain:

∑

i

|c̃n+1
i+1 − c̃n+1

i | ≤
∑

i

(1− ai+1/2 − bi+1/2)
∣∣c̃ni+1 − c̃ni

∣∣

+
∑

i

bi+3/2

∣∣c̃ni+2 − c̃ni+1

∣∣+
∑

i

ai−1/2

∣∣c̃ni − c̃ni−1

∣∣ .

Neglecting boundary effects or assuming cyclic conditions, the last two terms can be rewritten
by shifting the indexi, which finally allows to prove (15.72) is TVD if (15.73) is satisfied.

∑
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i | ≤
∑

i

(1− ai+1/2 − bi+1/2)
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+
∑
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∣∣+
∑

i

ai+1/2

∣∣c̃ni+1 − c̃ni
∣∣ ≤

∑

i

∣∣c̃ni+1 − c̃ni
∣∣ .

Let us now design nonlinear schemes that are TVD in the one-dimensional case with
positive velocityu by combining explicit Euler schemes

c̃n+1
i = c̃ni −

∆t

∆x

(
q̃i+1/2 − q̃i−1/2

)
, (15.74)

q̃i−1/2 = q̃
L
i−1/2 + Φi−1/2(q̃

H
i−1/2 − q̃

L
i−1/2), (15.75)

where the lower-order flux is the upwind fluxq̃Li−1/2 = uc̃ni−1 which is too diffusive whereas

the higher-order flux̃qHi−1/2 = uc̃ni−1 + u(1− C)/2 (c̃ni − c̃ni−1) leads to a second-order non-
monotonic scheme (see Section6.4). We will allow the weightingΦ to vary with the solution
by tending towards zero when too many variations are present(exploiting the damping prop-
erties of the upwind scheme) but remaining close to one for gentle solutions (maintaining
accuracy). ParameterΦ controls the amount of antidiffusion applied to the scheme and is
called aflux limiter. For the following, we assumeΦ to be positive and the Courant number
C satisfying the CFL condition. Then the scheme using the weighted flux can be expanded as

c̃n+1
i = c̃ni − C

(
c̃ni + Φi+1/2

(1− C)

2
(c̃ni+1 − c̃ni )

)

+C

(
c̃ni−1 + Φi−1/2

(1− C)

2
(c̃ni − c̃ni−1)

)
.

(15.76)
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It is readily seen that this is not a form that ensures TVD (15.73) becausebi−1/2 multiplying
c̃ni+1 − c̃ni is always negative. We can however regroup this term with theupwind part as
follows:

c̃n+1
i = c̃ni − C

[
1− Φi−1/2

(1− C)

2
+ Φi+1/2

(1 − C)

2

(c̃ni+1 − c̃ni )
(c̃ni − c̃ni−1)

] (
c̃ni − c̃ni−1

)
.

This is of the much simpler form

c̃n+1
i = c̃ni − ai−1/2

(
c̃ni − c̃ni−1

)
(15.77)

even ifai−1/2 depends on the solution (after all, we design a nonlinear method and this should
be no surprise). The scheme can than be enforced to be TVD by imposing0 ≤ ai−1/2 ≤ 1
with

ai−1/2 = C

[
1− Φi−1/2

(1− C)

2
+ Φi+1/2

(1− C)

2

(c̃ni+1 − c̃ni )

(c̃ni − c̃ni−1)

]
. (15.78)

The solution appears in this parameter as a ratio of gradients

ri+1/2 =
(c̃ni − c̃ni−1)

(c̃ni+1 − c̃ni )
, (15.79)

which is a measure of the variability: Forri+1/2 = 1 the solution is linear over the three points
involved whereas forri+1/2 ≤ 0 there is a local extremum. The parameterri+1/2 will thus
be involved in deciding the local weighting to be applied andif negative (local extremum),
we already requireΦi+1/2 = 0 because of the very rapid local variation. The TVD condition
requires

0 ≤ C +
C(1− C)

2

[
Φi+1/2

ri+1/2

− Φi−1/2

]
≤ 1. (15.80)

We would like to chose a value ofΦ at in interface independently of the value ofΦ at the
neighbor interface, otherwise a linear system to solve is likely to appear. Therefore when
choosingΦ, the worst case for the other parameter must be assumed in order to get sufficient
conditions that ensure the TVD property. ForΦi−1/2 the worst case happens whenΦi+1/2

is zero in which case we need to ensure thatΦi−1/2 is not too large so thatai−1/2 remains
positive:

Φi−1/2 ≤
2

(1− C)
. (15.81)

ForΦi+1/2 the worst case happens whenΦi−1/2 is zero and we get an upper bound onΦi+1/2

that ensuresai−1/2 ≤ 1:
Φi+1/2

ri+1/2

≤ 2

C
. (15.82)

Since those conditions must be satisfied for alli, the following conditions ensure a TVD
scheme:

Φ ≤ 2

(1− C)
and

Φ

r
≤ 2

C
(15.83)

where we do not write the index anymore because we look for a functionΦ(r) that can be
applied on every interface. In practise, the parameterC varies and we can use sufficient
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conditions that encompass the worst cases. Here, they correspond toC = 0 andC = 1 so that
the final sufficient conditions onΦ that ensure the TVD property are

Φ(r) ≤ 2 and
Φ(r)

r
≤ 2. (15.84)

Φ

r

Lax-Wendroff

TVD region

1

2

1
minmod

Superbee

MC

Beam-Warming

Figure 15-11 TVD domain and some standard limiters. The Lax-Wendroff schemeΦ = 1 is not within
the TVD region for smallr whereas the Beam-Warming is not for larger. The limiters remain in the
lighter shaded region in order to interpolate between the two second-order schemes.

We know thatΦ(r) has to obey some rules, but we are relatively free to chose thefunc-
tional relationship. We take advantage of this degree of freedom by trying to keep the scheme
of the highest possible order. The caseΦ = 1 corresponds to the second-order Lax-Wendroff
scheme but falls outside the TVD domain for smallr. The caseΦ = r corresponds to the
second-order Beam-Warming scheme (see exercise 15-6) but falls outside the TVD domain
for largerr. If r is close to 1, the solution is almost linear and a second-order method should
be feasible so that we should requestΦ(1) = 1, which is the case for both the Lax-Wendroff
and Beam-Warming scheme. To be close to second order we can thus useΦ(r) as an in-
terpolation of those two second-order methods, but ensuring Φ lies within the TVD region:
Examples of possible combinations are the following limiters

• van Leer:Φ = r+|r|
1+|r|

• minmod:Φ = max(0,min(1, r))

• superbee:Φ = max(0,min(1, 2r),min(2, r))

• MC: Φ = max(0,min(2r, (1 + r)/2, 2))

which are represented on Figure15-11together with the TVD region defined by (15.84).
Note that flux-limiter calculations depend on the directionof the flow and the ratior involved
in the flux limiter must also be adapted if the velocity changes sign (Exercise 15-8).



446 CHAPTER 15. STRATIFIED ROTATING FLOWS

0 10 20 30 40 50 60 70 80 90
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

i

c

Figure 15-12 Advection scheme with
TVD superbee limiter applied to the
transport of a ”hat” signal withC = 0.5
using 100 times steps. Note that no new
extrema are created by the numerical
advection and that the diffusion is dras-
tically reduced compared to the upwind
scheme.

The question that might rightfully arise after this lengthydesign of a TVD scheme is
about its relationship with a monotonic scheme. From (15.77) we see that̃cn+1

i is obtained
by a linear interpolation of̃cni andc̃ni−1 because0 ≤ ai−1/2 ≤ 1. Thereforemin(c̃ni , c̃

n
i−1) ≤

c̃n+1
i ≤ max(c̃ni , c̃

n
i−1) and locally no new extremum is created. Since this is true forall grid

points, the scheme does not create over- or undershooting. This can be verified on the stan-
dard test case with the superbee limiter (Figure15-12). The scheme indeed keeps the solution
within the initial bounds and results are quite improved compared to previous methods. Spe-
cially for GFD applications with large gradients and strongfronts the method is appealing.
However, the eventual use of upwind schemes during some parts of the calculations degrades
the formal truncation error below second order. Also, when the solution is smooth, fourth-
order methods generally perform better in terms of overall accuracy and TVD schemes with
fourth order must then be implemented (e.g., Thuburn, 1996). The choice of one scheme or
another is thus a question of priorities (conservation, monotonicity, accuracy, ease of imple-
mentation, robustness, stability) and expected behavior of solutions (strongly varying, gentle,
steady state, nonlinearetc.).

Analytical Problems

15-1. In a certain region, at a certain time, the atmospheric temperature along the ground
decreases northward at the rate of 1◦C every 35 km, and there are good reasons to
assume that this gradient does not change much with height. If there is no wind at
ground level, what are the wind speed and direction at an altitude of 2 km? To answer,
take latitude = 40◦N, mean temperature = 290 K, and uniform pressure on the ground.

15-2. A cruise to the Gulf Stream at 38◦N provided a cross-section of the current, which was
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Figure 15-13 Schematic cross-section
of the Gulf Stream, represented as a
two-layer geostrophic current (Problem
15-2).

then approximated to a two-layer model (Figure15-13) with a warm layer of density
ρ1 = 1025 kg/m3 and depthh(y) = H − ∆H tanh(y/L), overlying a colder layer
of densityρ2 = 1029 kg/m3. TakingH = 500 m, ∆H = 300 m, andL = 60 km
and assuming that there is no flow in the lower layer and that the upper layer is in
geostrophic balance, determine the flow pattern at the surface. What is the maximum
velocity of the Gulf Stream? Where does it occur? Also, compare the jet width (L) to
the radius of deformation.

15-3. Derive the discrete Margules relation (15.5) from the governing equations written in
the density-coordinate system (Chapter 12).

15-4. Through the Strait of Gibraltar, connecting the Mediterranean Sea to the North Atlantic
Ocean, there is an inflow of Atlantic waters near the top and anequal outflow of much
more saline Mediterranean waters below. At its narrowest point (Tarifa Narrows), the
strait is 11 km wide and 650 m deep. The stratification closelyresembles a two-layer
configuration with a relative density difference of 0.2% andan interface sloping from
175 m along the Spanish coast (North) to 225 m along the African coast (South). Tak-
ing f = 8.5× 10−5 s−1, approximating the cross-section to a rectangle, and assuming
that the volumetric transport in one layer is equal and opposite to that in the other layer,
estimate this volumetric transport.

15-5. Determine the geostrophically adjusted state of a band of warm water as depicted in
Figure15-4c. The variables areρ0 = density of water below,ρ0 − ∆ρ = density of
warm water,H = initial depth of warm water,2a = initial width of warm-water band,
and2b = width of warm-water band after adjustment. In particular,determine the value
b, and investigate the limits when the initial half-widtha is much less and much greater
than the deformation radiusR.

Figure 15-14 State prior to
geostrophic adjustment (Problem
15-6).

15-6. Find the solution for the geostrophically adjusted state ofthe initial configuration
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shown on Figure15-14, and calculate the fraction of potential-energy release that has
been converted into kinetic energy of the final steady state.

Figure 15-15 Air masses in a valley.
What is the wind? (Problem 15-7)

15-7. In a valley of the French Alps (' 45◦N), one village (A) is situated on a flank 500
m above the valley floor and another (B) lies on the opposite side 200 m above the
valley floor (Figure15-15). The horizontal distance between the two is 40 km. One
day, a shepherd in the upper village, who is also a fine meteorologist, notes a cold
wind with temperature 6◦C. Upon calling her cousin, a blacksmith in the lower village
across the valley, she learns that he is enjoying a calm afternoon with a comfortable
18◦C! Assuming that the explanation of this perplexing situation resides in a cold wind
blowing along one side of the valley (Figure15-15), she is able to determine a lower
bound for its speed. Can you? Also, in which direction is the wind blowing? (Hint:
Do not ignore compressibility of air.)

15-8. Using the linearized equations for a two-layer ocean (undisturbed depthsH1 andH2)
over a flat bottom and subject to a spatially uniform wind stress directed along the
coast,

∂u1

∂t
− fv1 = g′

∂a

∂x
− 1

ρ0

∂p2

∂x
,

∂u2

∂t
− fv2 = − 1

ρ0

∂p2

∂x
(15.85a)

∂v1
∂t

+ fu1 =
τ

ρ0H1
,

∂v2
∂t

+ fu2 = 0 (15.85b)

− ∂a

∂t
+ H1

∂u1

∂x
= 0,

∂a

∂t
+ H2

∂u2

∂x
= 0, (15.85c)

study the upwelling response to a wind stress oscillating intime. The boundary con-
ditions are: no flow at the coast (u1 = u2 = 0 atx = 0), no vertical displacements at
large distances (a→ 0 asx→ +∞). Discuss how the dynamics of the upper layer are
affected by the presence of an active lower layer and what happens in the lower layer.

15-9. Demonstrate the assertion made in the text above Equation (15.43) that the potential
vorticity is conserved if the wind stress is spatially uniform.

15-10. A coastal ocean at mid-latitude (f = 10−4 s−1) has a 50-m thick warm layer capping
a much deeper cold layer. The relative density difference between the two layers is
∆ρ/ρ0 = 0.002. A uniform wind exerting a surface stress of 0.4 N/m2 lasts for three
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days. Show that the resulting upwelling includes outcropping of the density interface.
What is the offshore distance of the front?

15-11. Generalize to the two-layer ocean the theory for the steady adjusted state following
a wind event of given impulse. For simplicity, consider onlythe case of equal initial
layer depths (H1 = H2).

15-12. Because of the roughness of the ice, the stress communicatedto the water is substan-
tially larger in the presence of sea ice than in the open sea. Assuming that the ice drift
is at 20◦ to the wind, that the water drift is at 90◦ to the wind (in the open) and to the
ice drift (under ice), and that the stress on the water surface is twice as large under
ice than in the open sea, determine which wind directions with respect to the ice-edge
orientation are favorable to upwelling.

Numerical Exercises

15-1. Analyseupwelling.m to deduce the governing equations that are discretized. Use
the program to simulate a coastal upwelling and see if the outcropping condition (15.46)
is realistic. Analyze the algorithmflooddry.m used to deal with the outcropping and
try what happens when you disactivate it.

15-2. Add a discretization of the momentum advection toupwelling.m and redo exercise
15-1. Then diagnose

I ' 1

ρ0

∫

event

τ

h
dt. (15.86)

during the simulation withupwelling.m and compare to the estimate (15.86). Hint:
Remember thatI is calculated for a given water parcel.

15-3. Useadaptive.m and look at how the linearly interpolated function using a uniform
grid and the adapted grid allows to approximate the originalfunctionfunctiontofollow.m .
Quantify the error by sampling the linear interpolations ona very high resolution grid
and calculate therms error between this interpolation and the original function. Show
how this error behaves during the grid-adaptation process.

15-4. Analyze fileadaptiveupwind.m used to simulate an advection problem with up-
wind discretization and possibly an adaptive grid (Figure15-16). Explain how grid
size changes and grid velocities must be discretized in a consistent way. Verify your
analysis by using a constant value forc. Modify the parameters involved in the grid
adaptation. Try to implement a Lagrangian approach by moving the grid nodes with
the physical velocity. Which problem does appear in a fixed domain?

15-5. Redo exercise 15-4 but defining and moving the grid nodes at the interface and calcu-
late concentration point positions at the center.
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Figure 15-16 Upwind advection of a
triangular signal with fixed grid (most
diffusive solution) and an adaptive grid
with or without added Lagrangian type
advection.

15-6. Prove that the Beam-Warming scheme of Section6.4 can be recovered using a flux-
limiter functionΦ = r. Implement the scheme and apply it to the standard problem
of the top-hat signal advection. How does the solution compare to the Lax-Wendroff
solution of Figure6-9?

15-7. Apply the superbee TVD scheme to the advection of the top-hatsignal and then to the
advection of a sinusoidal signal. What do you observe? Can you explain the behavior
and verify that your explanation is correct by choosing another limiter? Experiment
with tvdadv1D.m .

15-8. Write out the flux-limiter scheme in the 1D case foru ≤ 0 by exploiting symmetries
of the problem.

15-9. Implement a Leapfrog advection scheme on a non-uniform gridwith scalarc defined
at the center of the cells of variable with. Use∆x for x < 0 andr∆x for x > 0. or
use an existing code?. The domain of interest spansx = −10L to x = 10L. Advect
Gaussian signal of widthL, initially located inx = −5L. Use∆x = L,L/4, L/8 and
r = 1, 1/2, 2, 1/10, 10. to be tested



George Veronis
1926 –

An applied mathematician turned oceanographer, George Veronis has been a driving force in
geophysical fluid dynamics since its early days. With WillemV. R. Malkus, he cofounded
the GFD Summer Program at the Woods Hole Oceanograhic Institution, which continues
after more than forty years to bring together oceanographers, meteorologists, physicists and
mathematicians to debate problems related to geophysical flows.

Veronis is best known for his theoretical studies on oceaniccirculation, rotating and strat-
ified fluids, thermal convection with and without rotation, and double diffusive processes.
His model of the circulation of the world ocean was an analytical study based on planetary
geostrophic dynamics and the nonlinearity of thermal processes, in which he showed how
western boundary currents cross the boundaries of wind gyres and connect all of the world’s
oceans into a single circulating system.

Veronis has earned a reputation as a superb lecturer, who canexplain difficult concepts
with amazing ease and clarity. (Photo credit: G. Veronis)
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Kozo Yoshida
1922 – 1978

In the early years of his professional career, Kozo Yoshida studied long (tsunami) and short
(wind) waves. Later, during a stay at the Scripps Institution of Oceanography, he turned to the
investigation of the upwelling phenomenon, which was to become his lifelong interest. His
formulations of dynamic theories for both coastal and equatorial upwelling earned him re-
spect and fame. A wind-driven surface eastward current along the equator is called a Yoshida
jet. In his later years, he also became interested in the Kuroshio, a major ocean current off the
coast of Japan, wrote several books, and promoted oceanography among young scientists.

Known to be very sincere and logical, Yoshida did not shun administrative responsibil-
ities and emphasized the importance of international cooperation in postwar Japan. (Photo
courtesy of Toshio Yamagata)
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Chapter 16

Quasi-Geostrophic Dynamics

(October 18, 2006)SUMMARY : At time scales longer than about a day, geophysical flows
are ordinarily in a nearly geostrophic state, and it is advantageous to capitalize on this prop-
erty to obtain a simplified dynamical formalism. Here, we derive the traditional quasi-
geostrophic dynamics and present some applications in bothlinear and nonlinear regimes.
The central component of the quasi-geostrophic models, theadvection of vorticity, then re- JMB from⇓
quires particular attention in the numerical quasi-geostrophic models and the Arakawa Jaco-
bian is presented. JMB to⇑

16.1 Simplifying assumption

Rotation effects become important when the Rossby number ison the order of unity or less
(Sections1.5and4.5). The smaller the Rossby number, the stronger the rotation effects and
the larger the Coriolis force compared to the inertial force. In fact, the majority of atmospheric
and oceanic motions are characterized by Rossby numbers sufficiently below unity (Ro ∼ 0.2
down to 0.01), enabling us to state that, in first approximation, the Coriolis force is dominant.
This leads to geostrophic equilibrium (Section7.1), whereby a balance is struck between
the Coriolis force and the pressure-gradient force. In Chapter 7 a theory was developed for
perfectly geostrophic flows, whereas in Chapter9 some near-geostrophic, small-amplitude
waves were investigated. In each case, the analysis was restricted to homogeneous flows.
Here, we reconsider near-geostrophic motions but in the case of continuously stratified fluids
and nonlinear dynamics. Much of the material presented herecan be traced to the seminal
article by Charney1 (1948), which laid the foundation of quasi-geostrophic dynamics.

Geostrophic balance, which holds in first approximation, isa linear and diagnostic rela-
tionship (there is no product of variables and no time derivative). The resulting mathematical
advantages explain why near-geostrophic dynamics are usedroutinely: The underlying as-
sumption of near-geostrophy may not always be strictly valid, but the formalism is much
simpler than otherwise.

1See biographical sketch at the end of the chapter.
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Mathematically, a state of near-geostrophic balance occurs when the terms representing
relative acceleration, nonlinear advection, and frictionare all negligible in the horizontal
momentum equations. This requires (Section4.5) that the temporal Rossby number,

RoT =
1

ΩT
, (16.1)

the Rossby number,

Ro =
U

ΩL
, (16.2)

and the Ekman number,

Ek =
νE

ΩH2
, (16.3)

all be small simultaneously. In these expressions,Ω is the angular rotation rate of the earth
(or planet or star under consideration),T is the time scale of the motion (i.e., the time span
over which the flow field evolves substantially),U is a typical horizontal velocity in the flow,
L is the horizontal length over which the flow extends or exhibits variations,νE is the eddy
vertical viscosity, andH is the vertical extent of the flow.

The smallness of the Ekman number (Section4.5) indicates that vertical friction is neg-
ligible, except perhaps in thin layers on the edges of the fluid domain (Chapter8). If we
exclude small-amplitude waves that can travel much faster than fluid particles in the flow,
the temporal Rossby number (16.1) is not greater than the Rossby number (16.2). (For a
discussion of this argument, the reader is referred to Section9.1). By elimination, it remains
to require that the Rossby number (16.2) be small. This can be justified in one of two ways:
Either velocities are relatively weak (smallU ) or the flow pattern is laterally extensive (large
L). The common approach, and the one that leads to the simplestformulation, is to consider
the first possibility; the resulting formalism bears the name of quasi-geostrophic dynamics.
We ought to keep in mind, however, that some atmospheric and oceanic motions could be
nearly geostrophic for the other reason. Such motions wouldbe improperly represented by
quasi-geostrophic dynamics.

16.2 Governing equation

To set the stage for the development of quasi-geostrophic equations, it is most convenient
to begin with the restriction that vertical displacements of density surfaces be small (Figure
16-1). In the (x, y, z) coordinate system, we write

ρ = ρ̄(z) + ρ′(x, y, z, t), with |ρ′| � |ρ̄|. (16.4)

In the (x, y, ρ) coordinate system, the equivalent statement is

z = z̄(ρ) + z′(x, y, ρ, t), with |z′| � |z̄|. (16.5)
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Figure 16-1 A rotating stratified fluid
undergoing weak motions, which can
then be described by quasi-geostrophic
dynamics.

Because the variablesρ andz are, in first approximation, uniquely related [via the func-
tion ρ̄(z) or its inversēz(ρ)], there is no real advantage to be gained by using the density-
coordinate system, and we follow the tradition here by formulating the quasi-geostrophic
dynamics in the (x, y, z) Cartesian coordinate system.

The density profilēρ(z), independent of time and horizontally uniform, forms the basic
stratification. Alone, it creates a state of rest in hydrostatic equilibrium. We shall assume
that such stratification has somehow been established and that it is maintained in time against
the homogenizing action of vertical diffusion. The quasi-geostrophic formalism does not
consider the origin and maintenance of this stratification but only the behavior of motions
that weakly perturb it.

The following mathematical developments are purposely heuristic, with emphasis on the
exploitation of the main idea rather than on a systematic approach. The reader interested in
a rigorous derivation of quasi-geostrophic dynamics basedon a regular perturbation analysis
is referred to Chapter 6 of the book by Pedlosky (1987).

The governing equations of Section4.4 with ρ = ρ̄(z) + ρ′(x, y, z, t) and, similarly,
p = p̄(z) + p′(x, y, z, t) are, on the beta plane and, for simplicity, in the absence of friction
and dissipation:

du

dt
− f0v − β0yv = − 1

ρ0

∂p′

∂x
(16.6a)

dv

dt
+ f0u + β0yu = − 1

ρ0

∂p′

∂y
(16.6b)

0 = − ∂p′

∂z
− ρ′g (16.6c)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (16.6d)

∂ρ′

∂t
+ u

∂ρ′

∂x
+ v

∂ρ′

∂y
+ w

dρ̄

dz
= 0, (16.6e)

where the advective operator is

d

dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
. (16.7)
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The basic assumption that|ρ′| is much less than|ρ̄| has been implemented in the den-
sity equation (16.6e) by dropping the termw∂ρ′/∂z. In writing that equation, we have also
neglected vertical density diffusion (the right-hand sideof the equation) in agreement with
our premise that the basic vertical stratification persists. Because the basic stratification as-JMB from⇓
sociated with̄ρ(z) is in hydrostatic equilibrium with pressurēp(z), the corresponding terms
cancel out in the hydrostatic equilibrium and only the perturbed state appears.JMB to⇑

If the density perturbationsρ′ are small, so are the pressure disturbancesp′; by virtue
of the horizontal momentum equations, the horizontal velocities are weak. Although the
Coriolis terms are small, the nonlinear advective terms, which involve products of velocities,
are even smaller. For expediency, we shall use the phrasevery smallfor these and all other
terms smaller than the small terms. Thus, the ratio of advective to Coriolis terms, the Rossby
number, is small. Let us assume now and verifya posteriori that the time scale is long
compared to the inertial period (2π/f0), so the local-acceleration terms are, too, very small.
Finally, to guarantee that the beta-plane approximation holds, we further require|β0y| � f0.
Having made all these assumptions, we take pleasure in noting that the dominant terms in the
momentum equations are, as expected, those of the geostrophic equilibrium:

− f0v = − 1

ρ0

∂p′

∂x
(16.8a)

+ f0u = − 1

ρ0

∂p′

∂y
. (16.8b)

As noted repeatedly in Chapter7, this state is somewhat singular. In particular, it leads toa
zero horizontal divergence (∂u/∂x + ∂v/∂y = 0), which usually (e.g., over a flat bottom)
implies the absence of any vertical velocity. In the case of astratified fluid, this in turn
implies no lifting and lowering of density surfaces and thusno pressure disturbances and no
variations in time. Mathematically we have more unknowns than equations. The dynamicsJMB from⇓

JMB to⇑ are degenerate, and the corrections brought by the neglected terms are essential.
We replaceu andv by their geostrophic values given by (16.8) in the small terms of

equations (16.6a) and (16.6b). The result is

− 1

ρ0f0

∂2p′

∂y∂t
− 1

ρ2
0f

2
0

J

(
p′,

∂p′

∂y

)
− 1

ρ0f0
w

∂2p′

∂y∂z

− f0v −
β0

ρ0f0
y
∂p′

∂x
= − 1

ρ0

∂p′

∂x
(16.9a)

+
1

ρ0f0

∂2p′

∂x∂t
+

1

ρ2
0f

2
0

J

(
p′,

∂p′

∂x

)
+

1

ρ0f0
w

∂2p′

∂x∂z

+ f0u −
β0

ρ0f0
y
∂p′

∂y
= − 1

ρ0

∂p′

∂y
(16.9b)

The symbolJ(·, ·) stands the Jacobian operator, defined asJ(a, b) = (∂a/∂x)(∂b/∂y) −
(∂a/∂y)(∂b/∂x).

From these equations, more accurate expressions foru andv can be readily extracted. The
improved flow field has a non-zero divergence, which is small because it is caused solely by
the weak velocity departures from the otherwise nondivergent geostrophic flow. The vertical
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velocity is non-zero but very small, and the term of the advection operator (16.7) containing
the vertical velocity brings only a correction to corrections. Dropping the corresponding
w-terms from equations (16.9a) and (16.9b) and solving foru andv, we obtain

u = − 1

ρ0f0

∂p′

∂y
− 1

ρ0f2
0

∂2p′

∂t∂x

− 1

ρ2
0f

3
0

J

(
p′,

∂p′

∂x

)
+

β0

ρ0f2
0

y
∂p′

∂y
(16.10a)

v = +
1

ρ0f0

∂p′

∂x
− 1

ρ0f2
0

∂2p′

∂t∂y

− 1

ρ2
0f

3
0

J

(
p′,

∂p′

∂y

)
− β0

ρ0f2
0

y
∂p′

∂x
(16.10b)

which, unlike (16.8), contain both the geostrophic flow and a first series of ageostrophic
corrections. Upon substitution of these expressions in continuity equation (16.6d), we obtain

∂w

∂z
=

1

ρ0f2
0

[
∂

∂t
∇2p′ +

1

ρ0f0
J(p′,∇2p′) + β0

∂p′

∂x

]
, (16.11)

where∇2 = ∂2/∂x2 + ∂2/∂y2 is the two-dimensional Laplacian operator.
We now turn our attention to the density-conservation equation (16.6e). The first term

is very small becauseρ′ is small and the time scale is long. Likewise, the last term isvery
small because, as we concluded before, the vertical velocity arises from the ageostrophic
corrections to the already weak horizontal velocity. The middle terms involve the density
perturbation, which is small, and the horizontal velocities, which are also small. There is
thus no need, in this equation, for the corrections brought by (16.10), and the geostrophic
expressions (16.8) suffice, leaving

∂ρ′

∂t
+

1

ρ0f0
J(p′, ρ′) − ρ0N

2

g
w = 0, (16.12)

in which the stratification frequency,N2(z) = −(g/ρ0)dρ̄/dz, has been introduced. Di-
viding this last equation byN2/g, taking itsz-derivative, and using the hydrostatic balance
(16.6c) to eliminate density, we obtain

∂

∂t

[
∂

∂z

(
1

N2

∂p′

∂z

)]
+

1

ρ0f0
J

[
p′,

∂

∂z

(
1

N2

∂p′

∂z

)]
+ ρ0

∂w

∂z
= 0. (16.13)

Equations (16.11) and (16.13) form a two-by-two system for the perturbation pressurep′ and
vertical stretching∂w/∂z. Elimination of∂w/∂z between the two yields a single equation
for p′:

∂

∂t

[
∇2p′ +

∂

∂z

(
f2
0

N2

∂p′

∂z

)]
+

1

ρ0f0
J

[
p′,∇2p′ +

∂

∂z

(
f2
0

N2

∂p′

∂z

)]

+ β0
∂p′

∂x
= 0. (16.14)
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This is the quasi-geostrophic equation for nonlinear motions in a continuously stratified
fluid on a beta plane. Usually, this equation is recast as an equation for the potential vorticity,
and the pressure field is transformed into a streamfunctionψ via p′ = ρ0f0ψ. The result isJMB from⇓

JMB to⇑
∂q

∂t
+ J(ψ, q) = 0, (16.15)

whereq is the potential vorticity:

q = ∇2ψ +
∂

∂z

(
f2
0

N2

∂ψ

∂z

)
+ β0y. (16.16)

Once the solution is obtained forq andψ, the original variables can be recovered from (16.8a),
(16.8b), and (16.12):

u = − ∂ψ

∂y
(16.17a)

v = +
∂ψ

∂x
(16.17b)

w = − f0
N2

[
∂2ψ

∂t∂z
+ J

(
ψ,
∂ψ

∂z

)]
(16.17c)

p′ = ρ0f0 ψ (16.17d)

ρ′ = − ρ0f0
g

∂ψ

∂z
. (16.17e)

If turbulent dissipation is retained in the formalism, the equation governing the evolution
of potential vorticity becomes complicated, but an approximation suitable for most numerical
applications is:

∂q

∂t
+ J(ψ, q) =

∂

∂x

(
A ∂q

∂x

)
+

∂

∂y

(
A ∂q

∂y

)
+

∂

∂z

(
νE

∂q

∂z

)
, (16.18)

whereq remains defined by (16.16). Among the surprises of the quasi-geostrophic equa-
tions is the disappearance of the dynamically dominant component, the Coriolis force. Iron-
ically, earth rotation on thef -plane has disapperead from the governing equation near the
geostrophic equilibrium.Benoit: Maybe my comment was too strongf is involved inq, butJMB from⇓
only as a relative measure of stratification.JMB to⇑

16.3 Length and time scales

Expression (16.16) indicates thatq is a potential-vorticity expression. Indeed, the last term
represents the planetary contribution to the vorticity, whereas the first term,∇2ψ = ∂v/∂x−
∂u/∂y, is the relative vorticity. The middle term can be traced to the layer-thickness varia-
tions in the denominator of the classical definition of potential vorticity [e.g., (12.21)]. It is
thus the contribution of vertical stretching in some linearized form.
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It is most interesting to compare the first two terms of the potential-vorticity expression,
namely, relative vorticity and vertical stretching. WithL andU as the horizontal length and
velocity scales, respectively, the streamfunctionψ scales likeLU by virtue of (16.17a) and
(16.17b). If H is the vertical length scale, the magnitudes of those contributions to potential
vorticity are:

Relative vorticity ∼ U

L
, Vertical stretching∼ f2

0UL

N2H2
. (16.19)

The ratio of the former to the latter is

Relative vorticity
Vertical stretching

∼ N2H2

f2
0L

2
= Bu, (16.20)

which is the Burger number defined in Section11.6. For small Burger numbers (NH �
f0L), i.e., weak stratification or long length scales, vertical stretching dominates, and the
motion is akin to that of homogeneous rotating flows in nearlygeostrophic balance (Chapter
7), where topographic variations are capable of exerting great influence. For large Burger
numbers (NH � f0L), i.e., strong stratification or short length scales, relative vorticity
dominates, stratification reduces coupling in the vertical, and every level tends to behave in
a two-dimensional fashion, stirred by its own vorticity pattern, independently of what occurs
above and below.

The richest behavior occurs when the stratification and length scale match to make the
Burger number of order unity, which occurs when

L =
NH

f0
. (16.21)

As noted in Section12.2, this particular length scale is the internal radius of deformation. To
show this, let us introduce a nominal density difference∆ρ, typical of the density vertical
variations of the ambient stratification. Thus,|dρ̄/dz| ∼ ∆ρ/H andN2 ∼ g∆ρ/ρ0H .
Defining a reduced gravity asg′ = g∆ρ/ρ0, which is typically much less than the full gravity
g, we obtain

N ∼
√
g′

H
. (16.22)

Definition (16.21) yields

L ∼
√
g′H

f0
. (16.23)

Comparing this expression with definition (9.12) for the radius of deformation in homoge-
neous rotating fluids, we note the replacement of the full gravitational acceleration by a much
smaller, reduced acceleration and conclude that motions instratified fluids tend to take place
on shorter scales than dynamically similar motions in homogeneous fluids.

Before concluding this section, it is noteworthy to return to the discussion of the time
scale. Very early in the derivation, an assumption was made to restrict the attention to slowly
evolving motions, namely, motions with time scaleT much longer than the inertial time
scale1/f0 (i.e., T � Ω−1). This relegated the terms∂u/∂t and∂v/∂t to the rank of small
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perturbations to the dominant geostrophic balance. Now, having completed our analysis, we
ought to check for consistency.

The time scale of quasi-geostrophic motions can be most easily determined by inspection
of the governing equation in its potential-vorticity form.The balance of (16.15) requires that
the two terms on its left-hand side be of the same order:

Q

T
∼ UL

L

Q

L
,

whereQ is the scale of potential vorticity, regardless of whether it is dominated by relative
vorticity (Q ∼ U/L) or vertical stretching (Q ∼ f2

0UL/N
2H2), andLU is the streamfunc-

tion scale. The preceding statement yields

T ∼ L

U
, (16.24)

in other words, the time scale is advective. The quasi-geostrophic structure evolves on a time
T comparable to the time taken by a particle to cover the lengthscaleL at the nominal speed
U . For example, a vortex flow (such as an atmospheric cyclone) evolves significantly while
particles complete one revolution.

Because the quasi-geostrophic formalism is rooted in the smallness of the Rossby number
(Ro = U/ΩL � 1), it follows directly that the time scale must be long compared with the
rotation period:

T � 1

Ω
, (16.25)

in agreement with our premise. Note, however, that a lack of contradiction is proof only of
consistency in the formalism. It implies that slowly evolving, quasi-geostrophic motions can
exist, but the existence of other, non-quasi-geostrophic motions are certainly not precluded.
Among the latter, we can distinguish nearly geostrophic motions of other types (Phillips,
1963; Cushman-Roisin, 1986; Cushman-Roisinet al., 1992) and, of course, completely
ageostrophic motions (see examples in Chapters13 and15). Whereas ageostrophic flows
typically evolve on the inertial time scale (T ∼ Ω−1), geostrophic motions of type other than
quasi-geostrophic usually evolve on much longer time scales (T � L/U � Ω−1).

16.4 Energetics

Because the quasi-geostrophic formalism is frequently used, it is worth investigating the
approximate energy budget that is associated with it. Multiplying the governing equation
(16.15) by the streamfunctionψ and integrating over the entire three-dimensional domain,
we obtain, after several integrations by parts:

d

dt

∫ ∫ ∫
1

2
ρ0|∇ψ|2 dx dy dz +

d

dt

∫ ∫ ∫
1

2
ρ0
f2
0

N2

(
∂ψ

∂z

)2

dx dy dz = 0. (16.26)
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The boundary terms have all been set to zero by assuming rigidbottom and top surfaces,
vertical meridional walls, and decay at large distances (orperiodicity) in the zonal direction.
Benoit Why do you distinguish meridional and zonal boundary conditions? closed, periodic JMB from⇓
or decay leads to zero net effect, be it in meridional or zonaldirection? JMB to⇑

Equation (16.26) can be interpreted as a mechanical-energy statement: The sum of kinetic
and potential energies is conserved over time. That the firstintegral corresponds to kinetic
energy is evident once the velocity components have been expressed in terms of the stream-
function (u2 + v2 = ψ2

y + ψ2
x = |∇ψ|2). By default, this leaves the second integral to play

the role of potential energy, which is not as evident. Basic physical principles would indeed
suggest the following definition for potential energy:

PE =

∫ ∫ ∫
ρgz dx dy dz, (16.27)

which by virtue of (16.17e) would yield a linear, rather than a quadratic, expression inψ.

The discrepancy is resolved by defining theavailable potential energy, a concept first
advanced by M. Margules (1903) and developed by E. N. Lorenz (1955). Because the fluid
occupies a fixed volume, the rising of fluid in some locations must be accompanied by a
descent of fluid elsewhere; therefore, any potential-energy gain somewhere is necessarily
compensated, at least partially, by a potential-energy drop elsewhere. What matters then
is not the total potential energy of the fluid but only how muchcould be converted from the
instantaneous, perturbed density distribution. We define the available potential energy,APE,
as the difference between the existing potential energy, asjust defined, and the potential
energy that the fluid would have if the basic stratification were unperturbed.

z = 0

z = H

x, y

H1

H2ρ2

ρ1

a

z

Figure 16-2 A two-layer stratification,
for the illustration of the concept of
available potential energy.

The situation is best illustrated in the case of a two-layer stratification (Figure16-2): A
lighter fluid of densityρ1 floats atop of a denser fluid of densityρ2. In the presence of motion,
the interface is at levela above the resting heightH2 of the lower layer. Because of volume
conservation, the integral ofa over the horizontal domain vanishes identically. The potential
energy associated with the perturbed state is
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PE(a)

=

∫ ∫
dx dy

[∫ H2+a

0

ρ2gz dz +

∫ H

H2+a

ρ1gz dz

]

=

∫ ∫ [
1

2
ρ1gH

2 +
1

2
∆ρgH2

2

]
dx dy

+

∫ ∫
∆ρH2a dx dy +

∫ ∫
1

2
∆ρga2 dx dy,

whereH is the total height and∆ρ = ρ2 − ρ1 is the density difference. The first term
represents the potential energy in the unperturbed state, whereas the second term vanishes
becausea has a zero mean. This leaves the third term as the available potential energy:

APE = PE(a) − PE(a = 0)

=

∫ ∫
1

2
∆ρga2 dx dy. (16.28)

Introducing the stratification frequencyN2 = −(g/ρ0)dρ̄/dz = g∆ρ/ρ0H and generalizing
to three dimensions, we obtain

APE =

∫ ∫ ∫
1

2
ρ0N

2a2 dx dy dz. (16.29)

In continuous stratification, the vertical displacementa of a fluid parcel is directly related
to the density perturbation because the density anomaly at one point is created by moving to
that point a particle that originates from a different vertical level:

ρ′(x, y, z, t) = ρ̄[z − a(x, y, z, t)] − ρ̄(z)

' − a dρ̄
dz

=
ρ0N

2

g
a. (16.30)

This Taylor expansion is justified by the underlying assumption of weak vertical displace-
ments. Combining (16.29) and (16.30) and expressing the density perturbation in terms of
the streamfunction by (16.17e), we obtain

APE =

∫ ∫ ∫
1

2
ρ0

f2
0

N2

(
∂ψ

∂z

)2

dx dy dz. (16.31)

which is the integral that arises in the energy budget, (16.26).
As a final note, we observe that the time rate of change of the available potential energy

can be expressed as

d

dt
APE = g

∫ ∫ ∫
ρ′w dx dy dz, (16.32)

as can be verified by substitution of (16.17c) and (16.17e) into (16.32) and an integrationJMB from⇓
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by parts on the Jacobian part. This shows that potential energy increases when heavy fluidto ⇑
parcels rise (ρ′ andw both positive) and light parcels sink (ρ′ andw both negative).

16.5 Planetary waves in a stratified fluid

In Chapter9, it was noted that inertia-gravity waves are superinertial(ω ≥ f ) and that Kelvin
waves require a fundamentally ageostrophic balance in one of the two horizontal directions
[see Equation (9.4b) with u = 0]. Therefore, the quasi-geostrophic formalism cannot describe
these two types of waves. It can, however, describe the slow waves and, in particular, the
planetary waves that exist on the beta plane.

It is instructive to explore the three-dimensional behavior of planetary (Rossby) waves
in a continuously stratified fluid. The theory proceeds from the linearization of the quasi-
geostrophic equation and, for mathematical simplicity only, the assumptions of a constant
stratification frequency and no dissipation. Equations (16.15) and (16.16) then yield

∂

∂t

(
∇2ψ +

f2
0

N2

∂2ψ

∂z2

)
+ β0

∂ψ

∂x
= 0. (16.33)

We seek a wave solution of the formψ(x, y, z, t) = φ(z) cos(kxx+kyy−ωt), with horizontal
wavenumberskx andky , frequencyω, and amplitudeφ(z). The vertical structure of the
amplitude is governed by

d2φ

dz2
− N2

f2
0

(
k2
x + k2

y +
β0kx
ω

)
φ = 0, (16.34)

which results from the substitution of the wave solution into (16.33). To solve this equation,
boundary conditions are necessary in the vertical. For these, let us assume that our fluid
is bounded below by a horizontal surface and above by a free surface. In the atmosphere,
this situation would correspond to the troposphere above a flat terrain or sea and below the
tropopause.

At the bottom (say,z = 0), the vertical velocity vanishes, and the linearized form of
(16.17c) implies∂2ψ/∂z∂t = 0, or

dφ

dz
= 0 at z = 0. (16.35)

At the free surface [say,z = h(x, y, t)], the pressure is uniform. Because the total pres-
sure consists of the hydrostatic pressures due to the reference densityρ0 (eliminated when
the Boussinesq approximation was made; see Section3.7) and to the basic stratification̄ρ(z),
together with the perturbation pressure caused by the wave,we write:

P0 − ρ0gz + g

∫ h

z

ρ̄(z′) dz′ + p′(x, y, h, t) = constant, (16.36)

at the free surfacez = h. Because particles on the free surface remain on the free surface at
all times (there is no inflow/outflow), we also state
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w =
∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y
at z = h. (16.37)

The preceding two statements are then linearized. Writingh = H+η, where the free-surface
displacementη(x, y, t) is small to justify linear wave motions, we expand the variables p′

andw in Taylor fashion from the mean surface levelz = H and systematically drop all terms
involving products of variables of the wave field. The two requirements then reduce to

− ρ0gη + p′ = 0 and w =
∂η

∂t
at z = H. (16.38)

Benoit Previous developments can be reduced by referring to sections in boundary conditionsJMB from⇓
4.6.JMB to⇑
Elimination ofη yields∂p′/∂t = ρ0gw and, in terms of the streamfunction,

∂

∂t

(
∂ψ

∂z
+

N2

g
ψ

)
= 0 at z = H (16.39)

or, finally, in terms of the wave amplitude,

dφ

dz
+

N2

g
φ = 0 at z = H. (16.40)

Together, equation (16.34) and its two boundary conditions, (16.35) and (16.40), define
an eigenvalue problem, which admits solutions of the form

φ(z) = A cos kzz. (16.41)

already satisfying boundary condition (16.35). Substitution of this solution into equationJMB from⇓
JMB to⇑ (16.34) yields the dispersion relation linking the wave frequencyω to the wavenumber com-

ponents,kx, ky andkz:

ω = − β0kx
k2
x + k2

y + k2
zf

2
0 /N

2
, (16.42)

whereas substitution into boundary condition (16.40) imposes a condition on the wavenumber
kz:

tan kzH =
N2H

g

1

kzH
. (16.43)

As Figure16-3 demonstrates graphically, there is an infinite number of discrete solutions.
Because negative values ofkz lead to solutions identical to those with positivekz values [see
(16.41) and (16.42)], it is necessary to consider only the latter set of values (kz > 0).

A return to the definitionN2 = −(g/ρ0)dρ̄/dz reveals that the ratioN2H/g, appearing
on the right-hand side of (16.43), is equal to∆ρ/ρ0, where∆ρ is the density difference
between top and bottom of the basic stratificationρ̄(z). The factorN2H/g is thus very
small, implying that the first solution of (16.43) falls very near the origin (Figure16-3).
There,tan kzH can be approximated tokzH , yielding
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Figure 16-3 Graphical solution of equation (16.43). Every crossing of curves yields an acceptable
value for the vertical wavenumberkz . The pair of values nearest to the origin corresponds to a solution
fundamentally different from all others.

kzH =
NH√
gH

. (16.44)

The fraction on the right is the ratio of the internal gravitywave speed to the surface gravity
wave speed, which is small. Note also that this mode disappears in the limitg → ∞, which
we would have obtained if we had imposed a rigid lid at the top of the domain.

BecausekzH is small, the corresponding wave is nearly uniform in the vertical. Its
dispersion relation, obtained from the substitution of thepreceding value ofkz into (16.42),

ω = − β0kx
k2
x + k2

y + f2
0 /gH

, (16.45)

is independent of the stratification frequencyN and identical to the dispersion relation ob-
tained for planetary waves in homogeneous fluids [see (9.27)]. From this, we conclude that
this wave is the barotropic component of the wave set. Because the solution is almost inde- JMB from⇓
pendent ofz it deserves this denomer. JMB to⇑

The other solutions forkz can also be determined to the same degree of approximation.
BecauseN2H/g is small, the finite solutions of (16.43) fall very near the zeros oftan kzH
(Figure16-3) and are thus given approximately by

kzn = n
π

H
, n = 1, 2, 3, . . . (16.46)

Unlike the barotropic wave, the waves with these wavenumbers exhibit substantial variations
in the vertical and can be calledbaroclinic. Their dispersion relation,
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ωn = − β0kx
k2
x + k2

y + (nπf0/NH)2
, (16.47)

is morphologically identical to (16.45), implying that they, too, are planetary waves. In sum-
mary, the presence of stratification permits the existence of an infinite, discrete set of plane-
tary waves, one barotropic and all other baroclinic.

Comparing the dispersion relations (16.45) and (16.47) of the barotropic and baroclinic
waves, we note the replacement in the denominator of the ratio f2

0 /gH by a multiple of
(πf0/NH)2, which is much larger, since — again —N2H/g is very small. Physically, the
barotropic component is influenced by the large, external radius of deformation

√
gH/f0 [see

(9.12)], whereas the baroclinic waves feel the much shorter, internal radius of deformation
NH/f0 [see (16.21)].

In the atmosphere, there is not always a great disparity between the two radii of deforma-
tion. Take, for example, a midlatitude region (such as 45◦N, wheref0 = 1.03× 10−4 s−1),
a tropospheric heightH = 10 km, and a stratification frequencyN = 0.01 s−1. This yields√
gH/f0 = 3050 km andNH/f0 = 972 km. (The ratioN2H/g is then 0.102, which is not

very small.) In contrast, the difference between the two radii of deformation is much more
pronounced in the ocean. Take, for example,H = 3 km andN = 2× 10−3 s−1, which yield√
gH/f0 = 1670 km andNH/f0 = 58 km.

In any event, all planetary waves exhibit a zonal phase speed. For the baroclinic members
of the family, it is

cn =
ωn
kx

= − β0

k2
x + k2

y + (nπf0/NH)2
. (16.48)

Because this quantity is always negative, the direction canonly be westward2. Moreover, the
westward speed is confined to the interval

− β0R
2
n < cn < 0, (16.49)

with the lower bound approached by the longest wave (k2
x + k2

y → ∞). The lengthsRn,
defined as

Rn =
1

n

NH

πf0
, n = 1, 2, 3, . . . (16.50)

are identified as internal radii of deformation, one for eachbaroclinic mode. The greater
the value ofn, the greater the value ofkzn, the more reversals the wave exhibits in the
vertical, and the more restricted is its zonal propagation.Therefore, the waves most active in
transmitting information and carrying energy from east to west (or from west to east, if the
group velocity is positive) are the barotropic and the first few baroclinic components. Indeed,
observations reveal that these two modes alone carry generally 80% to 90% of the energy in
the ocean.

Let us now turn our attention to the spatial structure of a baroclinic planetary wave. For
simplicity, we take the first mode (n = 1), which corresponds to a wave with one reversal of
the flow in the vertical, and we setky to zero to focus on the zonal profile of the wave. The
streamfunction, velocity, pressure, and density distributions are as follows

2The meridional phase speed,ωn/ky , may be either positive or negative, depending on the sign ofky.
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ψ = A cos kzz cos(kxx− ωt) (16.51a)

u = − ∂ψ

∂y
= 0 (16.51b)

v = +
∂ψ

∂x
= − kxA cos kzz sin(kxx− ωt) (16.51c)

w = − f0
N2

∂2ψ

∂t∂z
= +

f0ωkz
N2

A sin kzz sin(kxx− ωt) (16.51d)

p′ = ρ0f0ψ = ρ0f0 A cos kzz cos(kxx− ωt) (16.51e)

ρ′ = − ρ0f0
g

∂ψ

∂z
= +

ρ0f0kz
g

A sin kzz cos(kxx− ωt). (16.51f)

Because the geostrophic zonal velocity,u, is identically zero, it is necessary to consider its
leading ageostrophic component. According to (16.10a) and our subsequent restrictions to
linear and inviscid dynamics, we find this component to be

u = − 1

ρ0f2
0

∂2p′

∂t∂x

= − kxω

f0
A cos kzz cos(kxx− ωt). (16.52)

Its amplitude is only a small fractionω/f0 of the meridional component. The corresponding JMB from⇓
JMB to⇑wave structure is displayed in Figure16-4and can be interpreted as follows.

At the top and bottom, vertical displacements are prohibited Benoit Not really, we al- JMB from⇓
lowed free surface movement. What happens is that the baroclinic mode has very low am-
plitude movements of the free surface. Only the barotropic mode has significant surface
signature. , and there is no density anomaly. In between, however, vertical displacements do JMB to⇑
occur and, for the lowest baroclinic mode, they exhibit one maximum at midlevel. Where the
middle density surface upwells, heavier (colder) fluid frombelow is brought upward, form-
ing a cold anomaly. Similarly, a warm anomaly accompanies a subsidence, half a wavelength
away. Because colder fluid is heavier and warmer fluid is lighter, the bottom pressure is
higher under cold anomalies and lower under warm anomalies.The resulting zonal pressure
gradient drives an alternating meridional flow. In the Northern Hemisphere (as depicted in
Figure16-4), the velocity has the higher pressure on its right and therefore assumes a south-
ward direction east of the high pressures and a northward direction east of the low pressures.
Due to the baroclinic nature of the wave, there is a reversal in the vertical, and the velocities
near the top are counter to those below (Figure16-4).

On the beta plane, the variation in the Coriolis parameter causes this meridional flow to
be convergent or divergent. In the Northern Hemisphere, thenorthward increase off implies,
under a uniform pressure gradient, a decreasing velocity and thus convergence of northward
flow and divergence of southward flow. The resulting convergence-divergence pattern calls
for transverse velocities, either zonal or vertical or both. According to Figure16-4, based
on (16.51d) and (16.52), both transverse components come into play, each partially reliev-
ing the convergence-divergence of the meridional flow. The ensuing vertical velocities at
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Figure 16-4 Structure of a baroclinic planetary wave. In constructing this diagram, we have taken
f0 > 0, kx > 0, ky = 0 andkz = π/H , which yieldω < 0 and a wave structure with a single reversal
in the vertical.

midlevel cause subsidence below a convergence and above a divergence, feeding the excess
of the upper flow into the deficit of that underneath, and create upwelling half a wavelength
away, where the situation is vertically reversed. Subsidence generates a warm anomaly, and
upwelling generates a cold anomaly. As we can see in Figure16-4, this takes place a quarter
of a wavelength to the west of the existing anomalies, thus inducing a westward shift of the
wave pattern over time. The result is a wave pattern steadilytranslating to the west.JMB from⇓

Benoit: May I suggest an adaptation of the text along the following lines?
At the bottom, vertical displacements are prohibited and there is no density anomaly.

Also at the surface, density anomalies are nil according to (16.51f), but in between, however,
vertical displacements do occur and, for the lowest baroclinic mode, they exhibit one maxi-
mum at midlevel. Where the middle density surface has upwelled, heavier (colder) fluid from
below is found, forming a cold anomaly. Similarly, a warm anomaly accompanies a subsi-
dence, half a wavelength away. Because colder fluid is heavier and warmer fluid is lighter,
the bottom pressure is higher under cold anomalies and lowerunder warm anomalies. At
the lowest order of approximation, the resulting zonal pressure gradient drives an alternating
geostrophic meridional flow of intensityv given by (16.51c). In the Northern Hemisphere
(as depicted in Figure16-4), the velocity has the higher pressure on its right and therefore
assumes a southward direction east of the high pressures anda northward direction east of
the low pressures. Due to the baroclinic nature of the wave, there is a reversal in the vertical,
and the velocities near the top are counter to those below (Figure16-4).

This lowest order approximation is a stationnary solution and the wave propagation must
arise from the next order terms of the solution. In particular, the next term to (16.10b) using
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our restrictions to linear and inviscid dynamics is

− β0

ρ0f2
0

y
∂p′

∂x
=
β0kx
f0

y A cos kzz sin(kxx− ωt) (16.53)

and leads now to a non-zero∂v/∂y: On the beta plane, the variation in the Coriolis parameter
causes this meridional flow to be convergent or divergent. Inthe Northern Hemisphere, the
northward increase off implies, under a uniform pressure gradient, a decreasing velocity
and thus convergence of northward flow and divergence of southward flow. The resulting
convergence-divergence pattern calls for transverse ageostrophic velocities, either zonal or
vertical or both. According to Figure16-4, based on (16.51d) and (16.52), both transverse
components come into play, each partially relieving the convergence-divergenceof the merid-
ional flow. The relative importance of the the vertical convergence to the horizontal one is,

Wkz
Ukx

=
f2
0k

2
z

N2k2
x

(16.54)

and we recover the inverse of the Burger number associated with the scales of the wave. In
any case, the ensuing vertical velocities at midlevel causesubsidence below a convergence
and above a divergence, feeding the excess of the upper flow into the deficit of that under-
neath, and create upwelling half a wavelength away, where the situation is vertically reversed.
Subsidence generates a warm anomaly, and upwelling generates a cold anomaly. As we can
see in Figure16-4, this takes place a quarter of a wavelength to the west of the existing
anomalies, thus inducing a westward shift of the wave pattern over time. The result is a wave
pattern steadily translating to the west.

Benoit Also, I would reduce zonal velocity arrows in the figure, because one has the
impression of strong velocities. JMB to⇑

16.6 Quasi-geostrophic ocean modeling

The quasi-geostrophic models were the basis on which the first weather-forecast systems have
been build on (see biographies at end of Chapter5 and the present chapter). The reason for the
success of these models were the very simplified mathematicsand numerics, yet retaining the
most important physical dynamics. The first models implemented were two-dimensional (see
Exercise 16-1) on which we will illustrate some numerical ingredients. In two dimensions,
the governing equation reduce to

∂q

∂t
+ J(ψ, q) = 0 (16.55)

in the absence of friction and turbulence, completed with the definition of potential vorticity
(16.16).

From governing equation (16.55) it is clear that the JacobianJ plays a central role in the
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8 Figure 16-5 Notations for Jacobian
J(ψ, q) around the central point called
0. The discretizationJ++ usesψ andq
in points 2,4,6,8, whileJ+× evaluates
ψ in points 2,4,6,8 andq on 1,3,5,7

evolution and in view of the different mathematical expressions

J(ψ, q) =
∂ψ

∂x

∂q

∂y
− ∂q

∂x

∂ψ

∂y
(16.56a)

=
∂

∂x

(
ψ
∂q

∂y

)
− ∂

∂y

(
ψ
∂q

∂x

)
(16.56b)

=
∂

∂y

(
q
∂ψ

∂x

)
− ∂

∂x

(
q
∂ψ

∂y

)
(16.56c)

we can readily develop the following corresponding finite-difference forms, all of second
order

J++ =
(ψ̃4 − ψ̃8)(q̃6 − q̃2)− (q̃4 − q̃8)(ψ̃6 − ψ̃2)

4∆x∆y
(16.57a)

J+× =

[
ψ̃4(q̃5 − q̃3)− ψ̃8(q̃7 − q̃1)

]
−
[
ψ̃6(q̃5 − q̃7)− ψ̃2(q̃3 − q̃1)

]

4∆x∆y
(16.57b)

J×+ =

[
q̃6(ψ̃5 − ψ̃7)− q̃2(ψ̃3 − ψ̃1)

]
−
[
q̃4(ψ̃5 − ψ̃3)− q̃8(ψ̃7 − ψ̃1)

]

4∆x∆y
(16.57c)

The superscrips for the Jacobian clearly indicate where itsargumentsψ andq are evaluated
with respect to the central point (Figure16-5). In view of the different discretization, we
might question which to chose to obtain the best model. Sinceall of them are second order, we
have to invoke other properties than truncation errors to decide on the optimal discretization.
Such properties can be conservation laws derived from the equation to be solved and we can
identify the following integral constraints in a domain of surfaceS with constantψ on its
boundaries, with periodic boundaries or with decaying solutions in an infinite domain:

∫

S
J(ψ, q)dS = 0, (16.58)

∫

S
qJ(ψ, q)dS = 0, (16.59)

∫

S
ψJ(ψ, q)dS = 0. (16.60)
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We also have an additional anti-symmetry property

J(ψ, q) = −J(q, ψ). (16.61)

These mathematical properties of the Jacobian and governing equation (16.55) lead to the
following integral properties whenq = ∇2ψ:

dΓ

dt
=

d

dt

∫

S
q dS = 0, (16.62)

dZ

dt
=

d

dt

∫

S
q2dS = 0. (16.63)

The first one is an expression of the circulation theorem (seealso Section7.4), while the
second one expresses the global conservation of a quadraticform of vorticity calledenstro-
phy. Finally (16.60) can be related to kinetic-energy evolution. Numerical discretizations
generally do not ensure that the same integral properties are retrieved in the discrete solution.
Again Arakawa (see biography end of Chapter9) had a brilliant idea, combining different
versions of the Jacobian discretizations in order to maintain those properties also with the
discrete version. The combination

J = (1− α− β)J++ + αJ+× + βJ×+ (16.64)

for anyα andβ leads to a consistent discretization. The two parametersα andβ can now be
chosen so as to ensure some of the conservation properties.

Integrals (16.60) in their discrete form sum up individual terms involving productsψi,jJi,j
or with shorter notations of Figure16-5terms such as

∆x∆y ψ0J0. (16.65)

For the Jacobian discretized according to (16.57a) this involves

4∆x∆y ψ̃0J
++
0 = ψ̃0ψ̃4(q̃6 − q̃2) + ... (16.66)

From the contributionψ4J4 we find similar terms

4∆x∆y ψ̃4J
++
4 = −ψ̃0ψ̃4(q̃5 − q̃3) + ... (16.67)

For all other terms in the integral, there are no other products of ψ̃0ψ̃4 that appear. Because
the only products that appear have different multiplicative factors, their sum has no reason to
be zero if onlyJ++ is used.

If we look at another discrete Jacobian,J+×, we have similar terms

4∆x∆y ψ̃0J
+×
0 = ψ̃0ψ̃4(q̃5 − q̃3) + ... (16.68)

and
4∆x∆y ψ̃4J

+×
4 = −ψ̃4ψ̃0(q̃6 − q̃2) + ... (16.69)

For J++ and J+×, no other combinations involvingψ0ψ4 appear. We immediately see
that if we take(J++ + J+×) the sum ofψJ over all grid points is conserved for suitable
boundary conditions because now all terms inψ̃0ψ̃4 cancel out. The same reasoning applies
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to combinations such as those between point 0 and 6 with the same conclusion. Finally for
bothJ++ andJ+× there are no products as̃ψ0ψ̃5 that appear. Such products only appear
when usingJ×+

4∆x∆y ψ̃0J
×+
0 = ψ̃0ψ̃5(q̃6 − q̃4) + ... (16.70)

4∆x∆y ψ̃5J
×+
5 = ψ̃0ψ̃5(q̃4 − q̃6) + ... (16.71)

BecauseψJ×+ never makes appear terms asψ̃0ψ̃4 or ψ̃0ψ̃6, the final conclusion is that the
discrete integral ofqJ it is conserved if we combine(J++ + J+×) andJ×+.

Similarly if we take(J++ +J×+) the sum ofqJ over all grid points is conserved as well
if we takeJ+× or any linear combination of(J++ + J×+) andJ+×.

The anti-symmetry condition (16.61) is automatically satisfied for discrete versionJ++

but not for(J+× or J×+) individually. However the combination(J+× + J×+) leads to
a symmetric version. If view of the above results, the valuesα = β = 1/3 seems thus
the method of choice for a Jacobian discretization since it allows to satisfy our integral and
symmetry constraints. This discretization is called theArakawa jacobian. Of course, time
discretization effects can alter the conservation properties such as (16.62)-(16.63) and the
same discussion as in Section6.4applies.

The second essential ingredient in the quasi-geostrophic evolution is the relation between
ψ andq. For a rigid-lid model on thef -plane it reads

∂2ψ

∂x2
+
∂2ψ

∂y2
= q. (16.72)

Since (16.55) provides the tool to advanceq in time, (16.72) can be considered the equation
to be solved once a new vorticity value is found. Hence we needagain to invert a Poisson
equation at each time step (see Section7.8). In the first quasi-geostrophic models this was
done by successive overrelaxation method, possibly with a red-black approach on vector
computers.

Note that equations (10.1a) and (10.1b) can also be recasted into (16.55) without any ap-
proximations and we can therefore use numerical models thatcan solve the two-dimensional
QG equations to analyze the stability of inviscid sheared flows. In reality, to produce Figure
?? in Chapter?? we used a two-dimensionl QG model to simulate the non-linearevolution
beyond the stability threshold.

Analytical Problems

16-1. Derive the one-layer quasi-geostrophic equation

∂

∂t

(
∇2ψ − 1

R2
ψ

)
+ J(ψ,∇2ψ) + β0

∂ψ

∂x
= 0, (16.73)

whereR = (gH)1/2/f0, from the shallow-water model (7.20) assuming weak sur-
face displacements. How do the waves permitted by these dynamics compare to the
planetary waves exposed in Section16.5?
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16-2. Demonstrate the assertion made at the end of Section16.4that the time rate of change
of available potential energy is proportional to the integral of the product of density
perturbation with vertical velocity.

16-3. Elucidate in a rigorous manner the scaling assumptions justifying simultaneously the
quasi-geostrophic approximation and the linearization ofthe equations for the wave
analysis. What is the true restriction on vertical displacements?

16-4. Show that the assumption of a rigid upper surface (combined to the assumption of a
flat bottom) effectively replaces the external radius of deformation by infinity. Also
show that the approximate solutions for the vertical wavenumberkz in Section16.5
then become exact.

16-5. Explore topographic waves using the quasi-geostrophic formalism on anf -plane (β0 =
0). Begin by formulating the appropriate bottom-boundary condition. JMB from⇓

16-6. Establish the so-calledOmega equationon thef -plane and without friction allowing
to diagnose vertical velocity from density observation forhorizontally constantN2 and
associated geostrophic current(ug, vg).

N2 ∂
2w

∂x2
+N2 ∂

2w

∂y2
+ f2 ∂

2w

∂z2
=
∂Qx
∂x

+
∂Qy
∂y

(16.74)

Qx = 2f

(
∂ug
∂z

∂vg
∂x

+
∂vg
∂z

∂vg
∂y

)

Qy = −2f

(
∂ug
∂y

∂vg
∂z

+
∂ug
∂z

∂ug
∂x

)

JMB to⇑

Numerical Exercises

16-1. Check numerical conservation (16.58) by adaptingqgmodel.m in a closed two-dimensional
and square domain of widthL. Compare a Leapfrog and Euler time-discretization. Ini-
tialize with a streamfunction given by

ψ = sin(πx/L) sin(πy/L) L2ω0. (16.75)

On the solid boundariesx = 0n x = L, y = 0 andy = L streamfunction is kept zero.
Useω0 = 10−5 s−1 andL= 100 km. For simplicity, use also zero vorticity on the
boundaries.
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16-2. Generalize the vorticity evolution to theβ-plane in 2D. Also add superviscosity (bi-
harmonic diffusion) detailed in Section10.6 to qgmodel.m . Hint: Keep relative
vorticity as dynamic variable and express the beta effect asa forcing term in its gov-
erning equation for a subsequent discretization. Redo the simulation of Exercise 16-1,
including the beta term withβ0 = and usingL = 3000 km. Observe the evolution of
the streamfunction.

16-3. Adaptqgmodel.m to simulate the instability of the barotropic flow of Section10.4.
Instead of an infinite domain iny direction, prescribe zero values for the streamfunc-
tion in y = ±10L. Apply a periodicity condition inx direction. What boundary
conditions will you use onq? Which problem in prescribing boundary conditions will
you encounter if you want to use a biharmonic diffusion? In any case, take a weak
diffusion for the simulations.Hint: Prepare yourself to take a cup of coffee during the
simulations, initialized with the base current perturbed by an unstable wave.

16-4. Try to adapt the overrelaxation parameter to decrease computation time of simulations
in Exercise 16-3. Then simulate .....another 2D unstable problem with simple
vorticity distribution ?

16-5. Cylindrical symmetric unstable situation

ψ = − (r̃ + 1)e−r̃ r̃ =

√
x2 + y2

L
L2ω0 (16.76)

Hint: Use ?? for the calculation of the laplacian in cylindrical coordinates. For the
perturbation, multiplyr used in the calculation ofψ by ...

Gaussian eddy with

ψ = e−r
2/L2

L2ω0 (16.77)

also works nicely (Figure16-6).

16-6. Implement a more efficient Poisson-equation solver using MATLAB  routinecg and
redo Exercise 16-3. Search the WWW for a multigrid version ofthe Poisson equation
solver to further reduce calculation times.

16-7. A zonal flow unstable withoutβ effect.

16-8. Activate the beta term in an unstable situation to become stable?

7-11. Calculate the amplification factor of Gauss-Seidel iterations including overrelaxation.
Can you infer the optimal overrelaxation coefficient for Dirichlet conditions?Hint:
The optimal parameter will ensure that the slowest damping is done as fast as possible.
TO MOVE into chapter 7
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Figure 16-6 Evolution of a perturbed vorticity patch within a quasi-geostrophic framework.



Jule Gregory Charney
1917 – 1981

A strong proponent of the idea that intelligent simplifications of a problem are not only nec-
essary to obtain answers but also essential to understand the underlying physics, Jule Charney
was a major contributor to dynamic meteorology. As a student, he studied the instabilities
of large-scale atmospheric flows and elucidated the mechanism that is now called baroclinic
instability (Chapter 17). His thesis appeared in 1947, and the following year, he published an
article outlining quasi-geostrophic dynamics (the material of this chapter). He then turned his
attention to numerical weather prediction, an activity envisioned by L. F. Richardson some
thirty years earlier. The success of the initial weather simulations in the early 1950s is to
be credited not only to J. von Neumann’s first electronic computer, but also to Charney’s
judicious choice of simplified dynamics, the quasi-geostrophic equation. Later on, Charney
was instrumental in convincing officials worldwide of the significance of numerical weather
predictions, while he also gained much deserved recognition for his work on tropical meteo-
rology, topographic instability, geostrophic turbulence, and the Gulf Stream. Charney applied
his powerful intuition to systematic scale analysis. Scaling arguments are now a mainstay in
geophysical fluid dynamics. (Photo from archives of the Massachusetts Institute of Technol-
ogy.) (http://www.agu.org/inside/awards/charney.html)
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Allan Richard Robinson
1932 –

An avowed “phenomenologist”, Allan Robinson is counted among the founding fathers of
geophysical fluid dynamics because of his seminal contributions on the dynamics of rotating
and stratified fluids, boundary-layer flows, continental shelf waves, and the maintenance of
the oceanic thermocline. During the 1970s, he chaired and co-chaired a series of interna-
tional programs that established the existence and importance of intermediate-scale eddies in
the open ocean, theinternal weather of the sea. His research led him to formulate numerical
models for ocean forecasting and to emphasize the role of ocean physics in regulating bio-
logical activity. Robinson has also contributed significantly to the development of techniques
for the assimilation of data in ocean-forecasting models. Underlying his accomplishments is
the firm belief that “curiosity about nature is the primary driving force and rationalization for
research”. (A. R. Robinson, Harvard University)
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Chapter 17

Instabilities of Rotating Stratified
Flows

(October 18, 2006)SUMMARY : In a stratified rotating fluid, not all geostrophic flows are
stable, for some are vulnerable to growing perturbations. This chapter presents the two pri-
mary mechanisms by which instability may occur: motion of individual particles (called
inertial instability) and organized motions across the flow (calledbaroclinic instability). In
each case, kinetic energy is supplied to the disturbance by release of potential energy from
the original flow. Baroclinic instability is at the origin ofthe midlatitude cyclones and anticy-
clones that make our weather so variable. Because the evolution of the weather perturbations JMB from⇓
is essentially non-linear, a two layer quasi-geostrophic model is used to simulate the evolution
of the baroclinic instability beyond the linear growth phase. JMB to⇑

17.1 Two types of instability

There are two broad types of flow instability. One islocal or punctualin the sense that every
particle in (at least a portion of) the flow is in an unstable situation. A prime example of
this type is gravitational instability, which occurs in thepresence of a reverse stratification
(top-heavy fluid): if displaced, either upward or downward,a particle is subjected to a buoy-
ancy force that pulls it further away from its original location and, since all other particles
are individually subjected to a similar pull, the result is acatastrophic overturn of the fluid
followed by mixing In the absence of friction, there is no specific temporal and spatial scales JMB from⇓

JMB to⇑for the event.
The second type of instability can exist only if the flow is stable with respect to the first

kind. It is more gradual and relies on a collaborative actionof many, if not all, particles
and for this reason can be calledglobal or organized. The instability is manifested by the
temporal growth of a wave at a preferential wavelength that eventually overturns and forms
vortices. An example is the barotropic instability encountered in Chapter10(see Section10.4
in particular).

479
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Table 17.1 CONTRASTING CHARACTERISTICS OF THE TWO TYPES OF INSTABILITYTO WHICH A

FLUID FLOW MAY BE SUBJECTED

LOCAL INSTABILITY GLOBAL INSTABILITY
Particles act individually Particles act in concert

Motion proceeds randomly Motion proceeds in a wave arrangement

Instability criterion depends onlyInstability criterion depends
on local properties of the flow on bulk properties of the flow

and on wavelength of perturbation

Instability is independent of Instability is sensitive to
boundary conditions boundary conditions

Instability is catastrophic Instability is gradual
(major overturn, mixing) (growing wave and vortex formation)

Example: Example:
Overturning of a top-heavy fluid Kelvin-Helmholtz instability

In rotating stratified flow: In rotating stratified flow:
Inertial instability Mixed barotropic-baroclinic instability

Rotating stratified flows can be subjected to either type of instability. If the instability
is local, it is calledinertial instability, and if it is global,baroclinic instability. Table17.1
summarizes the contrasting properties of the two types of instabilities.

Baroclinic instability is actually an end member of a more general instability, calledmixed
barotropic-baroclinic instability, which occurs when the flow is sheared in both horizontal
and vertical directions. Baroclinic instability is the extreme when there is no shear in the
horizontal, and barotropic instability (Chapter10) is the other extreme, when the original
flow has a no shear in the vertical.

17.2 Inertial instability

In this section, we consider the possibility of catastrophic instability, namely one in which a
fluid particle once displaced from its position of equilibrium keeps moving further away from
that position. Such instability is catastrophic because, if one such particle migrates away from
its initial position, all others can do so as well and the ensuing situation is overturn, mixing
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and chaos.

This instability can be characterized also asinertial because acceleration is the crux of the
growing displacement of the particles in the system. Finally, inertial instability is sometimes
calledsymmetric instabilitybecause of some symmetry in its formulation, as the following
developments will shortly reveal.

Let us consider an inviscid steady flow in thermal-wind balance with variation across the
vertical plane (x, z), with sheared velocityv(x, z) in equilibrium with a slanted stratification
ρ(x, z). Such flow must be both geostrophic and hydrostatic:

− fv = − 1

ρ0

∂p

∂x
(17.1a)

0 = − 1

ρ0

∂p

∂z
− gρ

ρ0
. (17.1b)

Elimination of pressurep between these two equations yields the thermal-wind balance

f
∂v

∂z
= − g

ρ0

∂ρ

∂x
. (17.2)

From these flow characteristics, let us define the stratification frequencyN by

N2 = − g

ρ0

∂ρ

∂z
=

1

ρ0

∂2p

∂z2
, (17.3)

and, similarly, two quantities that will be become useful momentarily:

F 2 = f

(
f +

∂v

∂x

)
= f2 +

1

ρ0

∂2p

∂x2
(17.4)

G2 = f
∂v

∂z
= − g

ρ0

∂ρ

∂x
=

1

ρ0

∂2p

∂x∂z
. (17.5)

Benoit: Why not use instead ofG2 the followingG2 = fM (with M being the Prandtl JMB from⇓
frequency as before), then in the absence of lateral shear (F 2 → f2) the condition on stability
reduces toN2 > M2 with a nice recalling of the Richardson number. JMB to⇑
Note that the three quantitiesN2, F 2 andG2 have all the dimension of a frequency squared.
But, although they are defined as squares, we ought to entertain the possibility that they may
be negative.

Next, let us perturb such flow by adding time dependency and velocity componentsu and
w within thex–z plane, while assuming still no variation in the perpendicular direction. For
clarity of exposition, we further assume inviscid flow and restrict the attention to thef–plane,
but we allow for possible non-hydrostaticity in the vertical, in anticipation of large vertical
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accelerations:

du

dt
− fv = − 1

ρ0

∂p

∂x
(17.6a)

dv

dt
+ fu = 0 (17.6b)

dw

dt
= − 1

ρ0

∂p

∂z
− gρ

ρ0
, (17.6c)

in whichd/dt stands for the material derivative (following particle movement).
In this flow, let us track an individual fluid particle with moving coordinates [x(t), z(t)].

Its velocity components in the vertical plane are

u =
dx

dt
w =

dz

dt
, (17.7)

which transform equation (17.6b) into

dv

dt
+ f

dx

dt
= 0. (17.8)

Sincef is constant in our model, the quantityv + fx is an invariant of the motion1 and it
follows that if the particle is displaced horizontally overa distance∆x it undergoes a change
of transverse velocity∆v such that

∆v + f∆x = 0. (17.9)

Turning our attention to equations (17.6a) and (17.6c) and eliminating from themu and
w by use of (17.7), we obtain:

d2x

dt2
− fv = − 1

ρ0

∂p

∂x
(17.10a)

d2z

dt2
= − 1

ρ0

∂p

∂z
− gρ

ρ0
. (17.10b)

Note that in these equations the pressure terms on the right-hand sides are complicated func-
tions of the particle position (x, z).

Let us now imagine that the fluid particle under consideration is only moved from its
original position by a small displacement∆x in the horizontal and∆z in the vertical:x(t) =
x0 + ∆x(t), z(t) = z0 + ∆z(t), so that we may linearize the equations. Note that anyJMB from⇓
displacement alongy will have no effect on the dynamic balance and can be disregarded.
Neglecting compressibility effects, we assume that the displacement causes no change inJMB to⇑
density for the particle. At its new position, the particle is out of equilibrium. In the vertical,
it is subject to a buoyancy force, while in the horizontal, itis no longer in geostrophic equi-
librium. These forces are reflected in the new, local values of the pressure gradient, which for
a small displacement can be obtained from the original values by a Taylor expansion:

1This is occasionally called thegeostrophic momentum.
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∂p

∂x

∣∣∣∣
at x+∆x,z+∆z

=
∂p

∂x

∣∣∣∣
at x,z

+ ∆x
∂2p

∂x2

∣∣∣∣
at x,z

+ ∆z
∂2p

∂x∂z

∣∣∣∣
at x,z

(17.11a)

∂p

∂z

∣∣∣∣
at x+∆x,z+∆z

=
∂p

∂z

∣∣∣∣
at x,z

+ ∆x
∂2p

∂x∂z

∣∣∣∣
at x,z

+ ∆z
∂2p

∂z2

∣∣∣∣
at x,z

.(17.11b)

h After subtraction of the unperturbed state, the equationsgoverning the evolution of the
displacement are:

d2∆x

dt2
− f∆v = − 1

ρ0

(
∂2p

∂x2

)
∆x− 1

ρ0

(
∂2p

∂x∂z

)
∆z (17.12a)

d2∆z

dt2
= − 1

ρ0

(
∂2p

∂x∂z

)
∆x− 1

ρ0

(
∂2p

∂z2

)
∆z, (17.12b)

in which ∆v = −f∆x according to (17.9). The first equation tells that the force imbalance
in thex–direction is due in part by the Coriolis force having changed by f∆v and in part
by immersion in a new pressure gradient. By Newton’s second law, this causes a horizontal
accelerationd2∆x/dt2. Likewise, the second equation states that the modified pressure en-
vironment causes an imbalance in the vertical. The new neighbors together exert a buoyancy
force on our particle and the latter acquires a vertical accelerationd2∆z/dt2.

Since the equations are now linear, we may seek solutions of the form:

∆x = X exp(iωt), ∆z = Z exp(iωt). (17.13)

If the frequencyω is real, the particle oscillates around its original position of equilibrium
and the flow can be characterized as stable. On the contrary, shouldω be complex and have
a negative imaginary part, the solution includes exponential growth, the particle drifts away
from its original position, and the flow is deemed to be unstable.

Substitution on the solution type in the governing equations yields a 2-by-2 system for
the amplitudesX andZ:

(F 2 − ω2) ∆x + G2 ∆z = 0 (17.14a)

G2 ∆x + (N2 − ω2) ∆z = 0, (17.14b)

in which we introduced quantities defined in (17.3), (17.4) and (17.5). A non-zero solution
exists only ifω obeys

(F 2 − ω2) (N2 − ω2) = G4, (17.15)

of which theω2 roots are

ω2 =
F 2 +N2 ±

√
(F 2 −N2)2 + 4G4

2
. (17.16)

The question is whether one or bothω2 values can be negative, in which case there is at least
oneω root with a negative imaginary part.
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Figure 17-1 Stability diagram in
the parameter space (F 2, N2) for
the inertial instability of a thermal-
wind flow.

Before proceeding with the general case, it is instructive to consider two extreme cases.
First is the case of a pure stratification (v is a constant andρ is a function ofz only; F 2 =
G2 = 0 andN2 6= 0), for which

ω2 =
N2 ±

√
N4

2
= 0 or N2. (17.17)

All ω values are real ifN2 ≥ 0, which corresponds to a density increasing downward
(dρ/dz < 0). Otherwise the fluid is top heavy and overturns. This is gravitational insta-
bility.

The second extreme case is that of a pure shear (v is a function ofx only andρ is a
constant:F 2 6= 0 andG2 = N2 = 0), for which

ω2 =
F 2 ±

√
F 4

2
= 0 or F 2. (17.18)

All ω values are real isF 2 ≥ 0, which corresponds tof(f + ∂v/∂x) ≥ 0, i.e., (f + ∂v/∂x)
of the same sign asf . ShouldF 2 be negative, the flow mixes horizontally. This is inertial
instability in a pure form.

Returning to the general case, we realize that the switch between stability and instability
occurs whenω2 = 0, which according to (17.16) occurs when

F 2N2 = G4. (17.19)

Around this relation, the signs of theω2 roots are as depicted in Figure17-1. It is clear from
this graph that stability demands three conditions2:

F 2 ≥ 0, N2 ≥ 0 and F 2N2 ≥ G4 (17.20)

The third condition is the most intriguing of the group and deserves some physical in-
terpretation. For this, let us takeF 2 andN2 both positive and define the slope (positive

2F 2N2 = G4 alone is not enough because it could be obtained withF 2 andN2 both negative.
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downward) of the lines in the vertical (x, z) plane along which the geostrophic momentum
v + fx and densityρ are constant:

Smomentum = slope of linev + fx = constant

=
∂(v + fx)/∂x

∂(v + fx)/∂z
=

F 2

G2
(17.21)

Sdensity = slope of lineρ = constant

=
∂ρ/∂x

∂ρ/∂z
=

G2

N2
. (17.22)

The stability thresholdF 2N2 = G4 then corresponds to equal momentum and density slopes.
Normally, the velocity varies strongly inx and weakly inz, whereas density behaves in
the opposite way, varying more rapidly inz than inx. Typically, therefore, lines of equal
geostrophic momentum are steeper than lines of equal density. This, it turns out, is the stable
caseF 2N2 > G4 (left panel of Figure17-2).

-
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ρ =
constant

v + fx = constant

-
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x

z

Unstable

v + fx =
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ρ = constant

wedge of
instability

1
2

Figure 17-2 Left panel: Stability when lines of constant geostrophic momentumv + fx are steeper
than lines of constant densityρ. Right panel: Instability when lines of constant geostrophic momentum
are less steep than lines of constant density; a particle displaced within the wedge is pulled further away
by a combination of a buoyancy force (1) and a geostrophic imbalance (2).

With increasing thermal wind, momentum lines become less inclined and density lines
more steep, until they cross. Beyond this crossing, when thesteeper lines are the density
lines,F 2N2 < G4, and the system is unstable (right panel of Figure17-2). Particles quickly
drift away from their initial position and the fluid is vigorously rearranged until it becomes
marginally stable, just as a top-heavy fluid (N2 < 0) is gravitationally unstable and becomes
mixed until its density is homogenized (N2 = 0). In other words, a situation with density
lines steeper than geostrophic lines cannot persist and re-arranges itself quickly until these
lines become aligned.
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In the unstable regime, it can be shown (see Problem 17-9.) that growing particle dis-JMB from⇓
JMB to⇑ placements lie in the wedge between the momentum and densitylines (right panel of Figure

17-2). This justifies yet another name for the process:wedge instability.
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Figure 17-3 Patterns of squeezing and stretching caused by lateral displacements in a two-layer flow
in thermal-wind balance. Squeezing generates anticyclonic vorticity (clockwise motion in the Northern
Hemisphere), while stretching generates cyclonic vorticity (counterclockwise motion in the Northern
Hemisphere). The flexibility of the density interface distributes the squeezing and stretching across both
layers, and the result is that a cross-flow displacement in the upper layer (upper-left of figure) causes an
accompanying pattern of squeezing and stretching in the lower layer (lower-left of figure). Vice versa, a
cross-flow displacement in the lower layer (lower-right of figure) causes a similar pattern of squeezing
and stretching in the upper layer (upper-right of figure). Growth occurs when the two sets of patterns
mutually reinforce each other.
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17.3 Baroclinic instability – The mechanism

In thermal-wind balance, geostrophy and hydrostaticity combine to maintain a flow in equi-
librium. Assuming that this flow is stable with respect to inertial instability (previous section),
the equilibrium is not that of least energy, because a reduction in slope of density surfaces
by spreading of the lighter fluid above the heavier fluid wouldlower the center of gravity
and thus the potential energy. Simultaneously, it would also reduce the pressure gradient, its
associated geostrophic flow and the kinetic energy of the system. Evidently, the state of rest
is that of least energy (minimum potential energy and null kinetic energy).

In a thermal wind, relaxation of the density distribution and tendency toward the state of
rest cannot occur in any direct, spontaneous manner. Such anevolution would require vertical
stretching and squeezing of fluid columns, neither of which can occur without alteration of
potential vorticity.

Friction is capable of modifying potential vorticity, and under the slow action of friction
a state of thermal wind decays, eventually bringing the system to rest. But, there is a more
rapid process that operates before the influence of frictionbecomes noticeable.

Vertical stretching and squeezing of fluid parcels is possible under conservation of poten-
tial vorticity if relative vorticity comes into play. As we have seen in Section12.3, a column
of stratified fluid that is stretched vertically develops cyclonic relative vorticity, and one that
is squeezed acquires anticyclonic vorticity. In a slightlyperturbed thermal-wind system, the
vertical stretching and squeezing occurring simultaneously at different places generates a
pattern of interacting vortices. Under certain conditions, these interactions can increase the
initial perturbation, thus forcing the system to evolve away from its original state.

Physically, a partial relaxation of the density surfaces liberates some potential energy,
while the concomitant stretching and squeezing creates newrelative vorticity. The kinetic
energy of the new motions can naturally be provided by the potential-energy release. If con-
ditions are favorable, these motions can then contribute tofurther relaxation of the density
field and to stronger vortices. With time, large vortices canbe formed at the expense of the
original thermal wind. Vortices noticeably increase the amount of velocity shear in the sys-
tem, greatly enhancing the action of friction. The evolution toward a lower energy level is
therefore more effective via the transformation from potential into kinetic energy and gener-
ation of vortices than by friction acting on the thermal-wind flow.

Let us now investigate how a disturbance of a thermal-wind flow can generate a relative-
vorticity distribution favorable to growth. For this purpose, a two-fluid idealization, as de-
picted in Figure17-3, is sufficient. For the discussion, let us also ignore the beta effect and
align thex–direction with that of the thermal wind (U1 − U2). The interface then slopes
upward in they–direction (middle panels of Figure17-3). A perturbation of the upper flow
causes some of its parcels to move in the+y–direction, into a shallower region (middle-left
panel of the figure), and these undergo some vertical squeezing and thus acquire anticyclonic
vorticity (clockwise in the figure). But, because the density interface is not a rigid bottom but
a flexible surface, it deflects slightly, relieving the upperparcels from some squeezing and
creating a complementary squeeze in the lower layer. Thus, lower-layer parcels, too, develop
anticyclonic vorticity at the same location. Note in passing that a lowering of the interface on
the shallower side is also in the direction of a decrease of available potential energy.

Elsewhere, the disturbance causes upper-layer parcels to move in the opposite direction
— that is, toward a deeper region. There, vertical stretching takes place, and, again, because
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the interface is flexible, this stretching in the upper layeris only partial, the interface rises
somewhat, and a complementary stretching occurs in the lower layer. Thus, parcels in both
layers develop cyclonic relative vorticity (counterclockwise in the figure). Note that a lifting
of the interface on the deeper side is again in the direction of a decrease of available potential
energy. If the disturbance has some periodicity, as shown inthe figure, alternating positive
and negative displacements in the upper layer cause alternating columns of anticyclonic and
cyclonic vorticities extending through both layers. Parcels lying between these columns of
vortical motion are entrained in the directions marked by the arrows in the figure (upper-left
and lower-left panels), creating subsequent displacements. Because these latter displace-
ments occur not at, but between the crests and troughs of the original displacements, they
lead not to growth but to a translation of the disturbance3. Thus, a pattern of displacement in
the upper layer generates a propagating wave. The directionof propagation (c1 in upper-left
panel of Figure17-3) is opposite to that of the thermal wind (U1 − U2).

Similarly, cross-flow displacements in the lower layer (right panel of Figure17-3) gener-
ate patterns of stretching and squeezing in both layers. Thedifference is that, because of the
sloping nature of the density interface, displacements in the+y–direction (middle-right panel
in figure) are accompanied by stretching instead of squeezing. Fluid parcels lying between
vortical motions take their turn in being displaced, and thepattern again propagates as a wave
(c2 in lower-right panel of Figure17-3), this time in the direction of the thermal wind.

x

y

Figure 17-4 Interaction of displace-
ment patterns and vortex tubes in the
upper layer of a two-layer thermal-
wind flow when displacements occur
in both layers. The illustration depicts
the case of a mutually reinforcing pair
of patterns, when the vortical motions
of one pattern act to increase the dis-
placements of the other. A similar fig-
ure could be drawn for the lower layer,
and it can be shown that, if the com-
bination of patterns is self-reinforcing
in one layer, it is self-reinforcing in the
other layer, too. This is the essence of
baroclinic instability

Each by itself, the displacement pattern in a layer only generates a vorticity wave, but
growth or decay of the whole can take place depending on whether the two separately induced
patterns reinforce or negate each other. If the vorticity patterns induced by the upper-layer
and lower-layer diplacements are in quadrature with each other, the complementary vortical
motions (upper-right and upper-left sides of Figure17-3, respectively) of one set fall at the
crests and troughs of the other set, and the ensuing interaction is either favorable or unfavor-
able to growth. If the spatial phase difference is such that the displacement pattern in one
layer is shifted in the direction of the thermal-wind flow in that layer (U1 − U2 in the upper

3The mechanism here is identical to that of planetary and topographic waves, discussed in Section 9.6.



490 CHAPTER 17. INSTABILITIES

layer — the opposite in the lower layer), as depicted in Figure 17-4, the vortical motions of
one pattern act to increase the displacements of the other, and the disturbance in each layer
amplifies that in the other. The system evolves away from its initial equilibrium.

The preceding description points to the need of a specific phase arrangement between the
displacements in the two layers and emphasizes the role of vorticity generation. A further
requirement is necessary for growth: The disturbance must have a wavelength that is neither
too short nor too long and must be such that the vertical stretching and squeezing effectively
generates relative vorticity. To show this, let us considerthe quasi-geostrophic form of the
potential vorticity (16.16), on thef -plane:

q = ∇2ψ +
∂

∂z

(
f2

N2

∂ψ

∂z

)
, (17.23)

whereψ is the streamfunction,f the Coriolis parameter,N is the stratification frequency, and
∇2 is the two-dimensional Laplacian. For a displacement pattern of wavelengthL, the first
term representing relative vorticity is on the the order of

∇2ψ ∼ Ψ

L2
, (17.24)

where the streamfunction scaleΨ is proportional to the amplitude of the displacements. If
the height of the system isH , the second term (representing vertical stretching) scales as

∂

∂z

(
f2

N2

∂ψ

∂z

)
∼ f2Ψ

N2H2
=

Ψ

R2
, (17.25)

where we have defined the deformation radiusR = NH/f .
Now, if L is much larger thanR, the relative vorticity cannot match the vertical stretching

as scaled. This implies that vertical stretching will be inhibited, and the displacements in the
layers will tend to be in phase in order to reduce squeezing and stretching of fluid parcels
in each layer. On the other hand, ifL is much shorter thanR, relative vorticity dominates
potential vorticity. The two layers become uncoupled, and there is insufficient potential en-
ergy to feed a growing disturbance. In sum, displacement wavelengths on the order of the
deformation radius are the most favorable to growth.JMB from⇓

Benoit: From the discussion I somehow miss the place where the quasi-geostrophic na-
ture of the process is justified. PV conservation itself is valid at all scales and you use QG
theory to show thatR ∼ L, which is coherent with QG, but not a prove.

Also, maybe a phrase somewhere that the propagating wave pattern not only need the
adequate phase shift but also a propagation speed of the wavethat is identical in both layers:
U1−c1 = U2+c2. For identical layer depth and pure ”sloping interface wave”, by symmetry,
the wave speed relative to the fluid (in motion) is identicalc1 = c2 and hencec1 = c2 =
∆U/2 and we prove that the instability moves with the average speedU1 − c1 = U2 + c2 =
(U1 + U2)/2.JMB to⇑

Because fluctuations are so ubiquitous in nature, an existing flow in thermal-wind balance
will continuously be subjected to perturbations. Most of these will have a benign effect,
because they do not have the proper phase arrangement or a suitable wavelength. But, sooner
or later, a perturbation with both favorable phase and wavelength will occur, prompting the
system to evolve irreversibly from its equilibrium state. We conclude that flows in thermal-
wind balance are intrinsically unstable. Because their instability process depends crucially
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on a phase shift with height, the fatal wave must have a baroclinic structure. To reflect this
fact, the process has been termedbaroclinic instability.

The cyclones and anticyclones of our midlatitude weather are manifestations of the baro-
clinic instability of the atmospheric jet stream. The person who first analyzed the stability
of vertically sheared currents (thermal wind) and who demonstrated the relevance of the in-
stability mechanism to our weather is J. G. Charney4. While Charney (1947) performed the
stability analysis for a continuously stratified fluid on thebeta plane, Eady (1949) did the
analysis on thef -plane independently. The comparison between the two theories reveals that
the beta effect is a stabilizing influence. Briefly, a change in planetary vorticity (by merid-
ional displacements) is another way to allow vertical stretching and squeezing while preserv-
ing potential vorticity. Relative vorticity is then no longer as essential and, in some cases,
sufficiently suppressed to render the thermal wind stable toperturbations of all wavelengths.

17.4 Linear theory of baroclinic instability

Numerous stability analyses have been published since those of Charney and Eady, exempli-
fying one aspect or another. Phillips (1954) idealized the continuous vertical stratification to
a two-layer system, a case which Pedlosky (1963, 1964) generalized by allowing arbitrary
horizontal shear in the basic flow, and Pedlosky and Thomson (2003) generalized to tempo-
rally oscillating basic flow. Barcilon (1964) studied the influence of friction on baroclinic
instability by including the effect of Ekman layers, whereas Orlanski (1968; 1969) investi-
gated the importance of non-quasi-geostrophic effects andof a bottom slope. Later, Orlanski
and Cox (1973), Gillet al. (1974), and Robinson and McWilliams (1974) confirmed that
baroclinic instability is the primary cause of the observedoceanic variability at intermediate
scales (tens to hundreds of kilometers).

Here, we only present one of the simplest mathematical models, taken from Phillips
(1954), because it best exemplifies the mechanism describedin the previous section. The
fluid consists of two layers with equal thicknessesH/2 and unequal densitiesρ1 on top and
ρ2 below, on the beta-plane (β0 6= 0) over a flat bottom (atz = 0) and under a rigid lid (at
z = H , constant). The fluid is further assumed to be inviscid (A andνE = 0). The basic flow
is taken as uniform in the horizontal and unidirectional butwith distinct velocities in each
layer:

ū1 = U1, v̄1 = 0 for 0 ≤ z ≤ H

2
(17.26a)

ū2 = U2, v̄2 = 0 for
H

2
≤ z ≤ H. (17.26b)

As we shall see, it is precisely the velocity difference∆U = U1−U2 between the two layers,
the vertical shear, that causes the instability. For simplicity, the dynamics are chosen to be

4For a short biography, see the end of Chapter 16.
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quasi-geostrophic, prompting us to introduce a streamfunctionψ and potential vorticityq that
obey (16.15) and (16.16):

∂q

∂t
+ J(ψ, q) = 0, (17.27a)

q = ∇2ψ +
f2
0

N2

∂2ψ

∂z2
+ β0y. (17.27b)

JMB from⇓
Because of the identical layer thickness, the stratification frequency can be considered

constant, coherently with the layered model of Chapter12.2, where equal layer heights cor-
responded to a uniform stratification.JMB to⇑
The second equation contains derivatives inz, which must be “discretized” to conform with
a two-layer representation. For this, we place valuesψ1 andψ2 at mid-level in each layer and
two additional valuesψ0 andψ3 above and below at equal distances (Figure17-5). These
latter values fall beyond the boundaries and are defined for the sole purpose of enforcing
boundary conditions in the vertical. The flat bottom and rigid lid require zero vertical velocity
at those levels, which by virtue of (16.17c) translate into∂ψ/∂z = 0. In discretized form,
the boundary conditions areψ0 = ψ1 andψ3 = ψ2. The second derivatives may then be
approximated as:

H1 = H/2

H2 = H/2

w = 0

w = 0

w1.5

ψ0(x, y, t) = ψ1

a

ψ3(x, y, t) = ψ2

z = H

z = 0

ρ1

ρ2 ψ2(x, y, t)

ψ1(x, y, t)

Figure 17-5 Representation of the
vertical stratification by two layers of
uniform density in a quasi-geostrophic
model

∂2ψ

∂z2

∣∣∣∣
1

≈ ψ0 − 2ψ1 + ψ2

∆z2
=
ψ1 − 2ψ1 + ψ2

(H/2)2
=

4(ψ2 − ψ1)

H2

∂2ψ

∂z2

∣∣∣∣
2

≈ ψ1 − 2ψ2 + ψ3

∆z2
=
ψ1 − 2ψ2 + ψ2

(H/2)2
=

4(ψ1 − ψ2)

H2
.

In a similar vein, we discretize the stratification frequency:
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N2 = − g

ρ0

dρ

dz
≈ − g

ρ0

ρ1 − ρ2

∆z
= +

2g(ρ2 − ρ1)

ρ0H
=

2g′

H
, (17.28)

for which we have defined the reduced gravityg′ = g(ρ2 − ρ1)/ρ0. It is also convenient to
introduce the baroclinc radius of deformation as

R =
1

f0

√
g′

H1H2

H1 +H2
=

√
g′H

2f0
. (17.29)

The set of two governing equations can now be written:

∂q1
∂t

+ J(ψ1, q1) = 0 (17.30a)

∂q2
∂t

+ J(ψ2, q2) = 0, (17.30b)

where the potential vorticitiesq1 andq2 are expressed in terms of the streamfunctionsψ1 and
ψ2 as

q1 = ∇2ψ1 +
1

2R2
(ψ2 − ψ1) + β0y (17.31a)

q2 = ∇2ψ2 −
1

2R2
(ψ2 − ψ1) + β0y. (17.31b)

From these quantities, the primary physical variables are derived as follows [see Equa-
tions (16.17)]

ui = − ∂ψi
∂y

, vi = +
∂ψi
∂x

(17.32a)

w1.5 =
2f0
N2H

[
∂(ψ2 − ψ1)

∂t
+ J (ψ1, ψ2)

]
(17.32b)

p′i = ρ0f0ψi, (17.32c)

wherei = 1, 2. The vertical displacementa of the density interface between the layers can
be obtained from the hydrostatic balancep′2 = p′1 + (ρ2 − ρ1)ga, which in terms of the
streamfunctions yields

a =
f0
g′

(ψ2 − ψ1). (17.33)

The same set of equations can be derived from the two-layer model of Section12.4, in which JMB from⇓
the quasi-geostrophic approach is applied on each layer, following the technique of Chapter
16. JMB to⇑



494 CHAPTER 17. INSTABILITIES

The basic-state values ofψi andqi corresponding to (17.26) are

ψ̄1 = − U1y , q̄1 =

(
β0y +

∆U

2R2

)
y (17.34a)

ψ̄2 = − U2y , q̄2 =

(
β0y −

∆U

2R2

)
y. (17.34b)

Adding a perturbationψ′i to ψ̄i with corresponding perturbationq′i to q̄i, both of infinites-
imal amplitudes so that the equations can be linearized, we obtain, from (17.30) and (17.31):

∂q′i
∂t

+ J(ψ̄i, q
′
i) + J(ψ′i, q̄i) = 0 (17.35a)

q′1 = ∇2ψ′1 +
1

2R2
(ψ′2 − ψ′1) (17.35b)

q′2 = ∇2ψ′2 −
1

2R2
(ψ′2 − ψ′1) . (17.35c)

Elimination of q′ and replacement of the basic-flow quantities with (17.34) yield a pair of
coupled equations forψ′1 andψ′2:

(
∂

∂t
+ U1

∂

∂x

)[
∇2ψ′1 +

1

2R2
(ψ′2 − ψ′1)

]
+

(
β0 +

∆U

2R2

)
∂ψ′1
∂x

= 0 (17.36a)
(
∂

∂t
+ U2

∂

∂x

)[
∇2ψ′2 −

1

2R2
(ψ′2 − ψ′1)

]
+

(
β0 −

∆U

2R2

)
∂ψ′2
∂x

= 0.(17.36b)

Because both these equations have coefficients independentof x, y and time, a sinusoidal
function in those variables is a solution, and we write:

ψ′i = <[φi ei (kxx+kyy−ωt)], (17.37)

whereφ1 andφ2 form a pair of unknowns giving the vertical structure of the wave pertur-
bation,kx andky are horizontal wavenumber components (both taken as real),andω is the
angular frequency. Should this frequency be complex with a positive imaginary part, ex-
ponential growth occurs in time, and the wave is unstable. Substitution in (17.36) leads to
equations forφ1 andφ2:

(U1 − c)
[
−k2φ1 +

1

2R2
(φ2 − φ1)

]
+

(
β0 +

∆U

2R2

)
φ1 = 0 (17.38a)

(U2 − c)
[
−k2φ2 −

1

2R2
(φ2 − φ1)

]
+

(
β0 −

∆U

2R2

)
φ2 = 0, (17.38b)
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in which we have definedc = ω/kx andk2 = k2
x+k2

y. At this point, it is useful to decompose
theφ values into barotropic and baroclinic components:

Barotropic component: A =
φ1 + φ2

2
(17.39a)

Baroclinic component: B =
φ1 − φ2

2
. (17.39b)

The sum and difference of the preceding equations then yield:

[
2β0 − k2(U1 + U2 − 2c)

]
A− k2∆U B = 0 (17.40a)

(
1

R2
− k2

)
∆U A +

[
2β0 −

(
k2 +

1

R2

)
(U1 + U2 − 2c)

]
B = 0. (17.40b)

JMB from⇓
Note that a purely barotropic solution (B = 0, A 6= 0) is only possible in the absence

of shear (∆U = 0), and for a wave speedc = U − β0/k
2 easily interpreted in terms of

planetary waves.Benoit: Calculations are more easily presented if we define just before the
barotropic/baroclinic decomposition

κ = k2R2 (17.41)

α =
β0R

2

∆U
(17.42)

γ =
U1 + U2 − 2c

∆U
(17.43)

JMB to⇑
These two equations form a homogeneous system of coupled linear equations for the

constantsA andB, the solution of which is triviallyA = B = 0 unless the determinant of
the system vanishes. This occurs when

R2k2(1 +R2k2)

(
U1 + U2 − 2c

∆U

)2

− 2
β0R

2

∆U
(1 + 2R2k2)

(
U1 + U2 − 2c

∆U

)

+ 4
β2

0R
4

∆U2
+ R2k2(1−R2k2) = 0, (17.44)

the solution of which is

U1 + U2 − 2c

∆U
=

β0R
2

∆U

2R2k2 + 1

R2k2(R2k2 + 1)

± 1

R2k2(R2k2 + 1)

√
β2

0R
4

∆U2
−R4k4(1 −R4k4) . (17.45)

It is clear from this equation that the phasec of the wave is real as long as the quantity under
the square root is positive, that is, as long as the wavenumber k satisfies the condition:



496 CHAPTER 17. INSTABILITIES

Figure 17-6 Instability interval
for two-layer baroclinic instabil-
ity. Small-amplitude waves with
wavenumberk falling in the hatched
interval are unstable and grow in
time.

R4k4(1−R4k4) ≤
(
β0R

2

∆U

)2

. (17.46)

The functionR4k4(1−R4k4) reaches a maximum of1/4 forRk = 1/21/4 = 0.841 (Figure
17-6), and therefore the condition is met for a perturbation of any wavenumber as long as

|∆U | ≤ 2β0R
2 =

β0g
′H

2f2
0

. (17.47)

In other words, the system is stable to all small perturbations when the velocity shear∆U is
sufficiently weak not to exceed2β0R

2. Put another way, shear is destabilizing (because the
greater∆U , the higher the likelihood that the threshold value will be exceeded), whereas the
beta effect is stabilizing (because the greaterβ0, the more generous the threshold).

When the velocity shear exceeds the threshold value, condition (17.47) is not met, and not

all wavenumbers do satisfy condition (17.46). Perturbations of wavenumberk =
√
k2
x + k2

y

within the intervalkmin < k < kmax are unstable, where

kmin =

(
1−

√
1− 4β2

0R
4/∆U2

2R4

)1/4

(17.48a)

kmax =

(
1 +

√
1− 4β2

0R
4/∆U2

2R4

)1/4

. (17.48b)

At smaller scales, when the beta effect may be neglected (f -plane approximation,f =
f0), kmax → 1/RJMB from⇓

JMB to⇑ all perturbations of wavenumberk satisfying

k <
1

R
=

2f√
g′H

(17.49)
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are unstable. The corresponding criterion on the wavelength λ = 2π/k is

λ > 2π R = 3.142

√
g′H

f
. (17.50)

Thus, all perturbations of wavelength exceeding 6.283 times the deformation radius, as de-
fined in (17.29) contribute to take the system away from the initial state.

Until finite-amplitude, nonlinear effects become important, the perturbation that distorts
the system most is expected to be the one with the greatest initial growth rate,=(ω). This
wave has the wavenumberk = 1/(21/4R) = 0.841/R and has the wavelength

λ = 7.472 R. (17.51)
JMB from⇓

Benoit: Are you sure?β appears in the square root but not here?? Maybe again onf -
plane, but even there I do not find this solution. For me, the maximum of the growthkci is
obtained fork2R2 =

√
2− 1:

On the f-plane, for the unstable case:c = cr + i ci, cr = U1+U2

2

ci =
∆U

2
F (κ), F (κ) = +

1

κ(1 + κ)

√
κ2(1− κ2) (17.52)

(we keep the positive value, corresponding to an unstable mode) andU1−c = ∆U
2 (1−iF (κ))

andU2 − c = −∆U
2 (1 + iF (κ))

From (17.40a) we also have

B

A
= iF (κ) (17.53)

Hence (17.59) and (17.60) read

D1

D2
= −

(
1 + iF

1− iF

)2

(17.54)

φ1

φ2
=

1 + iF

1− iF
(17.55)

This is true for all unstable modes. Forκ =
√

1/2, F =
√

2 − 1 and we obtain + 45
an -90 degrees phase shift. This is the case you consider later. But the most unstable mode
is found whenkci is maximum or equivalently when

√
κF (κ) is maximum. This is the case

whenκ =
√

2− 1.
Did I miss something?? Your case of fastest growing wave usedlater is rater the case

maximum instability in the sense that for increasing∆U (increasing the thermal wind), it is
this wave that appears the first on the beta plane. But then therest of the analysis does not
use beta effect any more.

In any case, switching beta on and off too many times can be difficult to follow (just below
you switch it on again). I would suggest to move (17.56) with comment just after (17.48) and
then look at smaller scales from there on, neglecting beta effect for the rest of the section. JMB to⇑
Note that unstable waves not only grow but also propagate in time. According to (17.45),

<(c) =
U1 + U2

2
− β0

2k2

1 + 2R2k2

1 +R2k2
(17.56)
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whenc is complex, and thus the zonal propagation speed is(U1 + U2)/2, or the average
velocity of the basic flow, minus a (westward) planetary wavespeed.

It is interesting at this point to return to our initial considerations (Section17.3) and to
confirm them with the preceding solution. First and foremost, the fact that the critical wave-
length for instability (2πR) and the wavelength of the fastest-growing perturbation (7.472R)
are both proportional toR validates the argument that self-amplification requires a scale on
the order of the deformation radius. Physically, it also verifies that the instability process
involves a rearrangement of potential vorticity between relative vorticity and vertical stretch-
ing. The necessary phase relationship between the transverse displacements of the upper and
lower fluids can be checked as follows. We define the transverse displacementd in terms of
the meridional velocity by

v′ =
∂d

∂t
+ ū

∂d

∂x
, (17.57)

after linerization. Expressingv′ in terms of the streamfunction perturbation (v′ = ∂ψ′/∂x)
and implementing the wave formdi = <[Di exp i (kxx+ kyy − ωt)], we then obtain

Di =
φi

Ui − c
, (17.58)

from which we can deduce the ratio of the transverse displacements in the upper and lower
layers:

D1

D2
=

U2 − c
U1 − c

A+B

A−B . (17.59)

For the fastest growing wave on thef -plane in the caseU1 > U2 (i.e., ∆U > 0), the
wavenumber isk = 0.841/R, the wave speed isc = (U1 + U2)/2 + 0.207i ∆U , the two
wave amplitudes are related byB = +0.414iA, and the ratio of displacements is found to
be:

D1

D2
= −i

= cos(−90◦) + i sin(−90◦). (17.60)

Physically, the negative90◦ angle corresponds to a quarter-wavelength advance (in the direc-
tion of the basic flow) of the top displacement over that in thebottom layer. The quadrature
phase shift is the one anticipated from the simple physical argument of the previous section.

From an observational point of view, however, the interest lies in the pressure field, which
is proportional to the streamfunction [see (17.32c)]. Within an arbitrary multiplicative con-
stant, which the linear theory is unable to determine, the pressure field associated with the
fastest growing perturbation can be expressed in terms of the vertical structure of the stream-
function perturbation:

φ1

φ2
=

A+B

A−B

=
1 + (

√
2− 1)i

1− (
√

2− 1)i
= cos(45◦) + i sin(45◦). (17.61)
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From this, we conclude that the crests and troughs of the pressure pattern at the top lag those
of the bottom pattern by an eighth of a wavelength.

17.5 Heat transport

The qualitative arguments developed in Section17.3revolved around the idea that if a flow
in thermal-wind equilibrium is unstable, it will seek a level of lower energy by relaxation of
the density surfaces toward static equilibrium. If we now think of the atmosphere, where the
heavier fluid is colder air and the lighter fluid warmer air, relaxation implies a flow of warm
air toward the colder side (+y–direction in Figure17-3) and of cold air to the warmer side
(−y–direction in Figure17-3). In other words, we expect a net heat flux and, because the
atmospheric temperature increases toward the equator, a poleward heat flux. Let us examine
what the preceding linear theory predicts.

The heat flux in they–direction per unit length of thex–direction is defined as

q = ρ0Cp

∫ H

0

vT dz, (17.62)

whereCp is the heat capacity at constant pressure (1005 J/kg◦C for air, 4186 J/kg◦C for
seawater),T is temperature, and an overbar indicates an average over a wavelength in thex–
direction. In the two-layer representation of Figure17-5, the vertical integration is straight-
forward:

q = ρ0Cp

[
v1T1(H1 − a) + v2T2(H2 + a)

]

= ρ0Cp [v2a T2 − v1a T1] . (17.63)

since the temperature is uniform within each layer and the integral over a wavelength yields JMB from⇓
v1 = 0 andv2 = 0 . Usingvi = v′i = ∂ψ′i/∂x anda = f0(ψ

′
2−ψ′1)/g′, we have , exploitingJMB to⇑

JMB from⇓∂ψ2
2/∂x = 0 and∂(ψ2ψ1)/∂x = 0

JMB to⇑

q =
ρ0Cpf0
g′

[
T2

∂ψ′2
∂x

(ψ′2 − ψ′1)− T1
∂ψ′1
∂x

(ψ′2 − ψ′1)
]

=
ρ0Cpf0
g′

[
−T2 ψ′1

∂ψ′2
∂x
− T1 ψ′2

∂ψ′1
∂x

]

=
ρ0Cpf0
g′

(T1 − T2) ψ′1
∂ψ′2
∂x

. (17.64)

Some rather lengthy algebra using the periodic structure (17.37) and the modal decomposition
(17.39) successively provides:
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ψ′1
∂ψ′2
∂x

=
kx
2

[=(φ1) <(φ2)−<(φ1) =(φ2)] e2=(ω)t

= kx [<(A) =(B)−=(A) <(B)] e2=(ω)t.

??e or e everywhere??JMB from⇓
JMB to⇑ The real and imaginary parts of equation (17.40a) are

[
2β0 − k2(U1 + U2 − 2cr)

]
<(A)− k2ci =(A) = k2∆U <(B)

[
2β0 − k2(U1 + U2 − 2cr)

]
=(A) + k2ci <(A) = k2∆U =(B),

wherecr andci stand respectively for the real and imaginary parts ofc. From these relations,
it follows that

<(A) =(B)−=(A) <(B) =
ci

∆U
|A|2. (17.65)

Putting it altogether we finally obtain the expression of theheat flux

q =
ρ0Cpf0kx

g′
ci

∆U
(T1 − T2) |A|2 e2=(ω)t

=
ρ0Cpf0kx

αg

ci
∆U

|A|2 e2=(ω)t, (17.66)

whereα is the thermal expansion coefficient (α = 1/T0 for air). Benoit:? I do not under-JMB from⇓
stand. For uniform temperature there is no heat flux yet with the last formula there is one???
I would drop the last equation?JMB to⇑

It is clear from this expression that the heat flux is nonzero only when the wave is unstable
(ci 6= 0) and is positive, as anticipated by the earlier schematic description. In the atmospheric
case, this means that the heat flux is poleward.

Because the earth is heated in the tropics and cooled at high latitudes, the global heat
budget requires a net poleward heat flux in each hemisphere. The flux is carried by both
atmosphere and ocean. In the atmosphere, the higher temperatures in the tropics and lower
temperatures at high latitudes maintain an overall thermalwind system, which is baroclin-
ically unstable. Vortices emerge on the scale of the baroclinic radius of deformation (R ∼
1000 km), which carry the heat poleward and tend to relax the thermal-wind structure. The
latter, however, is maintained by continuous heating in thetropics and cooling at high lati-
tudes. As a consequence, the cyclones and anticyclones of our weather are the primary agents
of meridional heat transfer in the atmosphere. Without baroclinic instability, they would not
exist and weather forecasting would be a much simpler task, but the tropical regions would be
much hotter and the polar regions, much colder. Also, the dominance of zonal winds would
preclude efficient mixing across latitudes, exacerbating certain problems by severely limit-
ing, for example, the spread of volcanic ash. Moreover, lessatmospheric variability would
imply greatly reduced temperature and moisture contrasts and thus much less precipitation
at midlatitudes. All in all, we must concede that baroclinicinstability in our atmosphere is
highly beneficial.
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In the ocean, the situation is quite different. The pressureof meridional boundaries pre-
vents thermal-wind-type currents from encircling the globe, and ocean circulation consists
of large-scale gyres (Chapter20). The meridional branches of these gyres, especially the
western boundary currents (Gulf Stream in the North Atlantic, Kuroshio in North Pacific),
are the main conveyers of heat toward high latitudes. A Reference ? This greatly reduces the JMB from⇓

JMB to⇑need for poleward heat transfer by eddies. Baroclinic instability is active in regions of strong
currents, such as the Gulf Stream and Kuroshio extensions inthe deep ocean but the eddies
so created transport little net heat across latitudes.

17.6 Bulk criteria

The theory exposed in Section17.4 is admittedly a very simplified version of baroclinic-
instability physics. Since it is not our purpose here to review the many advanced analyses that
have been published over the years since the pioneering studies of Charney, Eady and Phillips
(the interested reader will find a survey in the book of Pedlosky, 1987), we will once again
turn to integral relations, from which some necessary but not sufficent criteria for instability
can be derived. We already used this approach in the study of horizontally sheared currents in
homogeneous fluids (Section10.2) and of vertically sheared currents in nonrotating stratified
fluids (Section14.2). Although a general presentation that would encompass thepreceding
two situations as well as baroclinic instability could be formulated, it is most instructive to
emphasize the conditions necessary for baroclinic instability by basing the analysis on the
quasi-geostrophic equation5. The following derivations are based on the work by Charney
and Stern (1962).

We start again with equations (17.27) but this time retain continuous variation in the
vertical yet uniform stratification frequency. Adding a small perturbation to a basic zonal JMB from⇓

JMB to⇑flow ū(y, z), possessing both horizontal and vertical shear, we obtain

∂q′

∂t
+ J(ψ̄, q′) + J(ψ′, q̄) = 0 (17.67a)

q′ = ∇2ψ′ +
f2
0

N2

∂2ψ′

∂z2
, (17.67b)

whereψ̄(y, z) is the streamfunction associated with the basic zonal flow (ū = −∂ψ̄/∂y), and
the basic potential vorticity is related to it by:

q̄ =
∂2ψ̄

∂y2
+

f2
0

N2

∂2ψ̄

∂z2
+ β0y. (17.68)

Substitution of (17.67b) and (17.68) into (17.67a) yields a single equation for the stream-
function perturbationψ′, which includes non-constant coefficients depending on thebasic
flow structure viaψ̄ andq̄. Because those coefficients depend only ony andz, a waveform
solution inx and time can be sought:ψ′(x, y, z, t) = <[φ(y, z)exp(i kx(x − ct))]. The
amplitude functionφ(y, z) must obey

5Actually, this equation eliminates the Kelvin–Helmholtz instability but not the barotropic instability.
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∂2φ

∂y2
+

f2
0

N2

∂2φ

∂z2
+

(
1

ū− c
∂q̄

∂y
− k2

x

)
φ = 0, (17.69)

whereq̄ is defined in (17.68).
The upper and lower boundaries are once again idealized to rigid horizontal surfaces,

where the vertical velocity must vanish. According to (16.17c), this implies after splitting
between basic flow and perturbation, and linearizing:

(ū− c) ∂φ
∂z
− ∂ū

∂z
φ = 0 at z = 0, H. (17.70)

In the meridional direction, we idealize the domain to a channel of widthL between two
vertical walls, where the meridional velocityv′ = ∂ψ′/∂x vanishes. We thus impose

φ = 0 at y = 0, L. (17.71)

Multiplying (17.69) by the complex conjugateφ∗ of φ, integrating over the meridional
and vertical extents of the domain, performing integrations by parts, and using the preceding
boundary conditions, we obtain

∫ H

0

∫ L

0

[∣∣∣∣
∂φ

∂y

∣∣∣∣
2

+
f2
0

N2

∣∣∣∣
∂φ

∂z

∣∣∣∣
2

+ k2
x|φ|2

]
dy dz

=

∫ H

0

∫ L

0

1

ū− c
∂q̄

∂y
|φ|2 dy dz

+

∫ L

0

[
f2
0

N2

1

ū− c
∂ū

∂z
|φ|2

]H

0

dy. (17.72)

The imaginary part of this equation is

ci

{∫ H

0

∫ L

0

|φ|2
|ū− c|2

∂q̄

∂y
dy dz +

∫ L

0

[
f2
0

N2

|φ|2
|ū− c|2

∂ū

∂z

]H

0

dy

}
= 0. (17.73)

A necessary condition for instability is thatci not be zero (so that the disturbance grows in
time). According to (17.73), this implies that the quantity within braces must vanish,and
therefore conditions for instability are

1. ∂q̄/∂y changes sign in the domain, or

2. the sign of∂q̄/∂y is opposite to that of∂ū/∂z at the top, or

3. the sign of∂q̄/∂y is the same as that of∂ū/∂z at the bottom.

A sufficient condition for stability is that none of the abovethree conditions is met.
Before proceeding, it is worth applying this result to the case of a uniform shear flow̄u =

Uz/H and in the absence of the beta effect (β0 = 0). We thenq̄ = 0 and∂ū/∂z = U/H ,
and (17.73) reduces to
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ci

∫ L

0

f2
0U

N2H

[ |φ(y,H)|2
|U − c|2 − |φ(y, 0)|2

|c|2
]
dy = 0, (17.74)

in which the integral is obviously not sign definite. Stability cannot be guaranteed, and this
flow is unstable (Eady, 1949). Had we instead chosen a weak flowfield with no vertical shear
at the boundaries [e.g., ū(z) = U(3z2/H2− 2z3/H3)] and on the beta plane (∂q̄/∂y ' β0),
we would have concluded (after much lengthier mathematics)that this flow is stable to all
perturbations. This points to the sensitivity of baroclinic instablity to the type of flow field.
Another application of (17.73) is to laterally sheared but vertically uniform flow,ū(y). Then,
the potential-vorticity gradient is∂q̄/∂y = β0 − ∂2ū/∂y2 and (17.73) reduces to

ci

[
H

∫ L

0

|φ|2
|ū− c|2

(
β0 −

∂2ū

∂y2

)
dy

]
= 0. (17.75)

Here, we recover the result of barotropic instability obtained in Section (10.2) [see equation
(10.13)]. We conclude that the instability conditions stated previously include both barotropic
and baroclinic instability criteria. Put another way, barotropic and baroclinic instabilities are
two end members of a more general barotropic-baroclinic mixed instability.

Charney and Stern (1962) explored the case when∂ū/∂z vanishes at both upper and
lower boundaries by assuming a vanishing thermal-wind there (e.g., uniform temperature)
and/or taking the limitsH → ∞, ū(H) → 0. Of (17.73), only the first integral remains,
and the necessary condtion for instability is that∂q̄/∂y vanish somewhere in the domain, a
statement identical in form to — but differing in content from — the barotropic-instability
criterion of Section10.2.

According to Gillet al. (1974), the presence of a bottom slope in the meridional direction
modifies the preceding third of the three conditions as follows:

3. The sign of∂q̄/∂y is the same as that of∂ū/∂z − (N2/f0)db̄/dy at the bottom
z = b̄(y).

Therefore, a bottom slope can act as either a stabilizing or destabilizing influence. It is
generally a stabilizing factor if it creates an ambient potential-vorticity gradient in the same
direction as the beta effect (i.e., shallower fluid toward higher latitudes; see Figure9-6) and
a destabilizing factor otherwise. However, the theory fails to take into account the zonal
topographic gradients that are more common on earth (e.g., the Rocky Mountains in North
America for the atmosphere and the Mid-Atlantic Ridge alongthe North Atlantic for the JMB from⇓

JMB to⇑
JMB from⇓

ocean ).

JMB to⇑
There exist a number of other studies in baroclinic instability. The interested reader is

referred to Gill (1982, Chapter 13) and Pedlosky (1987, Chapter 7).

17.7 Finite-amplitude development

Once instability is triggered, the exponential growth eventually leads to perturbations whose
amplitudes are not small anymore compared to the base current. In this case the linear theory
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ceases to be valid and the fully non-linear equations shouldbe solved. This can be done with
numerical models using the QG approximation with definitions (17.31) and solving equations
(17.30). These models can be based on the two-dimensional QG model of Section16.6.

For the study of the baroclinic instability, we can exploit the fact that the base current is
stationary to update only perturbations in the governing equations

∂q′1
∂t

+ J(ψ1, q1) = 0 (17.76)

∂q′2
∂t

+ J(ψ2, q2) = 0 (17.77)

where the Jacobian is calculated using the total streamfunction (base current and pertur-
bations) and total potential vorticity.
Once new perturbationsq′1 are known at the new time step, we have to invert a Poisson
equation. This is more complicated than in the two-dimensional QG model of Chapter16
because we are now in the presence of two coupled equations. To solve the problem, we
may for example use the iterative Gauss-Seidel approach, working conjointly onψ′1 andψ′2.
Formally, omitting the′, at iteration(k + 1), we could update

ψ
(k+1)
1 = ψ

(k)
1 + α

[
∇2ψ1 − q1 −

(ψ
(k)
1 − ψ(k)

2 )

2R2

]

ψ
(k+1)
2 = ψ

(k)
2 + α

[
∇2ψ2 − q2 +

(ψ
(k+1)
1 − ψ(k)

2 )

2R2

]

where the operator∇2 is calculated using the most recent values ofψ on the grid. The pa-
rameterα contains discretization constants and overrelaxation parameters. This approach
is easily implemented and generalized to more than two layers. For the present two-layer
model, another option is to decouple the equations forq1 andq2 by decomposing them into
the barotropic and baroclinic components. The sum and difference of the preceding equa-
tions indeed yields two uncoupled equations that can be solved independently, possibly with
different pseudo-time steps.

For the numerical simulation of the baroclinic instabilityof Section17.3, we have to pro-
vide adequate boundary conditions. Alongx direction, the length of the domain is dictated by
the wavelength whose stability is investigated and periodicity conditions are readily applied
for both streamfunction and vorticity. For they direction, contrary to the theoretical study, we
will work in channel configuration, with prescribed streamfunction values on the boundaries,
so as to enforce the thermal wind of the base current.

Benoit: I’m not sure here: for linearized perturbations, streamfunctionψ′ must be zero
on walls (because∂ψ/∂x = 0 translates for a wave structure into zero amplitude on the wall.
But for finite amplitude, the value of the streamfunction could be different, translating the
flattening of the interface due to the instability. Do you know how to calculate this elegantly?

Once the perturbations calculated, the total streamfunction and potential vorticity can be
evaluated before the calculation of the Jacobian, seebaroclinic.m . Then the next time
step can be integrated. With this approach we can simulate the evolution of the wave (Figure
17-7).
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Figure 17-7 Evolution of a perturbed thermal windto be replaced

Some description here

Analytical Problems

17-1. A question or two on inertial instability.

17-2. Demonstrate the assertion made at the end of Section17.6that the vertically sheared
flow

ū(z) = U

(
3
z2

H2
− 2

z3

H3

)

in 0 ≤ z ≤ H is baroclinically stable on the beta plane ifU falls below a critical value.
What is that critical value?

17-3. Compare the magnitudes of the potential and kinetic energies of the most unstable
wave described in Section17.4.

17-4. Two-layer stability formulation with general profile of theinterfacea(y)

17-5.

17-6. Prove the assertion that the unstable regime of the wedge instability corresponds to
particles moving along surfaces of slopes between geostrophic lines and isopycnals.
Hint: Analyze the eigenvector(∆x,∆z) of the system (17.14) with ω2 corresponding
to the unstable case.

17-7.

17-8.

17-9.
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Numerical Exercises

17-1. Play withbaroclinic.m .

17-2. Try addingβ0 and analyze the effect. (Take case from unstable to stable...)

17-3. Include possibility of more general interface profiles. Trywith??

17-4. Include diagnostics on energy.

17-5. Program (17.45) and plot, as a function of∆U , the wavenumber of maximum growth
rate and the growth rate itself for different values ofβ0 andR.



Joseph Pedlosky
1938 –

A student of J. G. Charney, Joseph Pedlosky first followed hismentor’s footsteps and de-
veloped a fascination for baroclinic instability. He quickly became an authority in the sub-
ject, having derived new instability criteria and developed a nonlinear theory for growing
baroclinic disturbances in nearly inviscid flow. He also made important contributions to the
general theory of rotating stratified fluids, the oceanic thermocline, the Gulf Stream, and the
general oceanic circulation. In 1979, Pedlosky published the first treatise on Geophysical
Fluid Dynamics, which greatly helped codify the discipline.

Pedlosky’s approach to research is first to find a problem thatis simple enough to be
solved completely, yet physically informative, and then to“worry a great deal about it until I
could describe the results to an amateur.” This incessant quest for clarity has won him great
respect as a scientist and much admiration as a speaker. (J. Pedlosky)
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Chapter 18

Fronts, Jets and Vortices

(October 18, 2006)SUMMARY : When the Rossby number is not small, the dynamics are
nonlinear and non-quasigeostrophic. Such regimes exhibitfronts and jets, the latter being
related to the former via pressure gradients. Strong jets meander and shed vortices, which
also populate this dynamical regime. The chapter ends with abrief discussion of geostrophic
turbulence, the state of many interacting vortices under the influence of Coriolis effects. This JMB from⇓
problem is particularly well suited to introduce spectral methods for nonlinear problems. JMB to⇑

18.1 Front and jets

18.1.1 Origin and scales

A common occurrence in the atmosphere and ocean is the encounter of two fluid masses
that, due to separate origins, have distinct properties. The result is the existence of a local
transitional region that is relatively narrow (compared tothe dimensions of the main fluid
masses) and where properties vary spatially much more rapidly than on either side. Such a
region of intensified gradients of fluid properties is calleda front.

Typically, the adjacent fluid masses have different densities, and the front is accompanied
by a relatively large pressure gradient. Under the action ofCoriolis forces, the process of
geostrophic adjustment is at work, leading to a relatively intense flow aligned with the front.
The much weaker density gradients in the main part of each fluid mass confine the motion
to the frontal region, and the flow exhibits the form of a jet. The most notable jet in the
atmosphere is the so-called polar-front jet stream found around a latitude of 45◦N and a
few kilometers above sea level (pressure around 300 millibars), at the boundary between
subtropical and polar air masses (Figure18-1). From the thermal-wind relation JMB from⇓

f
∂u

∂z
=

g

ρ0

∂ρ

∂y
(18.1)

we can readily understand the intense eastward flow at high altitude assuming velocity is
small at sea level. Because of the general north-south gradient of temperature between the
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two air masses, the right-hand side is strong and positive and the wind accordingly intensifies
with height and is directed eastward. In the ocean, a surface-to-bottom front is often found inJMB to⇑
the vicinity of the shelf break owing to different water properties above the continental shelf
and in the deep ocean; such a front is invariably accompaniedby currents along the shelf
(Figure18-2).

According to Section15.1, the simultaneous presence of a horizontal gradient of density
and a vertical gradient of horizontal velocity can yield a thermal-wind balance, which may
persist for quite some time. Our earlier discussions of geostrophic adjustment (Section15.2)
demonstrated how such a balance can be achieved following the penetration of one fluid
mass into another of different density and indicated that the width of the transitional region
is measured by the internal radius of deformation, expressed as

R =
NH

f
∼
√
g′H

f
(18.2)

in the respective cases of continuous stratification and layered configuration. Heref is the
Coriolis parameter,H is an appropriate height scale assuming large excursions ofisopycnalsJMB from⇓
in frontal systems ,N is the stratification frequency, andg′ is a suitable reduced gravity. IfJMB to⇑
the density difference between the fluid masses is∆ρ, the accompanying pressure difference
is ∆P ∼ ∆ρ gH = ρ0g

′H , and, via geostrophy, the velocity scale is

U =
∆P

ρ0fR
∼ g′H

fR
=
√
g′H . (18.3)

and the internal radius of deformation can also be expressedasR = U/f , in which weJMB from⇓
recognize the inertial radius. Here both coincide because we assumed a frontal structure with
∆H = H .JMB to⇑
The Froude and Rossby numbers are, respectively

Fr =
U

NH
∼
√
g′H

fR
∼ 1, (18.4)

Ro =
U

fR
∼
√
g′H

fR
∼ 1, (18.5)

and thus both are on the order of unity, implying that the effects of stratification and rotation
are equally important within the jet.

The jet has a velocity maximum, coinciding more or less with the location of the maxi-
mum density gradient, on both sides of which the velocity decays. The corresponding shears
form a distribution of relative vorticity that is clockwiseon the right and counterclockwise
on the left (respectively, anticyclonic and cyclonic in theNorthern Hemisphere). This shear
vorticity scales asZ = U/R ∼ f and is thus comparable to the planetary vorticity. so thatJMB from⇓
the total vorticity may change sign compared to the sign off . Hence use of conservation of
potential vorticity requires some care.JMB to⇑
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Figure 18-1 Monthly winds (in meters per second) over the Northern Hemisphere for January 1991 at
the 300-mb pressure level. Note the jet stream around the 45◦N parallel, except over the eastern North
Pacific and eastern North Atlantic, where blockings are present. (From National Weather Service,
NOAA, Department of Commerce, Washington, D.C.)

Figure 18-2 Monthly mean along-
shelf currents for April 1979 across
the shelf break on the southern flank
of Georges Bank (41◦N, 67◦W).
The units are centimeters per sec-
ond, and positive values indicate
flow pointing into the page. (From
Beardsleyet al., 1983, as adapted
by Gawarkiewicz and Chapman,
1992.)
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18.1.2 Meanders

Observations reveal that all jets meander, unless they are strongly constrained by the local
geography. As a fluid parcel flows in a meander, its path curves, subjecting it to a transverse
centrifugal force on the order ofKU2, whereK is the local curvature of the trajectory (the
inverse of the radius of curvature). This force can be met by areduction or increase of the
Coriolis force if the parcel’s velocity adjusts by∆U , such thatf∆U ∼ KU2, or

∆U

U
∼ KU

f
∼ KR. (18.6)

JMB from⇓
Note how the termKR measures the deformation radius compared to the meandering

scale, the inverse of its curvature.JMB to⇑
In the Northern Hemisphere (f > 0), the Coriolis force acts to the right of the fluid parcel,
and thus a rightward turn causing a centrifugal force to the left necessitates a greater Coriolis
force and an acceleration (∆U > 0). Similarly, a leftward turn is accompanied by a jet
deceleration (∆U < 0). The reverse conclusions hold for the Southern Hemisphere, but in
each case, the stronger the curvature, the larger the changein velocity, according to (18.6).JMB from⇓
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U + ∆U

fU + f∆U

KU2

fU − f∆U

U −∆U

Figure 18-3 For the same pressure gradient, a rightward turn requires a larger velocity enabling Coriolis
force to balance pressure and centrifugal force. For a left turn, the inverse applies.

JMB to⇑
The same result can be obtained by considering the changes inrelative vorticity. Neglect-

ing for the moment the beta effect and vertical stretching orsqueezing, the relative vorticityJMB from⇓
JMB to⇑
JMB from⇓
JMB to⇑

is conserved. It can be expressed locally asBenoit: Do you think this change of coordinates

JMB from⇓

is familiar to students? Possible as exercise?

JMB to⇑

ζ =
∂v

∂x
− ∂u

∂y
=

∂V

∂n
− KV, (18.7)

whereV = (u2 + v2)1/2 is the flow speed (scaled byU ), n is the cross-jet coordinate
(measured positively to the right of the local velocity and scaled byR), andK is the jet
curvature (positive clockwise). The first term,∂V/∂n, is the contribution of the shear and the
second,−KV , represents a vorticity due to the turning of the flow path. Weshall call these
contributions shear vorticity and orbital vorticity, respectively. In a rightward turn (K > 0),
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the fluid parcel acquires clockwise orbital vorticity, on the order ofKU , which must be at the
expense of shear vorticity,∆U/R. EquatingKU to ∆U/R again leads to (18.6). JMB from⇓

Shear vorticity

Orbital
vorticity

Figure 18-4 Difference between shear
and orbital vorticity of a jet.

JMB to⇑
The change in shear vorticity implies a shift of the parcel with respect to the jet axis. To

show this, let us take for example, the fluid parcel that possesses the maximum velocity (i.e.,
it is on the jet axis) upstream of the meander; there, it has noshear and no orbital vorticity.
If this parcel turns to the right in the meander, it acquires clockwise orbital vorticity, which
must be compensated by a counterclockwise shear vorticity of the same magnitude. Thus, JMB from⇓

JMB to⇑the parcel must now be on the left flank of the jet. The parcel occupying the jet axis (having
maximum velocity and thus no shear vorticity) is one that wason the right flank of the jet
upstream and has exchanged its entire clockwise shear vorticity for an equal clockwise orbital
vorticity. From this, it is straightforward to conclude that all parcels are displaced leftward
with respect to the jet axis in a rightward meander, and vice versa. (This rule is easy to
remember: Fluid parcels shift across the jet in the direction of the centrifugal force.)

Figure 18-5 Separation and capture of fluid parcels along the sides of a meandering jet. This process
occurs because the vorticity adjustment required by the meandering forces marginal parcels to reverse
their velocity.

A consequence of these vorticity adjustments created by meandering is that fluid parcels
near the edges may separate from the jet or be captured by it. Indeed, a parcel relatively
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distant from the jet axis may have such low vorticity that it cannot trade shear vorticity for
orbital vorticity (Figure18-5).

North

x

U

Crest

TroughK < 0

K > 0

Y > 0

Y < 0

Figure 18-6 Meandering of an east-
ward jet on the beta plane (Northern
Hemisphere). If the meridional dis-
placementY , curvatureK and jet speed
U are related byβ0Y ' KU , changes
in planetary and orbital vorticity are
comparable and opposite in sign, leav-
ing the velocity profile of the jet (shear
vorticity) relatively unperturbed.

The preceding considerations ignored the beta effect, by which the Coriolis force is able to
vary. Let us limit ourselves here to the case of an eastward (i.e., westerly) jet in the Northern
Hemisphere, which is the case of the atmospheric jet stream and the Gulf Stream in the North
Atlantic beyond Cape Hatteras. In a northern meander excursion, called acrest (because
it appears higher on a map), the curvature is rightward or anticyclonic (Figure18-6). The
meridional displacementY , the meander’s amplitude, causes an augmentation to the Coriolis
force on the order ofβ0Y U , acting to the right of the parcel. On the other hand, the centrifugal
force on the order ofKU2 acts to its left. Three cases are possible:β0Y is much less than, on
the order of, or much greater thanKU . Benoit I added itemize and changed a few phrasingJMB from⇓

• If β0Y is much less thanKU , we are in the presence of weak meander amplitudes
(small Y ) and/or short meander wavelengths (largeK). In this case the beta affect
mitigates the curvature effect, but the conclusions derived before remain qualitatively
unchanged.

• If β0Y is on the order ofKU , then the beta and curvature effects can balance each
other, leaving the structure of the jet barely affected. Considering sinusoidal meanders
Y (x) = A sin kxx, whereA is the meander amplitude,λ = 2π/kx is its wavelength,
andx is the eastward coordinate, we deduce that at the meander’s peak (sin kxx =
+1), the meridional displacementY isA and the curvatureK = − [d2Y/dx2]/[1 +
(dY/dx)2]3/2 is k2

xA. The balanceβ0Y ∼ KU then yieldsβ0 ∼ k2
xU , or

λ =
2π

kx
= 2π

√
U

β0
. (18.8)

From this emerges a particular length scale,

Lβ =

√
U

β0
, (18.9)

which we shall call thecritical meander scale. Cressman (1948) noted its importance
in relation to the development of long waves on the atmospheric jet stream, whereas
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Moore (1963) obtained a solution to an ocean-circulation model that exhibits meanders
at that scale. Later, Rhines (1975) demonstrated how this same scale plays a pivotal
role in the evolution of geostrophic turbulence on the beta plane.

• In very large meanders, where meridional displacements arelarge and curvatures are
small (β0Y � KU ), the beta effect dwarfs the curvature effect, and the trade-off
is almost exclusively between changes in planetary vorticity and shear vorticity. In
a meander crest (greaterf ), the shear vorticity must become less cyclonic or more
anticyclonic.

jet axis

North
Weakend cyclonic vorticity

Increased cyclonic vorticity

Figure 18-7 Benoit: is this picture correct?: Changes in jet profile induced by south-north displace-
ments.

JMB to⇑
Meanders on a jet do not remain stationary but propagate, usually downstream and rarely

upstream. The direction of propagation can be inferred fromvorticity considerations, as out-
lined previously. In the absence of the beta effect (orβ0Y � KU ), leftward and rightward
turns create, respectively, clockwise and counterclockwise shear vorticity. Picturing these
vorticity anomalies as vortices at the meanders’ tips (Figure18-8a), we infer that the entrain-
ment velocities at the inflection points between meanders all have a downstream component
and that the meander pattern translates downstream. On a westerly jet, this direction is east-
ward. At the opposite extreme of a large beta effect and negligible curvature (β0Y � KU ),
the vorticity anomalies are cyclonic in troughs and anticyclonic in crests (Figure18-8b). The
entrainment velocities at the inflection points all point westward. On a westerly jet, this is up-
stream. This mechanism is the same as that invoked in Sectionold6-6 to explain the westward
phase propagation of planetary waves. (Compare Figure18-8b with Figure9-7)

We note, therefore, that curvature and beta effects induce opposite meander-propagation
tendencies on an eastward jet. Comparingβ0Y with KU — or, equivalently, the wavelength
to the critical meander scale — we conclude that if the formeris larger than the latter, the
meander propagates upstream (westward), and in the opposite direction otherwise. The me-
ander is stationary if the tendencies cancel each other, which occurs if its wavelength is near
the critical meander scale. Since this scale is rather long (220 km in the ocean and 1600 km
in the atmosphere, withβ0 = 2 × 10−11 m−1s−1 andU ranging from 1 m/s to 50 m/s),
observed meanders are usually of the curvature-type and propagate eastward.



516 CHAPTER 18. FRONTS, JETS AND VORTICES

Figure 18-8 Schematic descriptions explaining why (a) curvature and (b) beta effects on an eastward
jet induce meander-propagation tendencies that are, respectively, downstream and upstream.

18.1.3 Multiple equilibria

Because the critical meander scale depends on the jet speedU and also because the relation
β0Y ∼ KU depends on the shape of the meander (Y andK are not simply related if the
meander is other than sinusoidal), the critical size for meander stationarity depends on the
jet speed and the meander shape. This conclusion is the basisof one explanation for the
bimodality of the Kuroshio (Figure18-9). The geography of coastal Japan and the regional
bottom topography force this intense current of the westernNorth Pacific to pass through
two channels, south of Yakushima Island (30◦N, 134◦E) and between Miyake and Hachijo
Islands near the Izu Ridge (34◦N, 140◦E). Benoit: Are you sure about the coordinates? OnJMB from⇓
the figure this does not look rigth. Maybe indicate Yakushima, Miyake and Hachijo Island
on the map?JMB to⇑

Between these two points, the current is known to assume one of two preferential states: a
relatively straight path or a curved path with a substantialsouthward excursion. Each pattern
persists for several years, whereas the transition from oneto the other is relatively brief. The
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theory (Robinson and Taft, 1972; Masuda, 1982) explains this bimodal character by arguing
that a stationary meander with a half-wavelength meeting the geographical specification may
or may not exist, depending on the jet velocity. Calculations show that the meander-state
occurs if the jet velocity does not exceed a certain threshold value. At any velocity below this
value, there exists a stationary-meander shape that meets the geographical constraints. At
larger velocities, no stationary meander is possible, and the jet must assume a straight path.

The atmospheric analogue of this oceanic situation is knownasblocking, a word now
used in a sense different from that used in Chapter11. Here, blocking is a midlatitude phe-
nomenon characterized by the unusual persistence of a nearly stationary meander on an east-
ward jet over topographic irregularities (Figure18-1). The theory (Charney and DeVore,
1979; Charney and Flierl, 1981) again invokes multiplicityof equilibrium solutions, includ-
ing the normal state (no meander) and the anomalous blockingconfiguration (with large
meander).

18.1.4 Stretching and topographic effects

Up to here, our considerations of vorticity adjustments in ajet meander included exchanges
among planetary, shear, and orbital vorticity, for an unchanged total. This is correct only for
barotropic jets over a flat bottom, whereas in a baroclinic jet, in which vertical stretching can JMB from⇓

JMB to⇑occur, potential vorticity rather than vorticity is the conserved quantity.
A complete theory involving all relevant dynamics such as momentum and mass balances

is beyond our scope, and we will derive here only the vertical-stretching tendency experi-
enced by a fluid parcel in a meander. Assuming that the trade-off is solely between orbital
vorticity due to the meander’s curvature and vertical stretching, we reason that a meander
crest (with anticyclonic orbital vorticity) lowers the total vorticity and thus calls for a propor-
tional decrease in the column’s vertical thickness. If, furthermore, the layer thickness varies
like pressure (as for the one-layer reduced-gravity systemwhere the pressure is given by
p = g′h), vertical squeezing creates a lower pressure and, by geostrophy, a shift toward the JMB from⇓
cyclonic side of the jet (left in the Northern Hemisphere). In meander troughs, fluid columns
are vertically stretched and shifted toward the anticyclonic side of the jet.Benoit: Not very
clear to me. Maybe a little more text: For a eastward flow,h is lower in the northern part of
the jet. If by squeezing in a crest,h decreases, let us say in the middle of the jet, the layer
gradient and front is displaced to the south and hence the parcel itself displaced to the north-
ern or anticyclonic side compared to the new jet center. In anoceanic surface jet such as the JMB to⇑
Gulf Stream, such a modification causes upwelling upon approaching crests and downwelling
upon approaching troughs. Observations (Bower and Rossby,1989) confirm such behavior,
which can also be observed in numerical simulations (Figure18-10). JMB from⇓

JMB to⇑Just as meanders generate vertical stretching or squeezing, vertical stretching or squeez-
ing induced by topography can cause meanders. To illustratethis, let us consider the case of a
zonal jet (barotropic or baroclinic) on the beta plane that encounters a topographic step (Fig-
ure18-11). If the jet is flowing eastward (the usual situation) and enters a deeper region, the
expansion in layer thickness translates first into a cyclonic deflection, away from the equator.
As the Coriolis parameter increases away from the equator, this cyclonic vorticity is progres-
sively exchanged downstream by a greater planetary vorticity, and the jet curvature weakens.
Further poleward progression reverses the sense of orbitalvorticity, and the jet oscillates back
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Figure 18-9 Observed Kuroshio paths: (a) straight jet and (b) stationary meander. (From Robinson and
Taft, 1972)
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Figure 18-10 Frontal meander on a sea-surface temperature field (left panel) and associated upwelling
or downwelling cells (right panel). Note the maximum vertical velocities centered between the mean-
der’s crest and troughs (from Rixenet al. 2001).

Figure 18-11 Eastward and westward jets passing over a topographic step:(a) the eastward jet develops
an oscillatory behavior, whereas (b) the westward jet begins to feel the influence of the step upstream
and executes a single meander. Both experience a net meridional shiftY = f0∆H/β0h, the sign of
which depends on whether the step is up or down.
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and forth about a new latitude (Figure18-11a). The average northward shift,Y , of the jet axis
corresponds to an exchange between vertical stretching andincreased planetary vorticity:

β0Y

f0
∼ ∆H

h
, (18.10)

where∆H is the height of the topographic step andh is the upstream thickness of the jet.
Because the first meander is rooted at the location of the step, the meander must be stationary,
and therefore the wavelength must be comparable to the critical meander scale.JMB from⇓

JMB to⇑
JMB from⇓
JMB to⇑

The same argument can be invoked for an eastward jet enteringa shallower region to
conclude that the flow exhibits a stationary oscillation about a net equatorward shift, given
by (18.10) where∆H is now negative. However, the argument fails for westward jets. Upon
entering a deeper region, a fluid parcel acquires cyclonic vorticity and turns equatorward, its
planetary vorticity decreases, further increasing the orbital vorticity. Clearly, if this were the
case, the jet would be looping onto itself. Instead, the jet begins to be distorted upstream of
the topographic step (Figure18-11b), acquiring a cyclonic curvature in which the increasing
orbital vorticity is compensated by a decrease in planetaryvorticity. Benoit: Is it not theJMB from⇓
inverse?? turning northward creates anticyclonic orbitalvorticity which is compensated by
increased planetary vorticity??? The jet thus reaches the step at an oblique angle. The na-JMB to⇑
ture of the vorticity adjustments past the step progressively restores the jet’s original zonal
orientation. A remaining meridional shift remains, expressing a balance between changes in
planetary vorticity and vertical thickness. The reader canverify that this shift is again given
by (18.10).

18.1.5 Instabilities

In addition to their propagation, meanders on a jet also distort and frequently grow, close
onto themselves, and form eddies that separate from the restof the jet. Such a finite change
to the jet structure results from an instability, the natureof which is barotropic (Chapter10),
baroclinic (Chapter17), or mixed. Barotropic instability proceeds with the extraction of ki-
netic energy from the horizontally sheared flow to feed the growing meander. The greater
the shear in the jet, the more likely is this type of instability. Baroclinic instability, on the
other hand, is associated with a conversion of available potential energy from the horizontal
density distribution in balance with the thermal wind. Although the example treated in Sec-
tion 10.4suggests that critical wavelengths associated with barotropic instability scale as the
jet width, consideration of baroclinic instability pointsto the critical role of the internal ra-
dius of deformation [see equation (17.51)]. If the two length scales are comparable, as is the
case in a baroclinic jet with finite Rossby number, both processes may be equally active, and
the instability is most likely of the mixed type (Orlanski, 1968; Griffithset al., 1982; Kill-
worthet al., 1984). The beta effect further complicates the situation,occasionally facilitating
the eddy detachment process: The large meridional displacement of the growing meander
induces a westward-propagation tendency, whereas the high-curvature regions where the me-
ander attaches to the rest of the jet induce a downstream propagation tendency. The result is
a complex situation in which the outcome sensitively dependent on the relative magnitudes
of the different effects (Flierlet al., 1987; Robinsonet al., 1988). The meandering and eddy
shedding of the Gulf Stream manifest this complexity.
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The development of synoptic-scale weather disturbances, aprocess now calledcyclogen-
esis, is thought to be initiated mostly by baroclinic instability, whereas accompanying finer-
scale processes, such as cold and warm fronts, are explainedby non-geostrophic dynamics.
The interested reader is referred to the book by Holton (1992).

18.2 Vortices

A vortex, or eddy, is defined as a closed circulation that is relatively persistent. By persistency
, we mean that the turnaround time of a fluid parcel embedded inthe structure is shorter JMB from⇓

JMB to⇑than the time during which the structure remains identifiable. A cycloneis a vortex where
the rotary motion is in the same sense as the earth’s rotation, — counterclockwise in the
Northern Hemisphere and clockwise in the Southern Hemisphere. An anticyclonerotates
the other way, clockwise in the Northern Hemisphere and counterclockwise in the Southern
Hemisphere. The prototypical vortex is a steady circular motion on thef -plane.

Using cylindrical coordinates, we can express the balance of forces in the radial direction
r (measured outward) as follows:

− v2

r
− fv = − 1

ρ0

∂p

∂r
, (18.11)

wherev is the orbital velocity (positive counterclockwise) andp is the pressure (or Mont-
gomery potential). Bothv andpmay be dependent upon the vertical coordinate, either height
z or densityρ. This equation, called thegradient-wind balance, represents an equilibrium
between three forces, the centrifugal force (first term), the Coriolis force (second term), and
the pressure force (third term). Although the centrifugal force is always directed outward,
the Coriolis and pressure forces can be directed either inward or outward, depending on the
direction of the orbital flow and on the center pressure.

If we introduce the following scales,U for the orbital velocity,L for r (measuring the
vortex radius), and∆P for the pressure difference between the ambient value and that at the
vortex center, we note that the terms composing (18.11) scale, respectively, as

U2

L
, fU ,

∆P

ρ0L
. (18.12)

At low Rossby numbers (Ro = U/fL � 1), the first term is negligible relatively to the
second (i.e., the centrifugal force is small compared to the Coriolis force), the balance is
nearly geostrophic, providing

fU =
∆P

ρ0L
, (18.13)

and thusU = ∆P/(ρ0fL). Since the pressure difference is most likely the result of a
density anomaly∆ρ, the hydrostatic balance provides∆P = ∆ρ gH = ρ0g

′H , whereH
is the appropriate height scale (thickness of vortex) andg′ = g∆ρ/ρ0 is the reduced gravity.
This leads toU = g′H/fL and
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Ro =
U

fL
=

g′H

f2L2
=

(
R

L

)2

, (18.14)

in which we recognize the internal deformation radiusR = (g′H)1/2/f . Thus, a small
Rossby number occurs as a consequence of a horizontal scale large compared to the defor-
mation radius. This is typically the case in the largest weather cyclones and anticyclones at
midlatitudes and in large-scale oceanic gyres (Figure18-12-top). Because the Rossby num-JMB from⇓
ber is identical to the Burger number, its smallness also shows that vorticity of large gyres
are mostly constrained by vertical stretching rather then relative vorticity (see...). Also their
energy is dominated by potential energy (see...).JMB to⇑

JMB from⇓
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Figure 18-12 Balances between pres-
sure gradient−1/ρ0 ∂p/∂r, Coriolis
forcefv, and centrifugal−v2/r forces
in Northern Hemispheric circular vor-
tices. The lettersL andH indicate low
and high pressures, respectively.

BenoitI proposed the alternative plot in order to avoid two letter symbols reserved nor-
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mally for constants as Rossby number etc. Also uses different scale for velocity in cyclone
and anticyclone... JMB to⇑

At scales on the order of the deformation radius,L can be taken equal toR, the Rossby
number is on the order of unity, the velocity scale isU = (g′H)1/2, and the centrifugal
force is comparable to the Coriolis force. Around a low pressure, the outward centrifugal
force partially balances the inward pressure force, leaving the Coriolis force to meet only the
difference. By contrast, the Coriolis force acting on the flow around a high pressure must
balance both the outward pressure force and the outward centrifugal force (Figure18-12-
middle). Consequently, the orbital velocity in an anticyclone is greater than that in a cyclone
of identical size and equivalent pressure anomaly. Tropical hurricanes (Anthes, 1982; Em-
manuel, 1991) and the so-called rings shed by the Gulf Stream(Flierl, 1987; Olson, 1991)
fall in this category.Benoit: Hurricanes are synonyme with tropical cyclones and typhoons. JMB from⇓
The last phrase, should be corrected to refer to cyclones ??? JMB to⇑

At progressively shorter radii, the centrifugal force becomes increasingly important, and
the difference between cyclones and anticyclones amplifies. ForL � R, the Coriolis force
becomes negligible. The cyclone-anticyclone nomenclature loses its meaning, and the rel-
evant characteristic is the sign of the pressure anomaly. The inward force around a low
pressure is balanced by the outward centrifugal force regardless of the direction of rotation
(Figure18-12-bottom). Such a state is said to be incyclostrophic balance. Examples are
tornadoes and bathtub vortices. A vortex with high-pressure center cannot exist, because
pressure and centrifugal forces are both directed outward.

It is interesting to determine the minimum size for which an anticyclone of given pressure
anomaly can exist. Returning to the gradient-wind balance where we introducev = −fr/2+
v′, we write

f2r

4
+

1

ρ0

∂p

∂r
=

1

r
v′2 ≥ 0. (18.15)

Integrating over the radiusa of the vortex and defining the pressure anomaly∆p = p(r =
0)− p(r = a), we obtain

a2 ≥ 8∆p

ρ0f2
. (18.16)

For a low-pressure center (∆p < 0), this inequality yields no constraint, whereas for a high-
pressure center (∆p > 0) it specifies a minimum vortex radius. Below this minimum, high-
pressure centers simply do not exist as isolated steady structures.

Let us now examine how an existing vortex can move within the fluid that surrounds it.
To do this, we consider a vortex contained within a single layer of fluid, be it the lowest, the
uppermost, or any intermediate layer in the fluid. If the local thickness of this layer ish and
the pressure (actually, Montgomery potential) isp, we write, in density coordinates,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = − 1

ρ0

∂p

∂x
, (18.17a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = − 1

ρ0

∂p

∂y
, (18.17b)

∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0. (18.17c)
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We further restrict ourselves to thef -plane. At large distances from the vortex center, in what
can be considered the ambient fluid, we assume that there exists a steady uniform flow (̄u, v̄)
and a uniform thickness gradient (∂h̄/∂x, ∂h̄/∂y). According to (18.17a) and (18.17b), this
flow must be geostrophic, and according to (18.17c), it must be aligned with the direction of
constant layer thickness:

− f v̄ = − 1

ρ0

∂p̄

∂x
, (18.18a)

+ fū = − 1

ρ0

∂p̄

∂y
, (18.18b)

ū
∂h̄

∂x
+ v̄

∂h̄

∂y
= 0. (18.18c)

A thickness gradient is retained because, in some instances, a thermal wind in layers above or
below may be accompanied by such a thickness variation. Also, if the vortex lies in the lowest
layer, the thickness gradient may represent a bottom slope.The assumption of uniformity of
ū, v̄, and of the derivatives of̄p and h̄ is justified if the ambient-flow properties vary over
horizontal distances much larger than the vortex diameter.Defining the velocity components,
pressure, and layer-thickness variations proper to the vortex asu′ = u − ū, v′ = v − v̄,
p′ = p− p̄, andh′ = h− h̄, we can transform equations (18.17) as follows:Benoit I put theJMB from⇓
ū etc inside derivative to prepare integrationsJMB to⇑

∂u′

∂t
+ (ū+ u′)

∂u′

∂x
+ (v̄ + v′)

∂u′

∂y
− fv′ = − 1

ρ0

∂p′

∂x
(18.19a)

∂v′

∂t
+ (ū+ u′)

∂v′

∂x
+ (v̄ + v′)

∂v′

∂y
+ fu′ = − 1

ρ0

∂p′

∂y
(18.19b)

∂h′

∂t
+

∂(h′ū)

∂x
+

∂(h′v̄)

∂y
+

∂

∂x
[(h̄+ h′)u′] +

∂

∂y
[(h̄+ h′)v′] = 0.(18.19c)

We then define the anomalous layer volume due to the vortex:

V =

∫∫
h′ dx dy, (18.20)

where the integration covers the entire horizontal extent of the layer. The perturbationh′

induced by the vortex is assumed to be sufficiently localizedto make the preceding integral
finite. The use of continuity equation (18.19c) followed by integration by parts over severalJMB from⇓
terms shows that the temporal derivative of this volume,JMB to⇑

dV

dt
=

∫∫
∂h′

∂t
dx dy (18.21)

vanishes, as we expect. Defining the coordinates of the vortex position by the volume-
weighted averages

X =
1

V

∫∫
xh′ dx dy , Y =

1

V

∫∫
yh′ dx dy, (18.22)
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we can track the vortex displacements by calculating their temporal derivatives. ForX , we
obtain successively

dX

dt
=

1

V

∫∫
x
∂h′

∂t
dx dy

=
−1

V

∫∫ {
xū
∂h′

∂x
+ xv̄

∂h′

∂y
+ x

∂

∂x
[(h̄ + h′)u′] + x

∂

∂y
[(h̄ + h′)v′]

}
dx dy

=
+1

V

∫∫
[ūh′ + (h̄ + h′) u′] dx dy

= ū +
1

V

∫∫
hu′ dx dy. (18.23)

Similarly, we obtain for the other coordinate

dY

dt
= v̄ +

1

V

∫∫
hv′ dx dy. (18.24)

The preceding integrals cannot be evaluated without knowing the precise structure of the
vortex. However, a second time derivative will bring forth the acceleration (∂u′/∂t, ∂v′/∂t),
which is provided by the equations of motion, (18.19a) and (??). For theX-coordinate, we
obtain

d2X

dt2
=

1

V

∫∫ [
∂h′

∂t
u′ + (h̄ + h′)

∂u′

∂t

]
dx dy

=
−1

V

∫∫ [
∂

∂x
(huu′) +

∂

∂y
(hvu′)

]
dx dy

+
f

V

∫∫
hv′ dx dy − 1

ρ0V

∫∫
h
∂p′

∂x
dx dy. (18.25)

The pressure anomalyp′ associated with the vortex motions can be related by hydrostatic
balance to the layer-thickness anomaly:Benoit:Following equation not evident. Maybe as an JMB from⇓
exercise in chapter of layered models? Not so trivial if the eddy is an intermediate layer with
fluid above and below? JMB to⇑

p′ = ρ0g
′h′, (18.26)

with a suitable definition of the reduced gravityg′. Note that if the vortex is contained in the
lowest layer above an uneven bottom, the bottom elevation does not enter (18.26) but instead
enters the corresponding hydrostatic balance for the mean-flow properties.

Noting that the first integral in (18.25) vanishes becauseu′ andv′ go to zero at large
distances from the vortex, that the second integral can be eliminated by use of (18.24), and
that the third integral, integrated by parts, can be simplified with use of (18.26), we obtain JMB from⇓

JMB to⇑
d2X

dt2
= f

dY

dt
− f v̄ + g′

∂h̄

∂x
. (18.27)

A similar treatment of the second derivative ofY yields
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d2Y

dt2
= − f

dX

dt
+ fū + g′

∂h̄

∂y
. (18.28)

Because the gradient ofh̄ is assumed uniform andf , ū, andv̄ are constants, the preceding
two equations can be solved for the velocity of the vortex:

dX

dt
=

(
ū +

g′

f

∂h̄

∂y

)
(1 − cos ft) −

(
v̄ − g′

f

∂h̄

∂x

)
sin ft (18.29a)

dY

dt
=

(
v̄ − g′

f

∂h̄

∂x

)
(1 − cos ft) +

(
ū +

g′

f

∂h̄

∂y

)
sin ft, (18.29b)

where the constants of integration have been determined under the assumption that the vor-
tex is not translating initially. In the preceding solution, we recognize inertial oscillations
superimposed on a mean drift. This mean drift has two components:

cx = ū +
g′

f

∂h̄

∂y
, cy = v̄ − g′

f

∂h̄

∂x
. (18.30)

The first contribution (̄u, v̄) indicates that the vortex is entrained by the ambient motions of
its containing layer. Together, this entrainment and the inertial oscillations do not distinguish
the vortex from a single fluid parcel. The cause of the second contribution, proportional to
the gradient of̄h, is less obvious and is what really distinguishes a vortex from a fluid parcel.

The existence of a thickness gradient in the vicinity of the vortex implies a nonuniform
distribution of potential vorticity, which the swirling motion of the vortex redistributes; fluid
parcels on the edge of the vortex are thus stretched and squeezed and develop vorticity anoma-
lies that, in turn, act to displace the main part of the vortex. As the example in Figure18-13il-
lustrates, a northward decrease of layer thickness in the Northern Hemisphere causes squeez-
ing on parcels moved northward and stretching on those movedsouthward. (The sense of
rotation in the vortex is irrelevant here.) This causes the fluid on the northern flank of the
vortex to acquire anticyclonic vorticity and that on the southern flank to acquire cyclonic vor-
ticity. Both vorticity anomalies induce a westward displacement of the bulk of the vortex.
Equations (18.30) confirm that those conditions (∂h̄/∂x = 0, ∂h̄/∂y < 0, f > 0) imply a
negativecx and a zerocy. The general rule is that the vortex translates with the thin-layer
side on its right in the Northern Hemisphere and on its left inthe Southern Hemisphere.

Gradients in the vortex-containing layer can be caused by one of two reasons. If other
layers, above or below, flow at speeds different from that of the vortex layer, there exists a
thermal wind, which by virtue of the Margules relation [see (15.5)] requires sloping density
surfaces and, therefore, varying layer thicknesses. It is left to the reader to show that in
such a case the vorticity-induction mechanism described inthe preceding paragraph amounts
to a drift of the vortex in the same direction as the thermal wind. The other reason for
layer-thickness variations is bottom topography. If the vortex is contained in the lower layer,
bounded below by a sloping bottom, fluid parcels surroundingthe vortex will be moved up
or down this slope and undergo vorticity adjustments. The result (see Figure18-13again) is
a drift of the vortex with the shallower region to its right inthe Northern Hemisphere and to
its left in the Southern Hemisphere. Nof (1983) discusses this effect for cold eddy lenses on
the ocean bottom.
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Note that if the vortex starts from a resting position, its migration is not immediately
transverse to the thickness gradient but is up-gradient, assolution (18.29) indicates for small
values of time. In the case of a sloping bottom, this implies that the vortex first goes downhill,
gradually acquiring a velocity in that direction, and underthe action of the Coriolis force has
its trajectory subsequently deflected in the direction transverse to the topographic gradient.
(Compare this situation to that of Problem 2-9.)
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Figure 18-13 Lateral drift of a vortex embedded in layer of varying thickness. The advection of
surrounding fluid induces cyclonic and anticyclonic vorticities, which combine to induce a drift of
the vortex structure along lines of constant thickness. In the Northern Hemisphere (as drawn in the
figure), the vortex moves with the thin-layer side on its right; the direction is opposite in the Southern
Hemisphere.

Because of the analogy between a topographic slope and the beta effect (see Section9.6),
the preceding conclusions can be extrapolated to the motionof vortices on the beta-plane.
Regardless of their polarity (cyclonic or anticyclonic), vortices have a self-induced westward
tendency. Repeating the argument made with Figure18-13, with the replacement of the thick-
to-thin direction by the northward direction, we conclude that surrounding parcels entrained
from the southern tip to the northern end acquire planetary vorticity and thus develop anti-
cyclonic relative vorticity. Similarly, the surrounding parcels entrained from north to south
develop cyclonic relative vorticity. The combined effect at the latitude of the vortex center
is a westward drift. Theories (Cushman-Roisinet al., 1990, and references therein) show
that the induced speed is on the order ofβ0R

2, whereR is the internal radius of deformation,
being slightly larger for anticyclones than cyclones. However, in both atmosphere and oceans
this speed is usually too weak to be noticeable compared to the entrainment by the ambient
flow. JMB from⇓

Rather than to interprete the westward drift in terms of potential vorticity, we can also
explain the drift by a a balance of forces. On the northern side of an anticyclonic eddy,
geostrophic velocity can be smaller than on the southern side for an identical Coriolis force
balancing the pressure gradient (Figure18-14). The velocity difference yields a divergence
/ convergence on the western and eastern flanks of the circular trajectories, which in turn
deflects the density interface. A westward movement of the eddy is induced. For the cyclone,
similar reasoning also yields a westward displacement. JMBto ⇑
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Figure 18-14 Alternative explication of the westward drift. Convergence and divergence associated
with velocity differences on the southern and northern sidedisplace the vortex.
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Implicit in the preceding derivations was the assumption that all variables related to the
vortex decay sufficiently fast away from the vortex core to make all integrals finite. However,
in the presence of a potential-vorticity gradient such as one created by a layer-thickness gradi-
ent (see the preceding text) or by the beta effect (β0 = df/dy), waves are possible (Sections
9.4 and9.5) and energy can be radiated away to large distances from the vortex, yielding
nonnegligible eddy-related motions there. As it turns out,it is possible to predict, at least
qualitatively, the effect of such waves by considering the early time evolution of the vortex.
Figure?? depicts the relative-vorticity adjustments brought to surrounding fluid parcels as
they are moved by the vortex for the first quarter of their evolution. As for linear waves (Sec-
tion 9.6), there is a direct analogy between the layer-thickness gradient and the beta effect:
The thin-layer side and the poleward direction are dynamically similar, for they both point to
an increase in potential vorticity. After a quarter turn, parcels surrounding the vortex acquire
relative vorticity by stretching (or squeezing) or a decrease (or increase) in planetary vortic-
ity. As Figure?? reveals, the cumulative effect in the Northern Hemisphere is a migration of
cyclones toward decreasing layer thicknesses or northward; anticyclones migrate in the op-
posite direction. As vortices move in those directions, their own core fluid undergoes similar
stretching or squeezing or planetary-vorticity changes. In all cases, the net result is a decrease
in the absolute value of the relative vorticity and thus an overall spin-down of the vortex.

In the study of hurricane motion, Shapiro (1992) distinctlyshows how the trajectory of
the hurricane center (a low-pressure center and thus a cyclone) can be explained by the mech-
anisms just summarized. Here, the beta effect is relativelyunimportant, but the presence of a
westerly wind aloft and its accompanying layer-thickness gradient (thicker southward) com-
bine to make the hurricane progress in the southeastward northwestward???? direction. JMB from⇓

JMB to⇑A discussion of geophysical vortices ought to address additional aspects such as axisym-
metrization (assuming a nearly circular shape despite anisotropic birthing conditions), insta-
bilities, secondary motions, frictional spin-down, wave radiation, and so on. Partly, because
space does not permit a deeper discussion here but mostly because these aspects tend to be
quite different in the atmosphere and ocean, the reader interested in atmospheric vortices is
referred to the monograph by Anthes (1982), and the reader interested in oceanic vortices is
referred to the book edited by Robinson (1983). Laboratory simulations of geophysical vor-
tices have also been conducted; an interesting article on vortex instabilities is that by Griffiths
and Linden (1981).

18.3 Geostrophic turbulence

We alluded to this topic, the study of a large number of interacting vortices, at the end of
Chapter16(Benoit: this part is not yet included?) when we introduced nonlinear effects in
quasi-geostrophic dynamics. Here, we shall tackle the subject from the vortex point of view,
without making the quasi-geostrophic assumption.

When several eddies are present and not too distant from one another, interactions are
unavoidable. Vortices shear and peel off the sides of their neighbors and, at times, merge
to create larger vortices. The sheared elements either curlonto themselves, forming new,
smaller vortices, or dissipate under the action of friction. The net result is a combination of
consolidation and destruction. When many vortices are simultaneously present, the situation
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Figure 18-15 Secondary drift of vortices. The advection of surrounding fluids induces cyclonic and
anticyclonic vortices on the flanks of the vortex, which combine to cause a drift as indicated. This
drift component is perpendicular and in addition to that depicted in Figure18-13. Again, the figure is
drawn for the Northern Hemisphere; in the Southern Hemisphere, cyclones still move in the direction of
smaller layer thickness or poleward, and anticylcones movein the direction of greater layer thickness,
or equatorward.

is best described in a statistical sense.
A number of important properties can be derived rather simply by considering three inte-

grals of motion, namely, the kinetic energy, the available potential energy, and theenstrophy,
the latter being the integrated squared vorticity. We thus define the following:

Kinetic energy: KE =
1

2
ρ0

∫∫∫
(u2 + v2) dx dy dz (18.31a)

Available potential energy: APE =
1

2

∫∫∫
N2h2 dx dy dz (18.31b)

Enstrophy: S =
1

2

∫∫∫ (
∂v

∂x
− ∂u

∂y

)2

dx dy dz. (18.31c)

In the formulation of the kinetic energy, the contribution of vertical velocity is usually in-
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significant. (It is insignificant whenever hydrostatic balance holds.) If the horizontal velocity
scale isU , the domain depth isH , and the horizontal area isA, the size ofKE is about
ρ0U

2HA. The definition of the available potential energy was established in (16.28). If
the vertical displacements of the density surfaces scale as∆H (∆H ≤ H , naturally) and
if reduced gravity is introduced viag′ = N2H [see (18.2)], the available potential energy
is on the order ofρ0g

′∆H2A. For eddies of average sizeL, vorticity scales asU/L and
enstrophy as(U/L)2HA. Finally, if we invoke geostrophy to set the velocity scale,we state
f0U ∼ g′∆H/L (barring a substantial barotropic component) and write

KE ∼ ρ0

(
g′∆H

f0L

)2

HA (18.32a)

APE ∼ ρ0g
′∆H2A (18.32b)

S ∼
(
g′∆H

f0L2

)2

HA. (18.32c)

The ratio of kinetic to potential energy is

KE

APE
∼ g′H

f2
0L

2
=

(
R

L

)2

, (18.33)

whereR is the internal radius of deformation. Link with Burger number???Bu. JMB from⇓
JMB to⇑As the interactions among vortices proceed, the shearing and tearing of vortices intro-

duce motions at ever shorter scales, until frictional dissipation becomes important. Because
S increases much faster thanKE with decreasing length scales, whileAPE is unaffected,
friction removes disproportionally more enstrophy than kinetic energy and, surely, potential
energy. In first approximation, we can assume that the total energy is conserved, while enstro-
phy decays with time. In a fixed domain (HA = constant) and with constantf0 andg′ values
(no heating or cooling), a decrease in enstrophy requires, by virtue of (18.31c), a decrease in
the ratio∆H/L2.

At short length scales (L � R), the energy consists primarily of kinetic energy, via
(18.33), and its near conservation requires that∆H/L remain approximately constant. The
only possibility that satisfies both requirements is a steady increase of the length scaleL, with
a proportional increase in eddy amplitude∆H . Thus, the vortices become, on average,larger
and stronger. Obviously, to conserve the total space allowed to them, they also become fewer.
There is thus a natural tendency toward successive eddy mergers. With every merger, energy
is consolidated into larger structures with concomitant enstrophy losses.

As the length scale increases toward the radius of deformation, the relative importance
of potential energy increases. BecauseAPE increases like∆H2, further increases in mean
eddy amplitude∆H require corresponding decreases in kinetic energy, to preserve the total
energy, and∆H2/L2 must begin to decrease. The result is that∆H andL continue to
increase but no longer proportionally,L increasing faster than∆H .

As the length scale continues to increase, indicating continued merging activity, it will
eventually become much larger thanR. Then, the energy is primarily in the form of potential
energy, and its conservation requires a saturated value of∆H . Further enstrophy decrease
under frictional action is possible only with a further increase in length scaleL (Rhines, 1975;
Salmon, 1982). In sum, the interactions of a larger number ofvortices without addition of
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energy lead to an irreversible tendency toward fewer and larger vortices. This implies an
emergence of coherent structures from a random initial vorticity field. As for the mean eddy
amplitude, it increases only up to a certain point. The maximum possible eddy amplitude is
achieved when almost all the energy available is in the form of available potential energy —
that is,

∆Hmax ∼
√

E

ρ0g′A
, (18.34)

whereE is the total energy present in the system (E = KE +APE) andA is the horizontal
area of the system. Should this value exceed the depthH of the domain, vortex amplitudes
will be limited by the latter and not all the energy can be turned into potential energy; a
certain portion of the energy must remain in the form of kinetic energy, implying a limit to
the length scaleL.

At the time of this writing, geostrophic turbulence is a topic of great interest. New results
are published at a rapid pace, and it is not appropriate within the context of the present volume
to attempt to summarize them. Pioneering results concerning the emergence of coherentJMB from⇓

JMB to⇑ vortices in quasi-geostrophic turbulence can be found in McWilliams (1984; 1989). Let us
also note that the tendency toward successive merger is at the basis of the contemporary
theories (Williams and Wilson, 1988, and references therein) that explain the persistence of
the Great Red Spot in the atmosphere of the planet Jupiter (Figure1-5). Finally, the question
arises as to why no single dominating vortex occurs in our atmosphere as on Jupiter. The
answer lies in diabatic and orographic effects constantly acting to form and destroy existing
atmospheric vortices. In other words, geostrophic turbulence in the earth’s atmosphere is
never freely evolving for very long. Similarly, wind forcing over the ocean and dissipation by
internal waves and in coastal areas combine to prevent oceanic geostrophic turbulence from
following its intrinsic evolution.

Benoit, I think there was a recence paper of Galperin on turbulence on Jupiter, in
Geophysical Research Letters that could be interesting to cite

18.4 Simulations of geostrophic turbulence

For statistical analysis of turbulence and understanding of eddy interactions, lateral bound-
ary effects should not perturb the understanding and periodicity in space can be assumed. In
this case, a particularmeshlessspectral method can be used. We already used a spectral
approach for linear problems (see Sections8.8) and will now see how to adapt it to a non-
linear problem. For the sake of simplicity, we investigate anumerical solution of a single
layer quasi-geostrophic system with a scale-selective biharmonic dissipation of vorticity (see
Section10.6on filtering). The governing equations of thef -plane are thus

∂q

∂t
+ J(ψ, q) = −B

(
∂4q

∂x4
+ 2

∂4q

∂x2∂yx
+
∂4q

∂y4

)
(18.35a)

∂2ψ

∂x2
+
∂2ψ

∂y2
= q (18.35b)
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where the coefficientB allows to control the damping. We can make up a solution as a trun-
cated series of sine and cosine functions spanning our periodic domain of interest0 ≤ x ≤ Lx
and0 ≤ y ≤ Ly, for both potential vorticityq and streamfunctionψ. For convenience we
use the complex exponentials instead of sine and cosine functions and assume

ψ̃(x, y, t) =
∑

k

∑

l

Ψkl(t) e
i 2πkx

Lx e
i 2πly

Ly , (18.36a)

q̃(x, y, t) =
∑

k

∑

l

Qkl(t) ei
2πkx
Lx e

i 2πly
Ly . (18.36b)

The time dependent coefficientsΨkl andQkl are the amplitude of the spatial Fourier modes
of the solution. These amplitudes are governed by equationswe can obain by multiplying the

governing equations (18.35) by e−i 2πix
Lx e

−i 2πjy
Ly and integrating over the domain of interest.

The orthogonality of the exponential functions allows to isolate the time evolution ofQij ,
which after rechristeningi, j back tok, l we can write as

∂Qkl
∂t

+
1

LxLy

∫ Lx

0

∫ Ly

0

J(ψ̃, q̃) e−i 2πkx
Lx e

−i 2πly
Ly dydx = − αklQkl (18.37)

αkl = B
[(

2πk

Lx

)2

+

(
2πl

Ly

)2
]2

(18.38)

−
[(

2πk

Lx

)2

+

(
2πl

Ly

)2
]

Ψkl = Qkl (18.39)

Note how nicely the dissipation term has simplified in the spectral space into an algebraic op-
eration and how the associated time attenuation can be interpreted in terms of the properties
of the physical damping. Also the solution of the Poisson equation is trivial and reduced to
a simple division in spectral space. Note that for the casek = l = 0, there is no need for
a division by zero because we can always assign any arbitraryconstant toΨ00 because the
streamfunction is defined up to any constant. All operationsseem very easy to perform in
the so-calledspectral space, i.e., in the discrete(k, l) space associated with the wavenumbers
2πk/Lx andj2πl/Ly. Also initialization of the fields from a given streamfunction in physi-
cal space can be translated without problems into initial conditions on the Fourier amplitudes
also calledspectral coefficients. Because periodic boundary conditions are already taken into
account through the wavenumbers of the truncated series, all we have to do is to calculate
the evolution of the amplitudes. To obtain the solution in the physical space, series (18.36)
can then we calculated at any desired position(x, y). There remains however to calculate the
contribution from the nonlinear term. Each derivative in the Jacobian can be evaluated using
the derivation of the base functions

∂ψ̃

∂x
=
∑

k

∑

l

akle
i 2πkx

Lx e
i 2πly

Ly

akl = i
2πk

Lx
Ψkl (18.40)
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and similarly for other derivatives. Obviously we only haveto create a set of spectral co-
efficients from the original ones by multiplying them with the respective wavenumber to be
able to construct the derivative. The Jacobian can then be calculated from the products of the
series for these derivatives and reads

J(ψ̃, q̃) =
4π2

LxLy

∑

i

∑

j

∑

m

∑

n

(jm− in)ΨijQmnei
2π(i+m)x

Lx e
i 2π(j+n)y

Ly (18.41)

Finally, because of the orthogonality, from all those different terms, the projection onto(k, l)
component in (18.37) retains only the terms in the sums for whichi+m = k andj + n = l.
Using (18.39) to eliminate streamfunction amplitudes and introducing so-called interaction
coefficientscmnkl, we can we arrive at governing equations for the Fourier amplitudes

∂Qkl
∂t

= −αklQkl −
∑

m

∑

n

cmnklQmnQk−m,l−n (18.42)

whereαkl depends on the dissipation parameterization retained and is given by (18.38) for
the biharmonic version. Clearly the nonlinear term reflectsthe physical interactions of signals
at different scales.

If we retainN Fourier coefficients for each spatial dimension, each sum involvesN
terms and a double sum requiresN2 operations. Even if the interaction coefficients can be
calculated easily, in each of theN2 equations for Fourier amplitudes we must performN2

operations for the sums associated with the nonlinear term.The total cost behaves then asN4

orM2 if M is the total number of unknowns actually used. Because the aim of geostrophic
turbulence model is avoiding unrealistic sub-grid scale parameterizations, high resolution
must be attempted and the cost of the present approach is prohibitive whenN increases. On
the other hand, we can notice that no aliasing is present because any wavelength appearing
from products of Fourier modes (via(i +m) or (j + n)) that is not retained in the original
series can simply be disregarded and the corresponding interaction coefficient forced to zero.

A major breakthrough in the applicability of the spectral approach was the discovery of
the so called Transform method (e.g., Orszag 1970). The idea is to first calculate derivatives
in spectral space by creating coefficients as in (18.40). Then the real derivative itself can be
calculated in any location from the Fourier series, therefore also on a regular grid spanning the
physical domain of interest. Doing the same for all derivatives in the Jacobian, the latter can
be calculated from products in each grid node. Then, having the Jacobian on a physical grid,
we can assess its spectral amplitudes by a projection into the wavenumber space to finally
get access to the time changes in vorticity modes (Figure18-16). This sounds much more
complicated than the calculation in spectral space, but theturnabout in physical space has a
distinct advantage: There exists a fast transformation method to swap between the spectral
domain and the physical space. Because in physical space, the cost of operations associated
with the Jacobian is proportional to the number of grid points only, we can gain from the
detour if the transformation cost is lower thanM2.

For a one-dimensional case, the Fourier transformations can be efficiently achieved by
so-called Fast Fourier Transforms (FFT, see appendix C) which demandsN logN operations
for N retained Fourier modes. In two dimensions, we first performN FFTs, one for eachy
grid point alongx, each of theN transforms costingN logN operations. Then we perform
N FFTs of the so obtained coefficients in the other direction which requires againN2 logN
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i kΨkl, i lQklΨkl,Qkl
Spectral derivatives

Transformation from spectral

∂ψ̃
∂x ,

∂q̃
∂y

Products in physical space
J(ψ̃, q̃)

∂Qkl

∂t = ...

Calculation of spectral

Linear terms

to physical space
components

Figure 18-16 Schematic representation of the transform method applied to the evaluation of the Jaco-
bian as the forcing term for spectral componentsQkl.

operations. FinallyN2 logN2 or in terms of the total numberM of unknownsM logM
operations are needed. For largeM there is thus asymptotically a significant reduction com-
pared toM2. The transform method can of course be generalized to any term that is not easily
calculated from spectral coefficients, as local nonlinear source terms for tracers for example.
All we have to do is to calculate those terms on a physical gridand then assess its spectral
composition.

Convergence of the truncated spectral series to exact solutions can be shown to be faster
than any power ofM as long as the solution is smooth for all derivatives. Also note that we
actually solve a Poisson equation withM logM operations so the approach is appealing.

Unfortunately, another problem appears again, the aliasing associated with the products in
physical space. As seen in Section10.5, for a grid spacing of∆x, we can avoid any feedback
from aliasing in the quadratic terms if wavelengths between2∆x and3∆x are removed from
the solution. This would permanently downgrade resolutionand we can turn the requirement
the other way around: For the shortest wavelengthλ we actually want to resolve, we just
have to create a physical grid such that∆x = λ/3 instead ofλ/2, the strict minimum needed
to resolve it. In other words, we simply have to use3/2N grid points instead ofN to be
sure that the product in physical space is not aliased. In practice, such an interpolation with
the Fourier functions into a finer grid can be performed efficiently by padding with zeros the
arrays containing Fourier coefficients and is coherent withthe interpretation of assigning zero
amplitudes to higher wavenumber signals (see appendix C).

We now have a more efficient methods to work with spectral components avoiding alias-
ing. An additional advantage of working in Fourier space lies in the fact that spectral analysis
of the results are trivial and that spectrum of initial conditions are easily controlled in terms
of wavelengths. This is particularly useful for statistical analysis of geophysical turbulence
in which one looks at a random field’s behavior. Generally, the fields are generated as a
realization of random streamfunction with Gaussian distribution of zero mean and variance
depending on the wavenumber. Initial vorticity is then obtained by space derivations and
simulations can be started to see how vortices organize themselves under different dissipa-
tion conditions (Figure18-17)
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Figure 18-17 Emergence of isolated vortices from a random initial field. Vorticity (left) and stream-
function (right) in a doubly periodic domain simulated witha spectral methodqgspectral.m .



18.4. SIMULATIONS 537

Analytical Problems

18-1. Consider the center fluid parcel (y = 0) of the Gaussian jetu(y) = U exp(−y2/2L2)
with U = 10 m/s andL = 100 km. On thef -plane, what is the shear vorticity acquired
by that parcel in a rightward meander of curvatureK = 1/800 km? On the beta plane,
what meridional displacementY would permit the parcel to conserve its speed and
maintain its center position?

18-2. For the one-layer reduced gravity model (12.19), express the gradient-wind balance for
steady circular vortices on thef -plane. If the layer thickness isH at the center and the
density interface outcrops at radiusa [i.e., h(r = 0) = H , h(r = a) = 0], show that
H anda must satisfy the inequality

a ≥
√

8g′H

f
. (18.43)

18-3. Take a stretch of the jet profileu(y) = U (1 − |y|/a) in |y| ≤ a, u(y) = 0 elsewhere
(see Figure10-13), and bend it to create a clockwise vortex. On thef -plane and in the
absence of vertical variations, what is the orbital-velocity profile that preserves vortic-
ity? How does the pressure anomaly in the vortex compare to the pressure difference
across the jet? Finally, show that the proportion of fluids with each vorticity is the same
in the vortex as in the straight jet.

18-4. Determine the behavior of an eastward jet in the Northern Hemisphere flowing over a
topographic step-up followed by a step-down of equal height. Is the flow oscillatory
beyond the second step? Also discuss the cases where the distance between the two
steps is short and long compared to the critical meander scale.

18-5. Redo Problem 18-4 for a westward jet in the Southern Hemisphere.

18-6. Hurricane Hugo (10–22 September 1989 in the western North Atlantic No image any- JMB from⇓
more ) had a maximum wind speed of 62 m/s and a low central pressure of 941.4 mil- JMB to⇑
libars during its passage over Guadeloupe on 17 September (Case and Mayfield, 1990).
Assuming that the normal pressure outside the hurricane was1010 millibars, estimate
the storm’s radius and importance of the centrifugal force relative to the Coriolis force
(latitude = 16◦N).

18-7. Using the gradient-wind balance (18.11) in a reduced-gravity model (p = g′h), explore
lens-like vortex solutions where the interface exhibits a paraboloical shape between a
central maximum depth (h = H at r = 0) and a peripheral outcrop (h = 0 at r = R).
Show that the flow is in solid-body rotation. Relate vortex radiusR to central depth
H and discuss the limiting cases of wide/shallow and narrow/deep vortices. Do you
recover an inequality of type (18.16)?

18-8. In first-approximation, the thick atmosphere of Jupiter maybe modeled as a reduced-
gravity system withg′ = 2.64 m/s2. Knowing that planet radius is 69,000 km and that
one Jovian day is only 10 earth-hours long, derive the thicknessh of moving fluid for
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Figure 18-18 Velocity field on Jupiter in and around the Great Red Spot, obtained after tracking small
cloud features in sequential images fromVoyagerspacecraft (Problem 18-8). The origin of each vector
is indicated by a dot. (From Dowling and Ingersoll, 1988.)

a few radial sections across the wind-velocity chart provided in Figure18-18Figure JMB from⇓
missing

18-9. A uniform eastward flow of velocityU over a flat bottom approaches a step in topog-
raphy at right angle. Topography changes fromH0 to H1 in x = 0. Determine the
stationary streamfunction forx > 0 assuming rigid-lid approximation holds on the
beta plane. Can you identify the critical meander scale in the solution?Hint: On a
streamline, potential vorticity is conserved. Express that at the step, the relationship
between the value of the streamfunction and vorticity is known and is hence valid after
the step.

18-10. Redo Problem 18-9. for a westward flow.JMB to⇑

Numerical Exercises

18-1. Useqgspectral.m to experiment with different eddy fields. Then include the beta
effect and higher order dissipation such as sixth-order derivatives.

18-2. Include diagnostics on energy, enstrophy and wavelength and simulate with different
eddy viscosities. Also include diagnostics on

ke =

∫
k |kΨk|2 dk∫
|kΨk|2 dk

(18.44)

ko =

∫
k |Qk|2 dk∫
|Qk|2 dk

(18.45)

where integrals are performed over all wavenumbersk2 =
√
k2
x + k2

y. Look at the

time evolution of these quantities.

18-3. Generalizeqgspectral.m to a two layer system (17.30). In particular, take care
of the vertical coupling in (17.31) by solving the coupled problem in spectral space
exactly. Now experiment again but with different stratifications.



Melvin Ernest Stern
1929 –

Melvin Stern has been an important contributor to the GFD Summer Program at the Woods
Hole Oceanographic Institution (see historical note at theend of Chapter 1) and has had a
major influence on the evolution of the field ever since the inception of that program. His
early work in meteorology was followed by fundamental contributions to our understanding
of baroclinic instability (work with J. G. Charney) and of salt fingering (an oceanic small-
scale diffusive process). After publishing a book titledOcean Circulation Physics(Academic
Press, 1975), Stern dedicated an increasing amount of time and effort to the investigation of
vortices. He discovered themodonsolution - Section 15-6), jets, and jet-vortex interactions,
complementing his theoretical studies with original and illuminating laboratory experiments.
(Photo by the authors)
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Text of second bio
(Here)
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Chapter 19

Atmospheric General Circulation

(October 18, 2006)SUMMARY : This chapter briefly reviews the principal factors control-
ling the climate on our planet. We first summarize the global heat budget and then describe
the major convective cells and review the major wind systems. The chapter ends with weather
forecasting and the particular challenge of simulating cloud dynamics. In this context, ingre- JMB from⇓
dients of modern operational weather-forecast models are detailed. JMB to⇑

19.1 Climate versus weather

Climateis to be distinguished fromweather. Whereasweatherincludes the detailed behavior
of the atmosphere on a time scale of a day to a week,climate represents the prevailing or
average weather conditions over a period of years. In other words, the climate of the earth
can be regarded as the basic state of the atmosphere, subjectto variations over years, cen-
turies, millennia, and beyond, while the weather corresponds to its incessant and short-lived
instabilities. The engine of climate is a global convectioncarrying heat from the warmer trop-
ical belt to the much colder polar regions, and its primary manifestation is the distribution of
prevailing winds over the globe.

19.2 Planetary heat budget

Because the long-term gradual cooling of the earth’s core contributes insignificantly to the
heat input near the surface, the incoming solar radiation can be considered as the sole source
of heat. From its hot surface (T ' 5750 K), the sun emits most of its energy in short wave-
lengths (200 to 4000 nm; 1 nm = 10−9 m), of which about 40% is in the visible range (400 to
670 nm). According to the Stefan–Boltzmann law, a so-calledblack body(a perfect emitter
and absorber of radiation) emits a radiative fluxF depending on its temperature JMB from⇓

JMB to⇑
543



544 CHAPTER 19. ATMOSPHERIC GENERAL CIRCULATION

F = σT 4, (19.1)

whereσ is a constant equal to 5.67× 10−8 W/m2·K4 andT is the absolute temperature.
Idealizing the sun to a blackbody, we obtainFsun = 6.2 x 107 W/m2 as the outgoing energy
flux from the sun’s surface. Given the size of the sun, the sun–earth distance, and the earth’s
area exposed to the sun, the earth receives only a minute fraction of the sun’s output: 1376
W/m2. Averaged over the entire earth’s surface (equal to four times the projected area facing
the sun), this incident flux amounts toI = 344 W/m2.

Figure 19-1 Simplest possi-
ble model of the earth’s budget.
Straight lines indicate short-wave
radiation whereas the wavy line
represents long-wave radiation.
(Fluxes are in watts per meter
square.) Under this scenario,
which does not account for the
atmosphere, the earth’s average
temperature would be a freezing
−21◦C.

Let us at this point first discard the thickness of the atmosphere and idealize the earth’s
land and sea surface plus atmosphere as a thin sheet insulated from below. Of the incident
radiation, a fraction is reflected out to space by snow, ice, mostly clouds, and everything else
that is bright. Withα as the reflection coefficient, called thealbedo(α ' 0.34), the amount
of radiation reflected isR = αI = 117 W/m2. The difference is the amount absorbed by the
earth’s surface:A = I − R = (1 − α)I = 227 W/m2 (Figure 119-1). Because the earth is in
overall thermal equilibrium1 (its temperature is not constantly rising), its outgoing radiation
matches absorption, and the earth emits a radiative fluxE equal toA. This outgoing radiation
is in the form of longer wavelengths than the incoming solar radiation and is termed long-
wave radiation. Assuming as for the sun that the earth behaves as a blackbody and using the
preceding values, we state

σT 4 = E = 227 W/m2, (19.2)

and deduce a mean temperature for the earth to beT = 251 K =−21◦C. This value is ob-
viously much below the average temperature of the earth as weknow it (about 15◦C). The
failure of this simple model resides in the neglect of the atmospheric layer. The preceding
value is more representative of the temperature at the top ofthe atmosphere than at ground
level.

As a next step, we distinguish the atmosphere from the earth’s surface (Figure19-2). The
incident short-wave radiation from the sun is unchanged (I = 344 W/m2); of it, the fraction
α1 (= 0.33) is reflected back to space, primarily by clouds and secondarily by particulate

1Some of the heat received by the sun is transformed into mechanical – wind – and chemical – photosynthesis –
energies, but these eventually dissipate and turn back intoheat.
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Figure 19-2 A second model of the earth’s budget, which distinguishes the atmospheric layer from the
earth’s surface. All flux values are in watts per meter square. Under this scenario, the earth’s average
temperature would be a very warm+36◦C. Here the greenhouse effect (flux loop between the earth’s
surface and the atmosphere) is present and exaggerated. Note how this effect causes the long-wave
radiative fluxes from the earth and atmosphere to exceed the incident short-wave radiative flux from the
sun.

matter (R1 = α1I = 113.5 W/m2), the fractionβ1 (= 0.49) is transmitted to the earth’s
surface (T1 = β1I = 168.6 W/m2), and the rest is absorbed by the atmosphere. The earth’s
surface (snow, ice, etc.) reflects a fractionα2 (= 0.04) of what it receives (R2 = α2T1 = 6.8
W/m2) and absorbs the rest (A2 = T1 − R2 = 161.8 W/m2). Of the portionR2 reflected
from the earth’s surface, the fractionβ1 is transmitted through the atmosphere and out to
space (T2 = β1R2 = 3.4 W/m2), whereas the rest is absorbed by the atmosphere. Thus the
atmosphere absorbs short-wave radiation directly from thesun (I −R1 − T1) and indirectly
from the earth below (R2 − T2), and the net is

A1 = (I −R1 − T1) + (R2 − T2)

= [1− α1 − β1 + β1α2(1− β1)]I

= 65.3 W/m2. (19.3)

Then both the atmosphere and the earth’s surface emit long-wave radiation, in amounts equal
to their total intakes of both short- and long-wave radiation. If the atmosphere emits a flux
E1, some of it goes upward into space and the rest goes downward to the earth. Because the
top of the atmosphere, where the outgoing radiation originates, is colder than its lower layers,
where the earthbound radiation originates, the two amountsare not equal; a representative
split is 36% to space and 64% to the earth. Thus, the earth receives0.64E1 of long-wave
radiation from the atmosphere in addition to the amountA2 received in short waves, and its
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emissionE2 must equal their sum:

E2 = A2 + 0.64 E1. (19.4)

At this point, we still do not know eitherE1 andE2, but we can already conclude that
the presence of atmospheric radiation toward the earth’s surface establishes a loop, whereby
the earth’s surface emits some radiation, a portion of whichreturns to the earth. As a conse-
quence, the earth’s surface must emit more radiation in the presence of an atmosphere than in
its absence and (according to the Stefan–Boltzmann law) must be correspondingly warmer.
This is thegreenhouse effect, so called because of its similarity to the trapping of long-wave
infrared radiation by the glass panes of a greenhouse.

Of the amountE2 radiated by the earth’s surface and entering the atmosphere, a fraction
β2 (= 0.05) is transmitted and lost to space (T3 = β2E2), with the remainder being absorbed
by the atmosphere (E2 − T3). If the atmosphere absorbs the amountsA1 andE2 − T3 in
short- and long-wave radiations respectively, its total emission must be equal to their sum;
that is,

E1 = A1 + E2 − T3

= A1 + (1− β2) E2. (19.5)

From (19.4) and (19.5), we can derive the emission fluxesE1 andE2 to find E1 = 558.7
W/m2 andE2 = 519.4 W/m2. Note that both are higher than the incident fluxI = 344
W/m2. Then, using the Stefan–Boltzmann law (19.1), we estimate the mean temperature of
the earth’s surface to beT = (519.4/σ)1/4 = 309 K = 36◦C. This temperature is higher than
the first estimate, thanks to the capping effect of the atmosphere (greenhouse effect) but is
unrealistically high.JMB from⇓

Benoit: E1 > E2 might suggest a higher atmospheric layer temperature than earth
surface. I suppose in reality upper atmospheric layer temperature would be((0.36E1 +
T )/σ)1/4 = −21Celcius, the previous earth temperature estimate (or((0.36E1)/σ)1/4 =
−28Celcius ????) Maybe a note or exercise? I’m not sure hereJMB to⇑

In reality, the warming influence of the greenhouse effect ispartially short-circuited by
the hydrological cycle. As water evaporates over the ocean and land, latent heat is extracted
from the earth’s surface. (Latent heat is the heat required to change the phase of a substance,
here to transform liquid water into water vapor. The latent heat of water is 4000 J/kg.) This
water vapor rises through the atmosphere, where it condenses in clouds before returning to
the earth’s surface as rain (liquid phase). Thus, the latentheat extracted from the earth’s
surface is released in the atmosphere, causing a net heat fluxfrom the earth to the atmosphere
that is not in the form of radiation. To this latent-heat flux is added a convective heat transfer.
With an estimated total nonradiative heat fluxH = 113.6 W/m2, the earth and atmospheric
balances, (19.4) and (19.5), must be amended as (Figure19-3):

E2 = A2 + 0.64 E1 − H, (19.6a)

E1 = A1 + E2 − T3 + H, (19.6b)

yielding E1 = 573.2 W/m2 andE2 = 415.0 W/m2. From the radiation law, we deduce a
corrected estimate of the mean temperature at the earth’s surface:T = (415.0/σ)1/4 = 292 K
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Figure 19-3 A third model of the earth’s budget, which atmosphere and hydrological cycle. All flux
values are in watts per meter square. This scenario includesthe greenhouse effect tempered by the
hydrological cycle, resulting in a realistic average temperature at the earth’s surface of+19◦C.

= 19◦C. This third estimate is in good agreement with the seasonally and globally averaged
temperature on the earth’s surface. All in all, we conclude that the greenhouse effect due
to the presence of the atmosphere (especially with regard toits near opacity to long-wave
radiation) raises the temperature of the earth’s surface and that the impact of this effect is
partially canceled by the hydrological cycle.

19.3 Direct and indirect convective cells

The preceding considerations exposed the globally averaged heat budget, glossing over all
spatial variations. However, that the tropical regions of the globe receive a disproportionate
amount of solar radiation, because of their better exposure, is not to be overlooked. Although
the earth receives considerably more heat at low latitudes than near the poles, its outgoing
radiation is more uniformly spread, decreasing only slightly with latitude (Figure??). The
resulting heat excess at low latitudes and deficit at high latitudes call for a poleward heat
transfer. George Hadley2 hypothesized that this transfer is accomplished by a giant thermally
driven circulation: Warm tropical air rises and flows towardeach pole, where it cools and
sinks, returning to the tropics along the surface (Hadley, 1735). As it turns out, Hadley
was partly correct, insofar as such convective circulations exist on both sides of the equator,
and partly incorrect, insofar as these meridional circulations extend only to 30◦ of latitude.
North of 30◦N and south of 30◦S, opposite circulations are observed, up to 60◦, beyond
which circulations in the sense predicted by Hadley are again found. Because the convective

2British physicist and meteorologist (1685–1768) who first explained the trade winds.
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circulations theorized by Hadley follow our intuition, they are generally calleddirect cells.
Those direct cells bordering the equator are also calledHadley cells. In contrast, the reverse
circulations found at midlatitudes bear the name ofindirect cells. Our purpose here is to
explain, in some qualitative manner, why such oppositely directed meridional circulations
exist. The story is not simple, invoking the aggregate effect of the transient weather systems
(storms) of the midlatitude regions.Benoit: maybe add to the next paragaph something like:JMB from⇓
To show that a single Hadley cell is unlikely to exist, the conservation of angular momentum
can be invoked. A torus of equatorial air mass at rest est withrespect to earth conserves the
absolute angular momentum when friction is neglected. Hence , when moving northward, we
conserver2Ω = r cosϕ(r cosϕ + u), which would lead to unrealistically high velocities at
midlatidutes, prone to instabilities.JMB to⇑

To begin, we note that, although a single direct convective cell could theoretically span an
entire hemisphere, such would be unstable. The strong zonalflow in thermal-wind balance
with the large meridional temperature gradient would be baroclinically unstable. In fact, the
more moderate zonal winds accompanying the alternating circulation structure that exists
on the earth are themselves unstable, as the vagaries of the midlatitude weather show so
well. According to our discussion of baroclinic instability (Section17.5), such instabilities
develop into coherent vortex systems, called cyclones and anticyclones, that are capable of
transferring heat meridionally. At midlatitudes, therefore, the transfer does not take place in
a vertical loop, as in a Hadley cell, but via the horizontal circulation of each vortex moving
warm air poleward on one side and cold air equatorward on the other. We will now show
how the cumulative action of these weather systems at midlatitudes can perform the required
poleward transfer of heat so effectively to reverse the meridional circulation in the vertical
plane.

The analysis starts with a few modifications of the governingequations. First, the density
departure from the referenceρ0 is expressed in terms of a temperature anomalyT measured
from the temperature corresponding to the reference density: ρ = −ρ0αT , whereα = 1/T0

is the thermal-expansion coefficient. Then, viscosity and heat diffusivity are neglected, but a
heat source or sink term is added in the temperature equationto represent the heat gain in the
tropics and the heat loss at high latitudes. From (4.21) we have
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∂x
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(19.7a)
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Q
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, (19.7e)

whereQ is the aforementioned thermal forcing (in W/m3). Focusing exclusively on the
Northern Hemisphere, we takeQ positive in the tropics (at lower values ofy, the northward
coordinate) and negative at high latitudes (higher values of y). Thus, the gradient∂Q/∂y
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is negative. The choice of beta-plane equations based on a Cartesian coordinate system over
more accurate equations in spherical coordinates is justified in the spirit of a highly simplified
analysis aimed at highlighting physical processes in a qualitative way.

We next define the zonal average as the mean over the values ofx at any giveny andz
levels and timet. The zonal averages of the linear equations (19.7c) and (19.7d) are immedi-
ate:

∂p̄

∂z
= ρ0αgT̄ (19.8)

∂v̄

∂y
+

∂w̄

∂z
= 0, (19.9)

where the overbar denotes this zonal average. With a prime denoting the departure from the
average (e.g.,u = ū + u′ etc.) and with some use of (19.7d), the zonal average of (19.7b)
can be expressed as
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The large meridional pressure gradient (∂p̄/∂y) associated with the important northward de-
crease in temperature (∂T̄/∂y < 0) is balanced by a significant zonal flow (ū). In contrast,
the meridional cell (̄v, w̄) is much weaker, as are the corresponding eddy fluxes (v′2, v′w′). JMB from⇓

JMB to⇑Thus, the preceding may be reduced to

fū = − 1

ρ0

∂p̄

∂y
. (19.11)

Together, the hydrostatic balance, (19.8), and the geostrophic relation, (19.11), provide the
thermal-wind relation

f
∂ū

∂z
= − αg

∂T̄

∂y
, (19.12)

which relates the vertical shear of the average zonal wind tothe average meridional tem-
perature gradient. With the temperature decreasing northward in the Northern Hemisphere
(∂T̄/∂y < 0, f > 0), the wind shear is positive (∂ū/∂z > 0), indicating that the winds must
become more westerly (eastward) with altitude.

Finally, we apply the zonal average to the remaining two equations, (19.7a) and (19.7e),
to obtain:

∂ū
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According to our previous remarks, the eddy fluxes of momentum and heat associated with
the horizontal circulations of the weather systems (u′v′ andv′T ′) are anticipated to be im-
portant, and the corresponding terms are retained. On the other hand, the vertical eddy
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fluxes (u′w′ andw′T ′) are neglected. Except for the mean vertical advection of temper-
ature (̄w∂T̄/∂z) because there is a substantial vertical stratification, mean meridional and
vertical advections are unimportant, compared to the meridional eddy transports. In the light
of these considerations, the leading terms of the precedingtwo equations are
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u′v′ (19.14)
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Here, we have introduced the stratification frequencyN via N2 = αg∂T̄ /∂z. We shall
assume that it does not vary significantly withy.

Formingf times thez-derivative of the first equation plusαg times they-derivative of
the second, to eliminate the time derivatives via (19.12), we obtain
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In this last equation, the sign of the left-hand sideω is directly related to the direction of the
average circulation in the vertical plane. For simplicity,let us restrict our attention again to the
Northern Hemisphere. In a direct cell (Figure19-4a),w̄ decreases northward andv̄ increases
upward, together yielding a negativeω.On the other hand (Figure19-4b), an indirect cell
corresponds to a positive left-hand side.

y

z

Equator North Pole

w̄
v̄

(b)

y
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w̄

v̄
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-

+
Figure 19-4 Atmospheric circulation
in the meridional–vertical plane: (a) di-
rect cell, also called Hadley cell, with
∂w̄/∂y < 0 and ∂v̄/∂z > 0, and
(b) indirect cell, also called Ferrel cell,
with opposite circulation and positive
ω.

According to the right-hand side of (19.16), there are three competing mechanisms in-
fluencing the sense of the circulation. In the tropical regions, away from the midlatitude
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eddy activity, the dominant factor is heating (Q̄ term). Because the rate of heating decreases
northward (∂Q̄/∂y < 0), this term is negative, and the circulation in the verticalplane is
in the direct sense (as in Figure19-4a). This occurs up to about 30◦N, and the circulation
driven by thermal convection is the Hadley cell. The northerly (equatorward) winds along the
surface (̄v < 0) veer to the right under the action of the Coriolis force, resulting in easterly
(westward) zonal winds (̄u < 0). These form thetrade winds.

North of approximately 30◦N, where the eddy activity is most intense, the corresponding
terms (v′T ′ andu′v′) dominate the right-hand side of (19.16). Both induce an indirect cir-
culation. This is easy to see with thev′T ′ term and a little harder with theu′v′ term. The
average productv′T ′ is proportional to the meridional heat flux of the eddies. Since this net
heat flux must be northward, warm anomalies (T ′ > 0) are preferentially moved northward
(v′ > 0); cold anomalies, on the other hand, are advected southward(T ′ < 0, v′ < 0), both
yielding a net positivev′T ′ correlation. Because the storm activity is most intense at midlati-
tudes, the termv′T ′ reaches a maximum there. Thus, the second derivative∂2v′T ′/∂y2 must
be negative. Preceded by a minus sign in (19.16), the corresponding term is positive.

The convergence of warm and cold air masses aloft creates a locally intensified gradi-
ent of temperature; in thermal-wind balance with this gradient is the polar-front jet stream
(Figure??old17-1) that flows eastward. The maintenance of this jet in spite of the eddy ac-
tivity requires a continuous influx of eastward momentum (i.e., positiveu′ anomalies must be
transported to that latitude). This is effected by the eddies, which import positive momentum
anomalies from the south (u′ > 0, v′ > 0) and from the north (u′ > 0, v′ < 0). Thus, the
averageu′v′ is positive south of the jet and negative north of it, and the derivative∂u′v′/∂y
must be negative. At the surface, where the jet stream is not found, the correlationu′v′ is
much less important, and we conclude that∂u′v′/∂y is increasingly negative with altitude,
namely,∂2u′v′/∂y∂z is negative. Preceded by a minus sign in (19.16), this term adds to the
positive contribution of the other eddy-flux term, and together they overcome thēQ term.
The result is an indirect cell, called theFerrel cell. A corresponding indirect cell is found in
the Southern Hemisphere. These Ferrel cells extend to approximately 60◦; beyond that, the
eddy activity yields to a thermal circulation in the vertical and direct cells exist (Figure19-5).

The alternation of direct and indirect cells in the meridional direction leads to a similar
alternation in surface zonal winds: from the easterly trades to the prevailing westerlies, to the
polar easterlies (Figure19-5). JMB from⇓

Benoit: Is there a simple explanation (or clear reference) that shows that three cells are
the most likely version. Observation tells is that eddy activity is important at mid-latidutes
and with previous eddy fluxes this explains the three cell structure. But why the eddy activity
is highest at mid-latidute? Other planets other number of cells? JMB to⇑

19.4 Atmospheric circulation models

Atmospheric circulation models are generally at the forefront of developments in both pa-
rameterization of sub-grid scale processes and numerical aspects (see Section1.9) and still
today they are changing permanently in terms of included physics and numerical discretiza-
tions. From the first operational models using a single layerquasi-geostrophic approach,
we are now arriving at models solving the primitive equations at smaller and smaller scales.
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Figure 19-5 Sketch of the general
atmospheric circulation, composed
of direct (Hadley) and indirect (Fer-
rel) cells in the meridional direction
and alternating winds in the zonal
direction.

The equations that are solved are nevertheless still based on the governing equations of sec-
tion 4.4 to which where added turbulence closures, cloud parameterization, radiation bud-
gets and tracer evolutions. An account of the improvements in atmospheric models during
the last decades is out of scope (see Randall, D 2000 for more details), and we now focus
on the distinguishing features of atmospheric models compared to ocean models or general
geophysical-flow models.

The most widely used models for weather prediction at globalscale include those of
the European Centre for Medium-Range Weather Forecasts (ECMWF, EU) and the National
Centers for Environmental Prediction (NCEP, USA). Both models are adapted to our atmo-
sphere by including a series of physical models or parameterizations, specific to the earth’s
air behavior. Radiation budgets are more complicated than those of Section19.2, and in re-
ality, the heat equation should contain a local source term due to radiation, whose behavior
depends among others on the orientation of the sun, the wavelength of the radiation, humid-
ity and presence of aerosols, the latter transported with the winds and hence governed by
an advection-diffusion equation. Since radiation is behaving differently for each wavelength,
different equations for radiative transfers should be included for each wavelength. In practice,
they are lumped into spectral bands and at minimum two categories are distinguished: short-
and and long-wave radiation as used in our global averages. The models for these radiations
include absorption of radiation (and hence local heating) by water vapor, ozone, carbon diox-
ide and clouds within the atmosphere itself and on the lower boundary,i.e., the earth’s surface.
Not only absorption must be dealt with in each calculation point, but also the scattering of
radiation by aerosols and clouds as well as the reflection by Earth’s surface or clouds. Also
it must be taken care of the re-emission of longwave radiation by ozone. These processes in-
volve a series of parameterizations which make up the particular radiative transfer equations
of the models. The ECMWF model uses for example a radiation scheme based on Orcrette’s
work (1991): for clear-sky conditions, short-wave radiation is mainly constrained by aerosol
scattering and the effects of the absorption by water vapor,ozone, oxygen, carbon monox-
ide, methane, and nitrous oxide. Clear-sky long-wave radiation is modeled using absorptive
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properties of water vapor, carbon dioxide, and ozone, whichare temperature and pressure
dependent. Cloudy skies are dealt with separately and parameterization include absorption
and scattering properties of cloud droplets, with clouds being characterized by optical thick-
ness and their scattering properties. The clouds not only constrain the radiative transfer but
their prediction is obviously of prime interest for precipitation forecasts. Because of the small
scales of clouds compared to grid sizes, parameterizationsare again called for and deserve an
individual treatment (Section19.6).

When the weather over the whole planet is calculated, the Atmospheric General Circula-
tion Models (AGCM) have to take into account the spherical nature of the domain and hence
governing equations are most naturally written in spherical coordinates (Appendix??). This
is both a source of complications and simplifications. Complications arise because of the
more complex nature of the equations (metric coefficients depend on latidudeϕ) and the
mathematical singularity near the poles (note the presenceof 1/ cosϕ in (??)). The latter
causes numerical stability problems: let us imagine that discretization is performed by us-
ing a regular grid in the new “horizontal” longitude-latitude(λ, latitude) coordinates with
∆λ = 2π/M whenM grid points are used in the west-east direction. Then the euclidean
distance∆x between two grid points is∆x = r cosϕ∆λ, wherer is the distance to the earth
center. If follows that this distance∆x approaches zero near the poles. If there are numeri-
cal stability conditions of the typeU∆t ≤ ∆x, whereU is a physical propagation velocity
of similar magnitude at the pole and the equator, the stability condition will be much more
stringent near the pole than near the equator, even if the underlying physical process acts sim-
ilarly in both locations. The overall numerical efficiency is then drastically reduced if the pole
imposes its stability condition on the rest of the domain. This is called the problem ofcon-
vergence of meridiansand must be addressed. If finite-difference grids in longitude-latitude
are used, this requires implicit treatment or filtering close to the poles.

A distinct simplification for AGCM covering the planet is theabsence of any lateral
boundary, avoiding the application of somehow arbitrary open-boundary conditions (see Sec-
tion 4.6). Only regional models (so-calledlimited area models, LAMs) need such conditions,
generally provided by simulations with an AGCM and nesting techniques. The Aladin model
(Aire Limitée Adaptation dynamique Développement InterNational3) is such a LAM in use
for downscaling processes from global scale to regional scale. It predicts smaller-scale pro-
cesses such as breezes, thunderstrom linesetc. using high resolution orography and less
parameterizations.

Even if there are no lateral boundaries for AGCMs, they need conditions at the vertical
limits of the domain. The upper boundary of atmospheric model is generally taken at a given
pressure level (e.g., 0.25 hPa) or at a given height (e.g., 70km) well above the troposphere
in which most weather phenomena are confined. The boundary iswell above the tropopause
to avoid unphysical reflections of waves at the boundary. This is however still an artificial
boundary because in reality air rarefies with height insteadof changing abruptly its density,
which would define a natural boundary. Nevertheless rigid-lid conditions are commonly
assumed. At the lower boundary, the atmospheric flow interacts with the cryosphere, oceans
and land, which demands proper definition of fluxes.

Depending on the time scale of the processes at hand, those interactions between sys-
tems can be simplified (Figure19-6). If the system coupled to the atmosphere is reacting
slowly to atmospheric changes, there is no need to take into account variations in the feed-

3Trad: limited area, dynamical adaptation, international development
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Coupled system

One inert system Slave system
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Figure 19-6 Depending on the time scale of the system coupled to the atmosphere, the feedback loop
can be simplified into a simple persistence or an immediate adaptation. Only when the time scales of
both systems are comparable, the fully coupled version mustbe retained.

back mechanism: the ice-cover of Antarctica does not changewithin the few days covered by
the weather forecast and hence the observation of the ice-cover at the beginning of the fore-
cast is sufficient to constrain the atmospheric evolution during the forecast. If on the contrary
the coupled component reacts extremely fast to changes in the atmospheric conditions, it is
often possible to derive quasi-equilibrium laws that allowto predict those fast adaptations
directly in terms of atmospheric parameters: the albedo of the land surface changes in time
according to changes in land properties and would require a specific land-use model, but if
the atmospheric model predicts snow fall, the albedo could immediately be adapted in the
atmospheric model so as to take into account the changes in reflection without actually using
a dynamic model on land use.

Finally when both coupled components have similar time-scales and interact, they must
be modeled in parallel end and forecasts issued simultaneously, including their interactions
(see for example the forecast of El Nino events in Section21.4). Such coupling is however
not easy and in the first implementations which coupled AGCM to ocean models for climate
calculations, there was a need to correct fluxes between the two systems. Ocean models for
example react allergic to errors in wind fields that drive them at the surface and the wind field
from atmosperic models must cover the same spectral window as the ocean model is expect-
ing. If fluxes were not adapted, models drifted away. Information on the climate average was
then needed in the flux formulations if past climate was to be reconstructed without drifts.
This unsatisfactory approach of feeding and relaxing models with part of the solution was for
a long time a major reason for objecting that projections into the future are not realistic with
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such climate models. Now this so-calledflux correctionis not necessary anymore because of
improved adequacy between the models that are coupled. Coupled ocean-atmospheric mod-
els are now the core of so-calledglobal climate modelsintegrating an increasing number of
dynamical, biological and chemical components such as ice cover, carbon cycles, land use,
hydrological cyclesetc. The integration allows feedback to be taken into account such as
the melting of ice due to heating followed by a change in the albedo itself modifying heat
budgets. Other feedback loops are possible through chemical reactions such as the ozone
layer that changes under modified climate conditions, itself changing radiative budgets. Such
integrated models are calledEarth simulators. They try to internalize as much processes as
possible instead of considering them as forcing functions.Note that because of high computa-
tional demands, most of the sub-models are optimized to exploit particular hardware (parallel,
distributed or shared) and making them work together is not trivial. It requires information
exchange between the models, called message passing on parallel computers, because of the
physical coupling. This implementation of exchanges is quite a challenging task both in terms
of physical-interaction modeling as well as technical programming. Needless to say that such
integrated models are also more and more demanding in terms of understanding the simula-
tion results, particularly when grid resolution increase and more and more physical processes
are resolved. After all, in this case, the model should almost react as the real world, which we
know is extremely difficult to apprehend. Hence, associatedwith most models, there is now
a suite of statistical and graphical analysis tools to help the modeler ingest the huge amount
of information.

When speaking about atmospheric models, it should always bespecified if the model is
used for weather forecast, seasonal forecast or climate-change scenarios. Indeed, a common
argument used to disqualify climate-change studies is the incapacity of predicting weather
beyond a few days with current atmospheric models. Since similar numerical models are used
to predict climate changes, we should not trust the latter predictions. This argument simply
disregards the difference between weather and climate (seeSection19.1). We might well be
unable to predict next week weather in New-York but still be able to predict an increase of
temperature over the USA in the next years. The situation is similar to the impossibility of
predicting the individual behavior of eddies in a turbulentflow but yet being able to predict
the average effect of this turbulence on the behavior of transported pollutants, using a same
family of governing equations and models. The problem is simply a question of scales we
are interested in (look again at Figure1-7), and which should therefore always be part of the
model’s definition.

19.5 Weather forecasting

For short-term forecasts, as a weather forecast, most of thefeedbacks with systems other than
the atmosphere itself can be simplified and rendered non-interactive. In particular, heat fluxes
over the ocean depend on the sea surface temperature. In a situation of weather forecast,
an atmospheric models uses for example climatological sea surface temperature, observed
SST from previous days, a simple mixed-layer model or any of the combination of these
approaches instead of a complete ocean model to obtain the required value at the boundary.
The general approach of using observations to prescribe forcings adds another explanation
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why weather forecasts rely on dense observational networks. Enhancement in prediction
capabilities are therefore obtained by denser observational networks but also better physical
parameterizations, improved numerical methods, increased resolutions and data assimilation
(see Chapter22). Nowadays not only predictions on fields themselves are provided, such as
temperature and hours of sunshine for the next 5 days, but also probability of occurrence of
events through ensemble predictions (see Chapter22). In this case forecasters speak about a
60% probability of rain or any other prediction provided by the models, such as temperature,
dew point, velocities, pressure, precipitation, cloud cover, snow fall, radiationetc.. Though
forecast quality has improved significantly in the past, weather remains difficult to predict
particularly for rare or extreme events, as well as the absence or presence of precipitations.

19.6 Cloud parameterizations

Problem of precipitation forecasts related to clouds:
Probably most difficult parameterization for atmospheric models is related to clouds. Sub-

grid scale and complicated physics. Need for parameterization
Insist again on unstable nature of atmosphere because of heating from below.
Feedback: Cloud moving upward, condensation which liberates energy (remember kat-

rina) and hence can accelerate uplift.
Parameterizations still on the base of Arakawa’s research (again him).
Also essential role in climate change scenarios (cloud makes shadow at day but green-

house during night) CO2 changes might modify hydrological cycle hence clouds which fur-
ther could change climate. IPCC identifies possible changesin cloud cover as one of the
major uncertainties in predicting future climate changes

Benoit: Can you provide some text here? I’m not a specialist here and Ithink I saw some
text in your other book on this?

19.7 Spectral methods

Numerical methods employed in atmospheric models have evolved from quasi-geostrophic
models using Arakawa Jacobians and inversion of Poisson equations (see Section16.6 )
towards more sophisticated spectral models including semi-lagrangien implementations of
tracer advections. Most modern global models are based on this approach we will now out-
line.

The spectral models are based on the same approach as the spectral models presented in
the quasi-geostrophic framework. They use a truncated series of orthogonal base functions
spanning the domain of interest. For global models, spherical coordinates do not allow a
straightforward development of solutions in terms of sine or cosine functions. Assuming
vertical dependence be taken care of by standard finite volume of finite-difference techniques,
the longitudeλ and latitudeϕ dependence of a fieldu is expressed as a series of special
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functionsYm,n called spherical harmonics:

u(λ, ϕ, t) =
∑

m

∑

n

am,nYm,n(λ, sinϕ) (19.17)

Ym,n(λ, sinϕ) = Pm,n(sinϕ) ei mλ (19.18)

The so obtained series is of Fourier type in longitude and involves Legendre functionsPm,n
on latitude:

Pm,n(x) =

√
(2n+ 1)(n−m)!

2(n+m)!
(1− x2)m

dm

dxm
Pn(x) (19.19)

defined in terms of Legendre polynomials of degreen

Pn(x) =
1

2n n!

dn

dxn
[
(x2 − 1)n

]
(19.20)

SincePn is a polynomial of degreen, the Legendre functions are different from zero only
whenm ≤ n. Extension towards negative values ofm are desirable for the Fourier modes and
hence we extend also the definition of Legendre functions byP−m,n(x) = (−1)mPm,n(x).
With the scaling of (19.19), Legendre functions are orthonormal:

∫ 1

−1

Pm,n(x)Pm,k(x)dx = δn,k (19.21)

On the surfaceS of the sphere of radiusR, the elementary surface elementR2 cosϕdϕdλ
can be written in terms ifξ = sinϕ asR2 dξdλ so that

1

R2

∫

S
Ym,nY

∗
p,k dS =

∫ 1

−1

∫ π

−π

Ym,nY∗p,k dλdξ = 2π δm,p δn,k (19.22)

where ∗ stands for the complex conjugate. The horizontal Laplacianof the base functions
reads in spherical coordinates :

∇2Ym,n = −n(n+ 1)

R2
Ym,n (19.23)

so that inversions of Poisson equations can be performed immediately when working in the
transformed space. Note that the pseudo4 wavenumber

√
n(n+ 1)/R is surprisingly inde-

pendent ofm.
Orthogonality of spherical harmonics can be used to isolategoverning equations for

am,n(t) by multiplying the governing equations byYm,n
∗ and integrating over the globe’s

surface because the continuous version of the inverse transform is (19.18) and the associated
forward transformation reads

am,n =

∫ 1

−1

[∫ 2π

0

u(λ, ξ, t) e−imλdλ

]
Pm,n(ξ) dξ (19.24)

as can be verified by the orthogonality properties.

4In cartesian coordinates we would have∇2u = −(k2
x + k2

y) u with the Fourier spectral approach, hence the
analogy.
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Figure 19-7 Real part of spherical harmonicsYm,n for (m,n) taking values (0,1),(1,1) on the first
line, (0,2),(1,2),(2,2) on the second line and (0,3),(1,3),(2,3),(3,3) on the last line. The white regions
separate regions of positive and negative values. The mode (0,0) is constant on the sphere.

Truncation (Figure19-8) of the sums in numerical schemes can be achieved in several
ways, the only constraint being that in all cases|m| ≤ n which can be achieved by

ũ =

M∑

m=−M

N(m)∑

n=|m|

am,nYm,n (19.25)

The structure of spatial resolution depends on the formulation used forN(m). WhenN(m) =
M , called atriangular truncation, uniform resolution on the sphere is achieved. Other trun-
cations allow better resolutions in particular regions of the sphere (Figure19-7 and19-8).
With reference to the chosen truncation, models are nicknamed by terms such as T256L60
for a triangular truncation usingM = 256 spectral components. The qualifier L60 stands
for the vertical grid using 60 discrete levels. For ECMWF, the levels are distributed accord-
ing to a hybrid vertical coordinate system where the new vertical coordinates depends on
pressurep and surface pressurepsurf by s = s(p, psurf), scaled so thats(0, psurf) = 0 and
s(psurf , psurf) = 1. This is a generalization of a pressure coordinate system (calledσ co-
ordinates) introduced by Phillips (1957)s = p/psurf , which is used in NCEP. Since more
general hybrid vertical coordinates are now used in ocean models, we will postpone the cor-
responding discussion until Section20.7. Note that becausem takes negative values, the
actual wavenumbers resolved are indeedM , contrary to the standard FFT presentation which
uses only positive values and hence half of the wavenumbers (see appendix??).

For discrete versions of integrals, orthogonality is generally not ensured and hence a di-
rect followed by an inverse transformation not ensured to fall back into the original signal.
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m

n

m

n

Figure 19-8 Triangular and rhom-
boidal truncation. Only the part for
positivem are shown, the negative part
being symmetric. Triangular truncation
is now more popular than the originally
preferred rhomboidal version.

For discrete Fourier transform orthogonality is maintained (see appendix C and Section18.4),
so that we can evaluate the inner integral of the forward transform through a FFT and the cor-
responding inverse transform by inverse FFT. There remainsthus to ensure that the numerical
treatment of the outer integral of (19.24) conserves orthogonality. Unfortunately there is no
equivalent numerical tool to the FFT that allows to perform the transforms on the Legendre
expansion and we must resort to numerical quadrature of the integrals. First we can performe
a FFT at a series of given latitudesϕj , j = 1, ...., J with ξj = sinϕj to obtain Fourier
coefficients

bm(ξj , t) =

∫ 2π

0

u(λ, ξj , t)e
−imλdλ (19.26)

defined at locationsξj . Then coefficientsam,n can be estimated by a numerical quadrature
using the value of the integrand in those locationsϕj :

am,n =

J∑

j=1

wj bm(ξj)Pm,n(ξj). (19.27)

The weightswj and locationsξj can be chose so as to reduce integration errors. Gaussian
quadrature can be shown to produce exact results when integrating polynomials of degree
2J−1 if theJ points on which the integrand is evaluated are located at thezeros ofPJ(ξj) =
0 and weights taken as

wj =
2

1− ξ2j

[
dPJ
dξ

(ξj)

]2
(19.28)

It would appear that the integrands we are dealing with are not polynomials because Legendre
functions involve square roots, but what matters is that transforms of the nonlinear physical
terms are treated correctly. As those involve products of Legendre functions, it can be shows
that they make only appear polynomials and we can integrate exactly. The number of points
J must then be taken so as to integrate correctly the highest degree of polynomials that will
appear as a consequence of nonlinear terms such asu∂u/∂θ. The transform of such a term
would require the evaluation of triplet of Legendre functions (one for each appearance of
u and then the application of the transform itself involving the third Legendre function).
For a highest degreem = M on Legendre functions, a polynomial of degree3M appears
and must therefore useJ > (3M + 1)/2 points to integrate it exactly. For the Fourier
transform on longitude, the same analysis as in Section18.4applies and requires the use of
(3M + 1) evaluation points in longitude ifM Fourier modes are retained. Hence a model
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with 42 modes, will use typically a 128× 64 underlying grid in longitude-latitude for the
evaluation of the nonlinear terms (note the rounding towards powers of 2 that allow efficient
FFT transforms). This grid is called theGaussian gridor transform grid. The calculation
of grid spacing based on the number of Gaussian grid points overestimates actual resolution
because it is designed to avoid aliasing on nonlinear interactions and the real resolution is
provided by the wavenumbers associated with the spectral decomposition.

The transform methods allows thus to calculate some terms inspectral space (linear dy-
namics) and others in the transformed space (nonlinear terms and physical parameterizations)
so as to use the most appropriate technique for each process.In practice it means the model
keeps both a spectral and grid representation of the variables. The high convergence rate of
spectral methods is inherited with the spherical harmonics, as long as the physical solution is
sufficiently regular. On the contrary, when fronts or other fields with jumps are present such
as specific humidity fields, Gibb’s phenomena appear and local spatial oscillations near the
discontinuity emerge when summing up the spectral series. The associated over- or under-
shooting on the physical grid can the lead to spurious physical reactions. An overshooting
of specific humidity leads for example to the poetically named spectral rain. Because of the
calculation of some terms on the physical grid, the convergence of meridians can also again
be a problem. For the advection part, this can be solved by theSemi-Lagrangian approach.

19.8 Semi-Lagrangian methods

x

y

particle intn+1

particle intn
i

j

Figure 19-9 Semi-Lagrangian meth-
ods integrate backwards trajectories in
order to find the location from where
originates a particle arriving on a grid
node (i, j) at time tn+1. Once this
location known, the concentration at
that location must be obtained by in-
terpolation of nearby data. The inter-
polated value is conserved during ad-
vection and is thus the concentration in
(i, j) at tn+1.

For advection, we again turn attention to passive-tracer concentrationc which is con-
served along a trajectory of an parcel of fluid when diffusionis negligible. In this case, the
Lagrangian approach allows to satisfy the conservation property of a parcel exactly at the
price of calculating its trajectory. One of the disadvantage of advection schemes using the
pure Lagrangian method is the inhomogeneous distribution of particles after some time. This
is because we follow the same set of particles all the time, some of which flow out of the
system or are caught in stagnation points.Semi-Lagrangienmethods use a different set of
particles each time step. The set is chosen intn so that intn+1 the particles fall on the nodes
of an underlying regular numerical grid. This amounts to integrate backward trajectories in
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order to find the place from where a particle originates that arrives at a given grid location.
Once knowing the location of the particle intn we need to assess its associated concentration
in this location. Since for timetn+1 we move particles to a regular grid, we can assume
that in tn we have at our disposal the values of the preceding set of particles on exactly that
regular grid. Therefore we need an interpolation using values of the surrounding grid nodes
to get the value of the new particle (Figure19-9).

x
i

u∆t

i − 1 + p

p∆x

Figure 19-10 Semi-Lagrangian
method in 1D. The particle in light
gray is displaced during time interval
tn tn+1 by a distanceu∆t to reach a
grid node labeledi in tn+1.

Let us consider again the 1D advection case with positive velocity, assuming we have a
uniform particle distribution at timetn (Figure19-10). The particle arriving in grid nodexi
at timetn+1 was at a position

x = xi − u∆t (19.29)

in tn. In a uniform grid with spacing∆x this position lies within the grid interval

xi−1+p ≤ x = xi − u∆t ≤ xi−p, p = integer part ofu
∆t

∆x
. (19.30)

and to assess the value ofc̃n+1
i we simply have to know the value ofc̃n in x, a value we can

obtain by interpolation. If the interpolation is linear we get:

c̃n+1
i =

(xi+p − x)
∆x

c̃ni−1+p+
(x− xi−1+p)

∆x
c̃ni+p = C̃c̃ni−1+p+(1−C̃)c̃ni+p, C̃ =

(
u∆t

∆x
− p
)
.

The scheme is monotonic and thus of first order. We can easily see that ifu∆t ≤ ∆x
the scheme is equivalent to the upwind scheme (p = 0). However, contrary to the upwind
scheme, no stability condition is necessary here, because the method will use the correct
grid interval from which to interpolate. The diffusion is however still present, though maybe
reduced in the sense that large time steps can be used and the total number of time steps
and associated numerical diffusion reduced for a given simulation length. For less diffusive
interpolations, parabolic interpolations will be equivalent to the Lax-Wendroff method5.

In 2D dimensions, the approach is generalized readily with 2D trajectories integrated
backward in time and spatial interpolations (bi-linear or bi-parabolic) at the point which ar-
rives on the regular grid at instanttn+1. The trajectory calculation can become quite com-
plicated if U∆t ≥ ∆x because if the velocity varies on the grid scale∆x, intermediate
time-steps are necessary during the trajectory calculation in order to maintain precision on
the trajectory. However, if the velocity is relatively smooth in the numerical grid (which
will be the case near the pole),i.e., ∆x � L simple trajectory integrations will suffice. In
fact if ∆x � U∆t � L the Semi-Lagrangian approach will be much more efficient than
the Eulerian approach because then during each time step a large number of grids can be

5Note the difference: in Eulerian methods we spoke about interpolation for flux calculations to be differenced
subsequently, here we speak about interpolations of the solution itself.
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“jumped over” by the advection, without need for interpolation (and associated diffusion)
there and still resolving correctly the spatial scales of the trajectory. This is the situation with
the largest benefit for the Semi-Lagrangian approach. The method should also be considered
advantageous if a large number of passive tracers are to be advected since trajectories need to
be calculated for one of them, the other tracers being advected by the same flow. If∆x ∼ L
time steps are similar to the Eulerian approach if a reasonable accuracy is required. The ma-
jor advantage in this case is the stability of the method evenfor occasionally too large time
steps. For accuracy one should however not use larger time steps thanU∆t ∼ L.

For source terms or diffusion, fractional step approaches are possible, first using a Semi-
Lagrangian advection followed by an Eulerian diffusion on the regular grid or in spectral
space for example. Alternatively the evolution of local source terms can be taken into ac-
count along the trajectory (REFERENCE). Contrary to the finite-volume approach of Eule-
rian methods, conservation properties are more difficult tohandle but are possible to imple-
ment (REFERENCE).

Analytical Problems

19-1. Consider the regular gardening greenhouse and idealize thesystem as follows: The
ground and glass act as black bodies (absorbing all the radiation directed toward them),
the air plays no role, the ground absorbs all radiation, and the glass is perfectly transpar-
ent to short-wave (visible) radiation and totally opaque tolong-wave (heat) radiation.
Further, the glass emits its radiation upward and downward in equal parts. Compare the
ground temperature inside the greenhouse with that outside. Then, redo the exercise
for a greenhouse with two layers of glass separated by a layerof air.

19-2. Consider the crudest heat budget for the earth (without atmosphere and hydrological
cycle) and assume the following dependency of the albedo on temperature: At low
temperatures, much ice and clouds cover the earth, yieldinga high albedo, whereas at
high temperatures, the absence of ice and clouds reduce the albedo to zero. Taking the
functional dependence as

α = 0.5 for T ≤ 250 K

α =
270− T

40
for 250 K ≤ T ≤ 270 K

α = 0 for 270 K ≤ T, (19.31)

solve for the earth’s average temperatureT . Discuss the several solutions.

19-3. Using the global heat budget of the earth model, complete with an atmospheric layer
and a hydrological cycle, explore a worst-case scenario whereby elevated concentra-
tions of greenhouse gases completely block the transmission of long-wave radiation
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from the earth’s surface, the intensity of the hydrologicalcycle is unchanged, and the
anticipated global warming has caused the complete meltingof all ice sheets, effec-
tively eliminating all reflection by the earth’s surface of short-wave solar radiation.
What would then be the globally averaged temperature of the earth’s surface? (Ex-
cept for those transmission and reflection coefficients thatneed to be revised, use the
parameter values quoted in the text.)

19-4. In addition to the problem of decreasing grid spacing near the poles, which additional
problem can you identify at the poles?Hint: Think about boundary conditions for an
AGCM on longitude first and then on latitude.

Numerical Exercises

19-1. What is the spatial resolution in km along the Equator for a T256 spectral model? How
many grid points has the underlying Gaussian grid that avoids aliasing in the advection
terms?

19-2. Usespherical.m to look at other base functionsYm,n than those of figure19-7

19-3. Estimate the numerical cost of the forward and inverse transform associated with the
Legendre functions.

19-4.



Edward Norton Lorenz
1917 –

Text of first bio (here)
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Joseph Smagorinsky
1924 – 2005

A native of New York City, Joseph Smagorinsky studied meteorology and began a career with
the U.S. Weather Bureau. In 1955, he founded theGeophysical Fluid Dynamics Laboratory,
which was first established in Washington, D. C., and later relocated at Princeton University.
The 1950s were exciting years when the prospect of computersgave great hopes that weather
could be predicted by machines. Recognizing this opportunity, Smagorinsky developed nu-
merical methods for predicting weather and climate, and by so doing profoundly influenced
the practice of weather forecasting. In particular, he madethe first attempt in 1955 to predict
precipitation.

Besides numerical methods and models, Smagorinsky also contributed to weather pre-
diction by playing a leading role in the establishment of a global observational network. As
director of the Geophysical Fluid Dynamics Institute, Joseph Smagorinsky showed that he
was also a very able administrator. (Photo courtesy of Princeton University)
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Chapter 20

Oceanic General Circulation

(October 18, 2006) SUMMARY: The concepts of geostrophy, hydrostaticity and potential
vorticity are merged to study the large-scale baroclinic circulation in the midlatitude oceans.
The results lead to the Sverdrup balance, the beta spiral anda number of properties of large-
scale oceanic motions. The numerical part of the chapter provides an overview of the issues
raised in constructing a model of the 3D circulation at the scale of ocean basins or the planet.

20.1 What drives the oceanic circulation

Ocean motions span a great variety of scales in both time and space. At one extreme, we find
microturbulence, not unlike that in hydraulics, and at the other, the large-scale circulation,
which spans ocean basins and evolves over climatic time scales. The latter extreme is the
objective of this chapter.

There are multiple mechanisms that set oceanic water massesin motion: the gravitational
pull exerted by the moon and sun, differences in atmosphericpressure at sea level, wind
stress over the sea surface, and convection resulting from atmospheric cooling and evapora-
tion. The moon and sun generate only periodic tides with negligible permanent circulation,
whereas differences in atmospheric pressure play no significant role. On the other hand, deep
convection at high latitudes generates currents responsible for a very slow movement in the
abyss, called theconveyor belt(Figure20-1). This leaves the stress exerted by the winds
along the sea surface as the main driving force of basin-widecirculations in the upper part of
the water column.

Ocean waters respond to the wind stress because of their low resistance to shear (low
viscosity, even after viscosity magnification by turbulence) and because of the relative con-
sistency with which winds blow over the ocean. Good examplesare thetrade windsin the
tropics; they are so steady that, shortly after ChristopherColumbus and until the advent of
steam, ships chartered their courses across the Atlantic according to those winds; hence their
name. Further away from the tropics are winds blowing in the opposite direction. While
trade winds blow from the east and slightly toward the equator (they are also more aptly

567
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Figure 20-1 Cold and salty waters
newly formed by deep convection at
high latitudes are carried away by the
conveyor belt along the ocean bottom
across the ocean basins. These water
eventually resurface in warmer climes
and are returned towards places of deep
convection. The time to complete a
loop is on the order of several hundred
years. (Broecker, 1991)

called northeasterlies and southeasterlies, depending onthe hemisphere), midlatitude winds
blow from west to east and are calledwesterlies(Figure20-2). Generally, much more vari-
able than the trades, these westerlies nonetheless possessa substantial average component,
and the combination of the two wind systems drives significant circulations in all midlatitude
basins: North and South Atlantic, North and South Pacific, and Indian Oceans.

In the ocean, the water column can be broadly divided into four segments. At the top
lies themixed layerthat is stirred by the surface wind stress. With a depth on theorder of
10 m, this layer includes Ekman dynamics and is characterized by ∂ρ/∂z ' 0. Below lies
a layer called theseasonal thermocline, a layer in which the vertical stratification is erased
every winter by convection. Its depth is on the order of 100 m.Below the maximum depth of
winter convection is themain thermocline, which is permanently stratified (∂ρ/∂z 6= 0). Its
thickness is on the order of 500 to 1000 m. The rest of the watercolumn, which comprises
most of the ocean water, is theabyssal layer. It is very cold, and its movement is very slow.

When considered together, the main thermocline and the abyssal layer form what is called
theoceanic interior. While mesoscale motions exist in both these layers, under the action of
pressure fluctuations in the upper layers, it is believed that, in first approximation, the study of
the slow background motion in the oceanic interior can proceed independently of the smaller-
scale, higher-frequency processes.

Although mariners have long been aware of the major ocean currents, such as the Gulf
Stream1, ocean circulation theory was long in coming, chiefly for lack of systematic data,
especially below surface. The discipline began in earnest with the seminal works of Harald
Sverdrup2, who formulated the equations of large-scale ocean dynamics (Sverdrup, 1947)
and Henry Stommel3, whose major contributions to ocean circulation are many and diverse,
beginning with the first correct theory for the Gulf Strean (Stommel, 1948). Today, ocean
circulation theory is a significant body of knowledge (Warren and Wunsch, 1981; Pedlosky,
1996).

1Benjamin Franklin receives credit for publicizing and mapping the Gulf Stream in 1770.
2Harald Ulrik Sverdrup (1888–1957), Norwegian oceanographer who made his greatest contributions while being

director of the Scripps Institution of Oceanography in California. A unit of volumetric ocean transport bears his
name: 1 sverdrup = 1 Sv = 106 m3/s.

3See biography at end of this chapter.
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Figure 20-2 The major winds over the world ocean for the month of January averaged over the years
1968–1996 and associated sea surface pressure. (NCEP)
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20.2 Large-scale ocean dynamics (Sverdrup dynamics)

Because oceanic basins have dimensions comparable to the size of the earth, model accu-
racy demands the use of spherical coordinates, but because the present book only intends to
present an introduction to physical oceanography, clarityof exposition trumps accuracy, and
we continue to use Cartesian coordinates, with inclusion nonetheless of the beta effect (see
Section9.4). Spherical coordinates (Pedlosky, 1996, Chapter 1) do notchange the qualitative
nature of the theoretical results exposed here.

Large-scale flows in the main thermocline and abyss are slow and nearly steady. Their
long time scales allows us to ignore all time derivatives, while their low velocities over long
distances make their Rossby number very small and allow us toneglect the nonlinear advec-
tion terms in the momentum equations. Furthermore, there isa strong indication that dissi-
pation is not an important feature of large-scale dynamics,at least not at the leading order
(Pedlosky, 1996, page 6). Without time derivatives, advection and dissipation, the horizontal
momentum equations reduce to the geostrophic balance:

− fv = − 1

ρ0

∂p

∂x
(20.1a)

+ fu = − 1

ρ0

∂p

∂y
, (20.1b)

in which the Coriolis parameterf includes the so-called beta effect, which is important over
the long length scales under consideration:

f = f0 + β0 y. (20.2)

They–coordinate is thus directed northward, leaving thex–direction to point eastward. The
coefficients (see Equation9.18) f0 = 2Ω sinϕ andβ0 = 2(Ω/a) cosϕ both depend on the
choice of a reference latitudeϕ, which may be taken as the middle latitude of the basin under
consideration.

The geostrophic equations are complemented by the hydrostatic balance

∂p

∂z
= − ρg, (20.3)

the continuity equation (mass conservation for an incompressible fluid)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (20.4)

and the energy equation, which states conservation of heat and salt and is expressed as con-
servation of the density anomaly with the same stationarityapproximation as beforeJMB from⇓

JMB to⇑
u
∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
= 0. (20.5)

In the preceding equations,u, v andw are the velocity components in the eastward, northward
and upward directions, respectively,ρ0 is the reference density (a constant),ρ is the density
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anomaly, the difference between the actual density andρ0, p is the hydrostatic pressure in-
duced by the density anomalyρ, andg is the earth’s gravitational acceleration (a constant).
This set of five equations for five unknowns (u, v, w, p andρ) is sometimes referred to as
Sverdrup dynamics. Note that the problem is nonlinear owing to product of unknowns in
the density equation (20.5). We now proceed with the study of some of its most immediate
properties.

Elimination of pressure between the two momentum equations, by subtracting they–
derivative of (20.1a) from thex–derivative of (20.1b) yields

∂

∂x
(fu) +

∂

∂y
(fv) = 0, (20.6)

or, sincef is a function ofy but not ofx,

f

(
∂u

∂x
+

∂v

∂y

)
+ β0v = 0. (20.7)

With the use of continuity equation (20.4), it can be recast as:

β0v = f
∂w

∂z
. (20.8)

This most simple equation, called theSverdrup relation, has a clear physical meaning.
The factor∂w/∂z represents vertical stretching, and any stretching (∂w/∂z > 0) or squeez-
ing (∂w/∂z < 0) demands a change in vorticity for the sake of potential-vorticity conserva-
tion, which holds in the absence of dissipation. There is no relative vorticity here because
of the low Rossby number, and the only way for a parcel of fluid to change its vorticity is to
adjust its planetary vorticity (Benoit: RelativeU/L, planetary asf , and small Rossby num- JMB from⇓
ber indeed suggests relative vorticity not important. Maybe this is a little bit too fast. What
counts is PV as in (16.16)? There planetary part over relative there scales likeβL2/U ... . JMB to⇑
This requires a meridional displacement,v, to reach the correctf value.

This, however, is not the end of the story. We can go further with a vertical integration:

β0

∫ H

0

v dz = f [w(z = H)− w(z = 0)], (20.9)

wherez = 0 represents the ocean bottom andz = H the base of the seasonal thermocline.
Over a flat bottom,w(z = 0) = 0. At the base of the seasonal thermocline, the water column
receives Ekman pumping from above due to the wind-stress curl, and thusBenoit: I do not JMB from⇓
think we showed that the pumping is uniform below the Ekman layer and hence can be used
to calculate the pumping at the seasonal thermocline?? Somejustification needed? JMB to⇑

w(z = H) = wEk =
1

ρ0

[
∂

∂x

(
τy

f

)
− ∂

∂y

(
τx

f

)]
, (20.10)

by virtue of (8.36). If we define the meridional transport as V=
∫ H
0 v dz, we then have:
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V =
f

β0
wEk

=
f

ρ0β0

[
∂

∂x

(
τy

f

)
− ∂

∂y

(
τx

f

)]

=
1

ρ0β0

(
∂τy

∂x
− ∂τx

∂y

)
+

τx

ρ0f
. (20.11)

We note this surprising result that the vertically cumulated flow component in the north-
south direction is not dependent on the basin shape, size or wind-stress distribution but solely
dependent on the local wind stress and its curl. This equation is called theSverdrup balance.

The same cannot be said of the zonal transport U=
∫ H
0 u dz, which can be obtained

from the zonal integration of the vertically averaged continuity equation (20.4), still over aJMB from⇓
flat bottomJMB to⇑

∂U
∂x

+
∂V
∂y

+ wEk = 0. (20.12)

With (20.11), it becomes

∂U
∂x

+
∂

∂y

(
f

β0
wEk

)
+ wEk = 0, (20.13)

which provides after some rearrangementsJMB from⇓
JMB to⇑

U = − 1

ρ0β0

∫ x

x0

∂

∂y

(
∂τy

∂x
− ∂τx

∂y

)
dx − τy

ρ0f
, (20.14)

where the starting point of integration (x = x0) is to be selected wisely. We shall address this
most important point shortly.

We recognize in expressions (20.11) for V and (20.14) for U that the last terms+τx/ρ0f
and−τx/ρ0f are the opposite of the Ekman drift (see Equations (8.34a)–(8.34b)). Since this
Ekman drift exists in the seasonal thermocline above our layer of interest, we can add it to
the transport and obtain the total transport of the water column :JMB from⇓

JMB to⇑

UTotal = U + UEk = − 1

ρ0β0

∫ x

x0

∂

∂y

(
∂τy

∂x
− ∂τx

∂y

)
dx (20.15a)

VTotal = V + VEk =
1

ρ0β0

(
∂τy

∂x
− ∂τx

∂y

)
. (20.15b)

Ideally, one would wish to impose a boundary condition on theflow at both eastern and
western ends of the basin. For example, if we consider a basinlimited on both eastern and
western sides by north-south coastlines (a fair approximation of the major oceanic basins),
the zonal flow and its vertical integral (UTotal) ought to vanish at those ends. This, however,
is impossible to require simultaneously because there is only one constant (x0) to adjust.
If we setx0 = xE , the value ofx at the eastern shore of the basin, then we enforce the
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impermeable-wall condition on the eastern side but make no provision for meeting a boundary
condition on the western side, and vice versa if we takex0 = xW , the value ofx at the western
shore of the basin. The consequence is that the theory fails at one end of the domain, and, as
we will be see in Section20.4, a boundary layer exists along the western side. JMB from⇓

Benoit: Alternative derivation: start with:

− fv = − 1

ρ0

∂p

∂x
+

∂

∂z

(
νE
∂u

∂z

)
(20.16)

fu = − 1

ρ0

∂p

∂y
+

∂

∂z

(
νE
∂v

∂z

)
(20.17)

Vertical integration over total, uniform, depth, use of surface stress condition and elimination
of pressure immediately leads to (20.15b). Then, volume conservation vertically integrated
over full depth and integrated onx immediately yields (20.15a)

Shows necessary ingredients: stationary, linear, beta effect, no lateral friction, arbitrary
vertical friction, wind-stress, no bottom stress, arbitrary density (!!density structure disap-
pears from the equation) and most importantly: flat surface and bottom (integral of deriva-
tive=derivative of integral). Otherwise appearance of joint effect of baroclinicity and relief
(JEBAR): Exercise? Would also allow to add bottom friction easily or laplacian friction.
Munk etc.. JMB to⇑

20.3 Thermohaline circulation

As in Section20.1, the region below the seasonal thermocline is comprised of two subregions,
the main thermocline and the abyssal layer. The dynamics expounded in the previous section
are applicable to both these regions. We now turn our attention more specifically to the upper
of these two layers, the main thermocline.

In contrast to the abyssal layer, which is fed by deep-water convection at high latitudes,
the main thermocline is the region of the ocean in which the circulation is primarily caused
by the wind-driven Ekman pumping received from the surface layer and is most pronounced
at mid-latitudes. Figure20-3, compiled by Reid and Lynn (1971), summarizes the meridional
distribution of density in the North and South Atlantic, North and South Pacific, and Indian
Oceans. They reveal similar patterns in all five oceans, namely: the pycnocline is very strong
and shallow (100–200 m) at the Equator, it spreads verticalldownward toward the poles,
with a tendency to split into two branches, one surfacing around 25◦ latitude and the other
plunging down to 1000 m around 35◦ before heading upward again and surfacing around 45◦

latitude.
The process by which water enters the main thermocline is called subduction(Stommel,

1979; Cushman-Roisin, 1987).
Equations of Sverdrup dynamics with density as the verticalcoordinate. Mention that

reasons to work in density coordinates are that density is conserved along the flow, and it
makes for simpler equations. We now view vertical position as a function of density, with
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Figure 20-3 Meridional structure of potential density (σθ top andσ4 bottom, in kg/m−3) in the five
major ocean basins. Top panel: North and South Atlantic. Middle panel: North and South Pacific.
Bottom panel: Indian Ocean. Data were gathered during the World Ocean Circulation Experiment
(1990–2002). Benoit I to not think we introduced the concept of potential densitywith respect to
4000m. Maybe use density section with onlyσθ? (Emery, Talley and Pickard, 2006)
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z = z(x, y, ρ) indicating the vertical position of density surfaceρ at location (x, y).

− fv = − 1

ρ0

∂P

∂x
(20.18a)

+ fu = − 1

ρ0

∂P

∂y
, (20.18b)

whereP = p + ρgz is the Montgomery potential (see Section12.1) and is governed by the
hydrostatic balance

∂P

∂ρ
= gz. (20.19)

The remaining equations are the continuity equation:

∂

∂x

(
u
∂z

∂ρ

)
+

∂

∂y

(
v
∂z

∂ρ

)
= 0, (20.20)

and the equation that specifies the vertical velocityw (see (12.6)) : JMB from⇓
JMB to⇑

w = u
∂z

∂x
+ v

∂z

∂y
=

1

ρ0f
J(P, z) (20.21)

where the last expression is obtained using (20.18) and where the Jacobian is calculated on
isopycnal surfaces.

Shows that ifP = P (z), there is no vertical movement.
Recall 2D advection since no flow across density surfaces (isopycnal surfaces).

20.3.1 Thermal wind and beta spiral

If we take the derivatives of Equations (20.18a) and (20.18b) with respect to density and then
eliminate theρ–derivative ofP by use of the hydrostatic Equation (20.19), we obtain the
thermal-wind relations in density coordinates:

∂u

∂ρ
= − g

ρ0f

∂z

∂y
(20.22a)

∂v

∂ρ
= +

g

ρ0f

∂z

∂x
. (20.22b)

These are powerful relations in analyzing large-scale oceanic data. Because oceanic veloc-
ities are almost always fluctuating at the mesoscale, ... butdensity data are comparatively
easy to obtain by dropping a Conductivity-Temperature-Depth (CTD) probe at repeated in-
tervals from a ship cruising across the ocean. After some smoothing over mesoscale wiggles,
the data provide the large-scale trends of density across the ocean basin, and we can map
the elevations of various isopycnal surfaces (surfaces of constant density),i.e., the function
z(x, y, ρ) for selected values ofρ (Figure here as an example). From these, it is straightfor-
ward to determine the zonal and meridional slopes. Thus, we can consider∂z/∂x and∂z/∂y
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as known quantities and, from them, infer the velocity shear(20.22). Takingu = v = 0 at the
bottom or, for convenience, at the depth of the lowest density data if these did not extend all
the way to the bottom, we can in principle integrate∂u/∂ρ and∂u/∂ρ upward and determine
the horizontal velocity. However, ...JMB from⇓

Benoit: Personally I do not like the approach to vertically integrate the thermal wind
equation (first we derive with respect to z, to integrate on z immediately afterwards), because
it suggests we have two constants of integration (one on eachvelocity component). This is
not the case because we have the constraint that the geostrophic current is divergence free.
Working directly with pressure (or Montgomery potential) shows that a single integration
constant is available (pressure field at a given level). Using pressure also provides directly
dynamic height concept. Level of no motion is then simply a level where pressure is supposed
constant. Since now altimeter data are available, also level of no motion assumption replaced
by direct use of surface pressure from satellite observation.JMB to⇑

Additional information can be obtained by combining the thermal-wind relations (20.22)
with Equation (20.21) giving the vertical velocity. For this, we decompose the horizontal
velocity (u, v) in its magnitudeU and azimuthθ with

u = U cos θ, v = U sin θ. (20.23)

The azimuth angleθ is measured counterclockwise from East and is related to thevelocity
components byθ = arctan(v/u) and

∂θ

∂ρ
=

1

u2 + v2

(
u
∂v

∂ρ
− v

∂u

∂ρ

)

=
g

ρ0f(u2 + v2)

(
u
∂z

∂x
+ v

∂z

∂y

)

=
gw

ρ0f(u2 + v2)
. (20.24)

(20.25)

As we can see, there is a direct relation between the verticalvelocity and the veering
(twisting) of the horizontal velocity in the vertical. In the Northern Hemisphere (f > 0),
∂θ/∂ρ has the same sign asw. Thus, in the subtropical gyre of the midlatitudes, where Ekman
pumping is downward (w < 0), the vector of horizontal velocity turns clockwise with depth
(Figure20-4). refer to (Stommel and Schott, 1977). Give an example from observations.

The veering implies the waters at different levels in the vertical come from different di-
rections, and thus possess different origins. All levels ofmotion, however, are under the tight
constraint of the Sverdrup balance (??). The local wind-stress curl appears therefore as a
constraint upon, and not the forcing of, the flow.

20.3.2 Potential vorticity

The Montgomery potentialP plays the role of a Bernoulli function because it is constant
along streamlines:

u∂P/∂x+ v∂P/∂y = 0



20.3. THERMOHALINE CIRCULATION 577

Figure 20-4 Motion on a sloping den-
sity surface illustrating the veering of
the geopstrophic current vector with
depth. For downward motion in the
Northern Hemisphere, the veering is to
the right with increasing depth.

and there is no ‘vertical velocity’ in density coordinates,when density conserved along the
flow.

Potential vorticity is

q = − f ∂z
∂ρ

.

Relation: PV function ofP andρ only.
Previous equations hold wherever the flow is on a large scale and dissipation is weak, that

is, in both main thermocline and abyssal layer.

20.3.3 Flow in the main thermocline

The dynamics of the circulation in the main ocean thermocline are governed by a small num-
ber of parameters, namely the constantsf0, β0, ρ0 andg that enter the governing equations,
and a few external scales that enter through boundary conditions:Lx andLy, the zonal and
meridional lengths of the basin,WEk a typical magnitude of the Ekman pumping, and∆ρ
a typical density variation across the thermocline. Following Welander (1975), the thermo-
cline depthH can be derived by balancing the various terms in the equations of Sverdrup
dynamics. First, the scale forP is ∆P = gH from the hydrostatic balance (20.19), from
which follow the velocity scales from the geostrophic relations (20.18): u ∼ ∆P/ρ0f0Ly =
gH∆ρ/ρ0f0Ly andv ∼ ∆P/ρ0f0Lx = gH∆ρ/ρ0f0Lx. Then, balancing the two sides of
Equation (20.21) for the vertical velocity yieldsBenoit: Maybe a comment or justification JMB from⇓
why no compensation is found here in the combination of two horizontal terms related to
geostrophy. JMB to⇑

WEk ∼
gH2∆ρ

ρ0f0LxLy
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Figure 20-5 Streamfunction with bottom friction and wind effect only (left), adding beta effect (middle)
and finally advection. Wind stress is applied by the schematic distribution (20.27).

from which follows the depth scaleH of the main thermocline:

H =

√
ρ0f0LxLyWEk

g∆ρ
. (20.26)

(Welander, 1975). [Throw some numbers in to show that it is correct.]

Ventilated thermocline theory (Luytenet al., 1983; Huang, 1989a, 1989b). No details.

Closed contours in western sector. Theory of PV homogenization (qualitative descrip-
tion). The Rhines ratio to compare circulation in ventilated and unventilated regions.

20.4 Western boundary currents

Gulf Stream (Stommmel, 1948). A figure. Other oceans.

Scaling of width (inertial only, yielding radius of deformation).

τy = sin(πy/(2L)) (20.27)

20.5 Abyssal circulation

Key papers by Stommel and Arons (1960a, b).
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Figure 20-6 Ocean model grid with
numerical grid poles over continents.
(LODYC, ORCA configuration, Madec
et al.; 1998)

20.6 Oceanic circulation models

A milestone in numerical ocean modeling was the developmentof the Ocean general circula-
tion model (OGCM) of the GFDL4 by Brian (1969). This model, and its successive variants
are known under the name Modular Ocean Model (MOM) and the open release of the source
code by Mike Cox in 1984 made the model widespread, even or because the numerics were
simple for today’s standards and were therefore adaptable by modelers. The model was in-
deed based on a direct finite differencing of the governing equations in longitude-latitude
coordinates and a stepwise representation of topography and coastlines (Figure20-7). This
allowed for first general circulation studies with primitive equations, but a series of necessary
improvements appeared. The stepwise topography of Figure20-7can for example not resolve
small slopes and associated potential vorticity constraints, and partially masked cells were in-
troduced (e.g., Adcroft et al., 1997). Also stepwise topography is not adapted for overflow
problems typical during deep-water formations (Figure20-8). For such situations, special
algorithms have been developed (e.g., Beckmann and Döscher, 1997). The pole problem
and convergence of meridians of spherical coordinates can now be avoided by rotating the
spherical coordinate system to place “poles” on continentsor more generally by generating
curvilinear orthogonal grids that maintain topologicallya rectangular grid (Figure20-6).

In addition to such enhancement, also found in a series of other models similar to MOM,
new generations of models are being developed, the most drastic change in terms of numer-
ical implementation being the move from structured to unstructured grids. The presence of
lateral continental boundaries in the ocean was indeed an obstacle to the use of spectral mod-
els as those employed in the atmosphere and instead, the roadtowards unstructured grids
was opened. Structured grids, natural for models discretized along Cartesian coordinates or
longitude-latitude, are topologically similar to a rectangular grid, each grid point having one

4Geophysical Fluid Dynamics Laboratory.
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Iceberg

z

∆x

∆z

Unresolved bottom slope

Iceberg

Figure 20-7 Masking of a regular grid allows to discretize topography. For rectangular grid boxes, the
small slopes can only be resolved if∆z < ∆x|∂b/∂x| when the bottom is given byz = b. Otherwise
the small slope will be approximated by several grid boxes over a flat bottom followed by a single step.
On the contrary, should there be ice coverage, if the grid spacing is too small near the surface, masking
should be applied there too.

and only one neighbor to the left, right, below, above, “north” and “south”. In unstructured
grids, on the contrary, each grid cell as a variable number ofneighbors (Figure20-9), which
makes them very flexible in terms of geographical coverage. Coastlines can be followed by
adding small elements along the coast, canyons resolved in the same way and open bound-
aries pushed further away by increasing the elements size indistant regions. Intense model
developments are presently going on (See for example Pietrzak et al., 2004)) because the
major change in model design does not allow to reuse existingcomponents. An unstruc-
tured finite-volume approach is a generalization of the finite-volume approach presented in
Section5.5, where integrations are performed over a each finite volume,the group of which
covers the domain of interest. Physical coupling between the finite volumes arises then nat-
urally through the fluxes across the shared interfaces. Finite elements start with another
approach based on the Galerkin method (Section8.8). The solution is expanded in a series
of non-orthogonal functions, each governing equation multiplied by these base functions and
integrated over the domain of interest. The finite-element methods are using trial functions
of a special nature, being only non-zero over a given element. Connection between elements
than arise because functions are forced to obey some continuity requirement between ele-
ments. The non-orthogonal nature of the base function leadshowever to large but relatively
sparse systems to be solved at each time-step. Beside the very general finite volume or finite-
elements approach some special methods have also been implemented for ocean models such
as a spherical cube grid (a three-dimensional generalization of the squaring of a circle, with
special connectivity of a few nodes, Adcroftet al. 2004) or spectral elements (Haidvogelet
al., 1991), a method in which a domain is covered by large elements, inside of which spectral
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z

Real flow

Numerical transport =
Horizontal advection

followed by
vertical mixing of instability

Real topography

ρ0

ρ > ρ0 Figure 20-8 Vertical section of a
schematic overflow where dense waters
cascade down a slope and remain on
the bottom. For a step-wise topogra-
phy approximation, the advection car-
ries the dense water horizontally over
a model grid point in which density
is lower. The static instability is gen-
erally removed by a mixing algorithm
and hence instead of a displacement of
the water mass, we end up with a mixed
plume.

series are used to approximate the solutions.
The advantage of variable resolution of such flexible tools makes again appear the funda-

mental problems of parameterization. Scales resolved by the grid may change regionally and
hence parameterization should change within the same model, blurring the distinction be-
tween resolved and unresolved motions. Among the processesthat require parameterization,
deep-water formation is an example (see Section11.4). The physical process is dominated
by non-hydrostatic effects, hence any hydrostatic model requires a parameterization. Because
of the validity of hydrostatic approximation being relatedto the aspect ratio of the flow (see
Section4.3), non-hydrostatic effects are only relevant for extremelyhigh resolutions. Yet
such local refinement are possible with flexible horizontal grids and todays hydrostatic ocean
models would then require a non-hydrostatic option such as in the MITgcm (Marshallet al.
1998). Other approximations that are currently used in ocean models include the Boussinesq
approximation, hence volume conservation instead of mass conservation. The approximation
can be relaxed when needed (e.g., Greatbatchet al., 2001), for example when thermal expan-
sion due to a general temperature increase as in climate change scenarios has to be taken into
account.

The dynamically relevant density itself is obtained from the solutions of the governing
equations for salt and heat and the use of the nonlinear ocean-water equation of state depend-
ing on salinity, temperature and pressure. This equation ofstate is computationally rather time
consuming in its original form and several levels of simplifications have been adopted in the
different models. For isopycnal models, subtle additionalproblems appear (e.g., McDougall
and Dewar, 1998) notably because salinity and temperature are not independent anymore on
isopycnals.

The upper boundary of the ocean model requires special care because this is the location
where the atmospheric driving forces are applied to the system. There are the distinctions be-
tween rigid-lid model or free-surface models, with a current trend to prefer the latter because
of more flexibility and a wider range of applicability, including gravity wave representation5.
The coupling with the atmosphere (see Section19.4) remains a difficult problem, since the

5If the free surface is treated implicitly or semi-implicitly, a sufficiently large time step can be used to filter out
these fast waves if a rigid-lid type of solution is preferred.
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Figure 20-9 Ocean finite element
model grid. (SLIM, Legrand et al.
2000)

ocean model must simulate both surface temperature and mixed-layer depth correctly. The
former is essential for air-sea exchange calculations while the product of temperature and
mixed-layer depth is directly related to the heat content and therefore heat budgets. Because
the mixed-layer evolution critically depends on turbulence, special care is needed in the spec-
ification of the eddy viscosity and diffusivities, particularly if vertical grid spacing is coarse.

20.7 Coordinate systems

The vertical resolution near the surface is essential to capture the air-sea exchanges and most
models use smaller vertical grid spacings near the ocean’s surface. For the ocean interior, ver-
tical gridding is also considered crucial and we will dedicate a whole section to this problem,
separating the vertical-coordinate issue from any horizontal treatment because of the small
aspect ratio and different dynamics encountered in the vertical direction and the horizontal
plane. We therefore suppose the horizontal discretizationis performed using one of the meth-
ods outlined before and focus now on the vertical grid. For this, we suppose that a grid point
which is topologically above or below another grid point is also physically above or below
this point, aligned with the local gravity. Except this requirement, we will allow for the pos-
sibility that on each vertical, grid points can be placed freely so as to capture processes of
interests, such as a pycnocline. The generation and use of such grids can be achieved in two
ways: We can start from the original equations and apply the finite-volume integration tech-
nique over the desired vertical cells to write out governingequations for each cell average.
Or we can make first a general mathematical coordinate change, after which we integrate (or
discretize) in a uniform grid (Figure20-10; see also Section15.6). Direct integration in phys-
ical space shows that parameterizations are needed becauseintegrals of nonlinear terms are
not known in terms of layer averages. Preliminary coordinate transformation and subsequent
finite differencing hides this integration in the discretization part. Since the same sub-grid
scales are filtered out in both approaches, both need parameterizations. Both approaches lead
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to similar discrete equations, and so grid stretching equals a coordinate change and only the
technical implementations might be easier in one or the other approach.

Primitive equations Equations in new coordinates

Moving layer model

Vertical integration

between moving interfaces

Vertical coordinate change

Vertical integration

in fixed coordinates

Figure 20-10 Equations for discrete layers can be obtained by directly integrating primitive equations
over a moving domain or by a coordinate transformation into afixed domain in which integration is
performed.

Here we present the coordinate transformation approach, inclose analogy with the isopy-
cnal coordinate change of Chapter12. In the original Cartesian system of coordinates,z is an
independent variable. In the transformed coordinate system (x, y, s, t), the new coordinates
becomes an independent variable andz(x, y, s, t) has become the dependent variable6 giving
the depth at whichs is found at location(x, y) and at timet. A line along whichs is constant
is called ancoordinate line(or surface for the three dimensional case). From a differentiation
of the expressiona = a(x, y, s(x, y, z, t), t), wherea is any variable, the rules for the change
of variables follow

∂

∂x
−→ ∂a

∂x

∣∣∣
z

=
∂a

∂x

∣∣∣
s

+
∂a

∂s

∂s

∂x

∣∣∣
z

∂

∂z
−→ ∂a

∂z
=

∂a

∂s

∂s

∂z
∂

∂t
−→ ∂a

∂t

∣∣∣
z

=
∂a

∂t

∣∣∣
s

+
∂a

∂s

∂s

∂t

∣∣∣
z
.

similar to the isopycnal coordinates used in Chapter12. We did not repeat they related terms
because they are similar to those forx. A distinct difference with the isopycnal coordinates
appears, as nows is not a conserved property of the flow anymore but a prescribed function
depending onx, y, z, t. A variable of importance in the coordinate transformationis the
JacobianJ

∂z

∂s
= J (20.28)

which is the change ofz for a unit change ins and hence a measure of the coordinate layer
thickness (analogue to the isopycnal layer thickness). Ifz increases withs, the Jacobian is

6It is the latter relationship that is used in practice, specifying for each grid point of the regularly discretized
transformed space the corresponding position of the grid point in the irregularly covered physical domain.
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positive. The total derivative

daoverdt =
∂a

∂t
+ u

∂a

∂x
+ v

∂a

∂y
+ w

∂a

∂z
(20.29)

where derivatives are taken in the Cartesian coordinate transforms into a similar expression

daoverdt =
∂a

∂t
+ u

∂a

∂x
+ v

∂a

∂y
+ ω

∂a

∂s
(20.30)

where all derivatives are now taken in the transformed space(i.e., ∂a/∂x is performed for
fixed s) and where a new vertical velocity was defined

ω =
∂s

∂t

∣∣∣
z

+ u
∂s

∂x
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z

+ v
∂s
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∣∣∣
z

+ w
∂s

∂z
(20.31)

It is clear thatω is nothing else than the material derivative of the coordinates in z coordinates
andJω the relative velocity of the flow with respect to the movings coordinate surface (recall
Section15.6). Clearly, if s is density, transported without mixing,ω = 0 and we recover the
isopycnal coordinates. In generalJω is however not zero. This variable appears indeed as
a vertical velocity in the new coordinates and measures therefore the flow across the lines of
constants. It is easy to understand that if the ocean surface or ocean bottom is a coordinate
line (with a constants), the “vertical” velocityω is zero there.

The transformation of the volume conservation (4.9) using the rules of change of variables
and the definition of the vertical velocity leads to

∂J

∂t
+

∂

∂x
(Ju) +

∂

∂y
(Jv) +

∂

∂s
(Jω) = 0 (20.32)

with derivatives ins space. In view of the signification ofJ this is interpreted as the ex-
pression of conservation of the quantity “volume” in the transformed space or, alternatively
in terms of budgets over a moving volume inz space (Figure20-11). Interestingly, if we
integrated from bottom to surface for coordinate lines thatare constant on both the surface
and bottom, we obtain

∂η

∂t
+
∂U
∂x

+
∂V
∂y

= 0 (20.33)

because ∫ surface

bottom

Jds = zsurface − zbottom (20.34)

which, for a fixed bottom leads, after derivation with respect to time to the variations in
sea surface heightη. The other two terms involve U and V which are the usual vertically
integrated transports

U =

∫
Juds =

∫
udz, V =

∫
Jvds =

∫
vdz, (20.35)

where the integration is performed from the bottom to the surface. We recover a vertically
integrated volume conservation, already used several times. Note that the equation is valid
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z(s + ds) in t

z(s) in t

z

x dx

dz = ∂z
∂s
ds = J ds

u

Jω
z(s + ds) in t+ dt

z(s) in t+ dt

Figure 20-11 Volume conservation over the variable control volume expresses that the change in vol-
ume∂(Jdxds)/∂t is due to the lateral volume inflowJuds and the flow across the moving interface
Jωdx, which leads to (20.32).

irrespectively of whether the density is uniform or not, as long as Boussinesq approximation
holds.

The special form of the volume conservation leads to a conservative form of the advection
operator

J
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∂t
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∂
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(Ja v) +

∂

∂s
(Jaω) (20.36)

which we can interpret as the evolution of the content ofa within a layer ofs. This form is
particularly well adapted for integration over a finite volume in the transformed space.

The vertical diffusion term is readily translated into the new coordinate system
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)
(20.37)

so that the governing equation for a vertically diffused tracerc would read
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∂
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(Jc ω) =
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κE
J

∂c

∂s

)
. (20.38)

We could also transform the horizontal diffusion term, but generally we combine this oper-
ation with the parameterization of the sub-grid scales not resolved by the vertical grid (see
next section).

In view of the isomorphy of (20.38) with a Cartesian-coordinate version, as-model can
thus be implemented in a general way without much additionalwork, provided the functional
relationship betweens(x, y, z, t) is given, or more practically, the positionsz(x, y, s, t) of the
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grid coordinate surfaces in physical space. This must be specified by the modeler and two
systems we already encountered are the isopycnal (s = −ρ/∆ρ) coordinates7 andz models
(s = z).

Another coordinate change, very popular in coastal modeling, is the so-calledσ coordi-
nate system, a particular form of terrain-following coordinates. The coordinate change reads

s = σ =
(z − b)
h

, J = h (20.39)

and the new coordinates varies between 0 at the bottom and 1 atthe surface, which are both
coordinate lines (Figure20-12). This allows to follow not only any topographic slope but
also free surface movements, solving incidentally the problem of discretizing equations in a
changing domain. Also calculation points are efficiently used because they all fall into the
water column and boundary conditions are topologically simple to implement.

z

z = b, bottomσ = 0

z = b+ h = η, surfaceσ = 1

σ = 1/2h

b
Figure 20-12 Sigma coordinates di-
vide each water column into an equal
number of vertical grid cells.

The application of this coordinate change to global-ocean problems raised however some
concern about the so-calledpressure-gradient problem(e.g., Haney, 1991; Deleersnijder and
Beckers, 1992). Though the problem was initially identifiedfor theσ coordinates, it is more
general and we will present it in the general-coordinate framework. The horizontal pressure
gradient, here alongx, can be evaluated in the new coordinates by using the transformation
rules:
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∣∣∣
z

=
∂p

∂x

∣∣∣
s

+
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∂s

∂s

∂x

∣∣∣
z

(20.40)

while the hydrostatic equilibrium used to calculate pressure reads

∂p

∂z
=

1

J

∂p

∂s
= −ρg (20.41)

Therefore we can derive several, mathematically equivalent expressions of the pressure gra-

7Compared to the presentation in Chapter 12, we keep the coordinate in the same direction asz so that the layer
thickness is directly given by the Jacobianh = J = 1/(∂s/∂z) = −∆ρ/(∂ρ/∂z).
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(20.42d)

where the last expression uses the Montgomery potentialP = p + ρgz. For the second and
third expression, the Jacobian isJxs(a, b) = ∂a/∂x∂b/∂s−∂b/∂x∂a/∂s in the transformed
space, not to be confused with the Jacobian (20.28) of the transformation. A standard test for
terrain-following models is to prescribe a density and pressure field that depends solely onz.
In this case, the horizontal pressure field is identically zero and no motion is generated in
the absence of any other driving mechanism. The numerical discretization of expressions
(20.42a) to (20.42d) or any other equivalent expression in thes coordinates will provide
however a non-zero pressure gradient. Mathematically, thetwo terms on the right hand side
cancel each other, but their numerical discretization doesnot. The reason stems from the
different nature of the terms: the first one involves pressure and hence a vertical, numerically,
integrated quantity, while the second term is a local one. There is no reason the numerical
discretization errors of both terms cancel each other, and as experience shows, a so-called
pressure gradient error remains. This error might not be negligible because the pressure field
p(z) might become very large: For the mathematical expression, we would simply have a
cancellation of two large terms, but for the numerical version, an even small relative error on
each large term can lead to severe errors because they do not cancel out. The test in which
σ coordinate models are used to simulate a situation at rest with a density fieldρ = ρ(z)
therefore allows to highlight this error (e.g., Beckmann and Haidvogel, 1993; Exercise 20-5).

We could argue that the problem should disappear with increased resolution, but another
problem will appear, the problem of the so-calledhydrostatic consistency: If we increase ver-
tical resolution more rapidly than the horizontal one, we see (Figure20-13) that the numerical
stencil involved in the calculation of a horizontal pressure gradient involves grid points not
at all distributed horizontally around the point of interest. On the contrary, the physically
relevant points at similar depth are not taken into account and horizontal gradients evaluated
by extrapolations instead of interpolations. Such extrapolations lead to large relative errors
(see Exercise 3-5)Need to add something to chapter 3: such as JMB from⇓

For flux calculations, interpolations at the interface are generally used. analyze how a linear
interpolation using the two neighbor points behaves compared to a cubic interpolation using
four points. To do so, sample the functionex in x = −1.5,−0.5, 0.5, 1.5 and interpolate in
x = 0. Compare to the exact value. What happens if you calculated the interpolation not at
the center but inx = 3 or x = −3 (extrapolation) ? Redo the exercise but add an alternating
error of +0.1 and -0.1 to the four sampled values. and an inconsistency: the vertical gradients JMB to⇑
in (20.42a)-(20.42d) are not calculated at the same depth than the horizontal gradient to be
evaluated from it. For simple finite difference schemes, extrapolations are avoided if slopes
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z(s + ∆s)

z(s)

Line of constants

∆x

x

z
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∂x
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Constantz

Figure 20-13 In the numerical grid
(x,s), a standard finite differencing of
the pressure gradient at the location of
the squares involves the logical neigh-
bors in the discrete mesh, connected
with dashed lines in the physical space
(left panel). For upper-right point, the
calculation points are physical neigh-
bors but for the lower-left point, the
calculation uses far distant points and
performs extrapolations.

satisfy ∣∣∣∣∣∣

∂z
∂x

∣∣∣
s

∂z
∂s

∣∣∣∣∣∣
≤ ∆s

∆x
(20.43)

which provides a constraint on the vertical grid spacing compared to the horizontal one. This
constraint is not unlike the constraint on the domain of dependence on the advection schemes
(Section6.4). Contrary to the problem in Figure20-7, we now have a lower bound for the
admissible vertical grid spacing, related to the slope of the coordinate lines. Alternatively, for
a fixed vertical grid and given slopes, the requirement imposes a horizontal grid that must be
sufficiently fine to resolve the slopes correctly.

Forσ-coordinates this translates, neglecting surface gradients, to a constraint in terms of
the water column heighth ∣∣∣∣

1

h

∂h

∂x

∣∣∣∣ ≤
∆σ

∆x

1

(1− σ)
(20.44)

Hence the most severe problems will be encountered where thetopography is steep but not yet
deep,i.e., near shelf breaks. This is where the length scale related totopography

∣∣ 1
h∂h/∂x

∣∣−1

is smallest and must be resolved by the grid spacing. This length scale appears thus as an ad-
ditional scale to be considered when designing horizontal grids. Since on the shelf break,
stratification is also intercepting topography, pressure gradient problems are enhanced: the
regions of large variations inρ coincide with regions of large∂z/∂x|s so that the two contri-
butions to the pressure-gradient expressions will be largeso as the associated discretization
error. Because the hydrostatic consistency condition may not be satisfied, the relative errors
are large for a term which itself is large. Solutions to this problem include higher-order finite
differencing (using more grid points and being less prone toextrapolations,e.g., McCalpin,
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1994), subtraction of average density profilesρ = ρ(z) before any pressure calculation (e.g.,
Mellor et al., 1998), specialized finite differencing (e.g., Song, 1998), partial masking of to-
pography (replacing slopes by vertical sections,e.g., Beckers, 1991; Gerdes, 1993) or filtering
of topography.

With the provision of proper treatment of the pressure gradient, such a generalized vertical
coordinate is attractive and several models have implemented the approach (e.g., Pietrzaket
al., 2002), without actually using them at their full possibilities, generally prescribinga priori
distribution of coordinate lines. The general rule for the placement of coordinate lines is to
match as close as possible the lines on which properties remain smooth (Figure20-14, see
also adaptive grids in Section15.6). The model grids should therefore adapt themselves so as
to be close to isopycnals in the ocean interior, where mixingis extremely weak. Because of
the problems of isopycnal models to represent mixed layers,the use ofz coordinates should
used there. An implementation that is close to achieve this requirement is Hycom (HYbrid
Coordinate Ocean Model,e.g., Bleck 2002), which is an extension of an initially isopycnal
model, allowing for a mixed layer discretized by severalz levels. For further improvements,
layers near the bottom should rather behave asσ layers so as to follow topography. Also
different isopycnal layers for different regions of the oceans should be made possible.

Terrain following

Isopycnal tendancy

Geopotential and surface following

Mixed layer

Bottom

Figure 20-14 Strategies for placing coordinate lines in an ocean model. Near the surface and in the
mixed layer coordinate should be flat or at most follow the air-sea interface. In the ocean interior,
motions are almost without mixing and isopycnal levels the best choice. Near the bottom, the flow must
follow the topography and terrain following coordinates are advocated.

20.8 Parameterization of subgrid-scale processes

Once the grid defined, sub-grid scale processes must again belooked at, in the light of the
actual resolution and orientation of the grid volumes. Up tonow, sub-grid scale processes
other than proper turbulence were modeled by a horizontal diffusion such as

D(c) =
∂

∂x

(
A ∂c
∂x

)
+

∂

∂y

(
A ∂c
∂y

)
(20.45)



590 CHAPTER 20. OCEAN CIRCULATION

for a tracerc. The question that now arises is whether the derivatives should be those of
the Cartesian coordinates or of the transformed coordinates. If the Cartesian coordinates are
advocated, it means we suppose there is a natural tendency tomix the system into horizontally
homogeneous layers. In this case, the Cartesian derivatives must be transformed according to
the rules of change of variables.

If on the contrary we suppose the derivatives are taken in thes coordinates, we somehow
match our parameterization to the grid scales and see the parameterization rather as a filter,
without any further coordinate transformation to be applied in the discretization.

Probably a physically more sound parameterization recognizes that lateral movements are
much easier along isopycnals than across them and hence the natural coordinates in which
the parameterization would be diffusion like are isopycnalcoordinates. From there we could
translate the diffusion operator toz coordinates as done in Redi (1992) for inclusion in a
z coordinate model, and then make a second transformation into the s coordinate system
(should we employ isopycnal coordinates, we would fall backinto a Laplacian expression).
The resulting operator to discretize is much more complicated than the standard Laplacian
and contrary to the mathematical operator, the resulting discretizations are not monotonic
anymore (e.g., Beckerset al., 1998). It must also be recognized that ifs lines cross isopycnals,
mixing8 along numerical grid lines will result in artificial diapycnal mixing.

The diffusion-like parameterizations are of course based on the analogy of the effect of
unresolved eddies with the action of turbulence. However, depending on the scales under con-
sideration some sub-grid scale processes cannot be considered randomly mixing the ocean,
specially at larger scales. Near the scales of the internal radius of deformation energetic mo-
tions are taking place at these scales, among which baroclinic instability, (see chapter17).
Because the deformation radius in the ocean is an order of magnitude smaller than in the
atmosphere, global ocean models rarely resolve baroclinicinstability. Hence, unless regional
models are used, coarse-resolution ocean models must parameterize the effect of mesoscale
motions and in particular baroclinic instability. Baroclinic instability releases potential en-
ergy by decreasing the frontal slopes rather than by random mixing. The isopycnal diffusion
cannot account for this flattening since by construction it diffuses only along isopycnals,
hence not forcing them to flatten out. Instead of a diffusion type parameterization, the so-
called Gent-McWilliams parameterization (Gent and McWilliams 1990, Gentet al. 1995)
adds a velocity field to the large scale currents. The components of this additional velocity
field read

u? = −∂Qx
∂z

, v? = −∂Qy
∂z

, w? =
∂Qx
∂x

+
∂Qy
∂y

(20.46)

where

Qx = − κ

ρz

∂ρ

∂x
= κ

∂z

∂x

∣∣∣
ρ

(20.47)

Qy = − κ

ρz

∂ρ

∂y
= κ

∂z

∂y

∣∣∣
ρ

ρz =
∂ρ

∂z
(20.48)

are related to the slope of the isopycnals and include a modelparameterκ which has the
dimensions of a diffusion coefficient. Here the operators are expressed in the Cartesian co-

8be it explicitly formulated or implicitly present because of numerical diffusion.
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Figure 20-15 Vertical section across a density field exhibiting a frontalstructure as shown by the slope
of the isopycnals (left panel). Applying the bolus velocityto advect the density field in time, the front
flattens (right panel) because of the particular structure of the bolus velocity. Vectors originate from the
dots so that the tendency to decrease the frontal slope is evident. Since the bolus velocity itself depends
on this slope, the process of flattening slows down after sometime.

ordinates and it can be verified that the additional velocityfield is divergence free. Also the
numerical version of the divergence can be ensured to be zeroby proper staggering and ex-
pressions translated into thes coordinates if necessary. The additional velocity, calledbolus
velocityhas as effect to advect the density field itself and with the chosen signs, indeed leads
to a reduction of the frontal slope (Figure20-15). It is important to note that this advection
is performed without any dynamical equations for the bolus velocity, reflecting the fact that
we are in the presence of a parameterization of unresolved dynamical motions. The strength
of the parameterization can be controlled by the parameterκ and Griffies (1998) shows how
to combine the bolus advection parameterization with the isopycnal diffusion into a single
operator if the “diffusion” coefficients in advective and diffusive part are identical. For this
and a recent review of ocean model developments we refer to a paper by Griffieset al. (2000),
including additional references.

Analytical Problems

20-1. Sverdrup balance on an uneven bottom.

20-2. Given that the North Pacific Ocean is about twice as wide as theNorth Atlantic Ocean
and that both basins are subjected to equally strong winds, compare their boundary-
layer widths and boundary-current speeds.

20-3. Imagine that a single ocean were covering the entire globe, as the atmosphere does.
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With no western wall to support a boundary current returningthe equatorward Sverdrup
flow, what would be the circulation pattern? Relate your results to the existence of the
Antarctic Circumpolar Current. [For a succinct description of this major current, see
Section 7.2 of the book by Pickard and Emery (1990) or some other oceanography
textbook.]

20-4. Some global budget?

20-5. Derive the veering of the horizontal velocity with respect to depth, working withz as
the vertical coordinate. Show that at the end one can recover(20.24) by changing to
density coordinates.

20-6.

20-7.

20-8.

20-9. Gent and McWilliams. Stationary solution with constantκ and disregarding bound-
aries in a 2D situation. Isopycnal slope is function of density only. Hence, layer thick-
ness varies linearly and is not diffused anymore in isopycnal models with thickness
diffusion.

20-10. When translated into isopycnal coordinates: diffusion ofh in the layer thickness equa-
tion (12.9).

Numerical Exercises

20-1. Redo Stommel and then add nonlinear term with the QG model developed before on
which wind-stress is added. Prepare an illustration for theoretical part.

20-2. Take the density data used iniwnummed.m and calculate the geostrophic velocities.
To do so, work inz coordinates at the levels of the data. Assume a level of no motion
at 500 m . Look at surface currents and currents at 2000m depth. Then repeat with
level of no motion at 1500 m.

20-3. Play withbolus.m to see flattening. The implement coordinate change and calculate
slope by jacobian in vertical plane.

20-4. Get a density section from somewhere and calculate bolus velocity bolus.m . Which
problems do you expect near boundaries?Hint: You might considerκ a calibration
parameter variable in space.
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20-5. Usepgerror.m to explore the pressure-gradient error for a fixed density anomaly
profile depending only onz according to

ρ = ∆ρ tanh((z +D)/W ) (20.49)

whereD andW control the position and width of the pycnocline. Bottom topography
is given by

h(x) = H0 + ∆H tanh(x/L) (20.50)

whereL andH controle the slope strength. Calculate the error and associated geostrophic
velocity for f = 10−4 s−1. Vary the number of vertical grid points, horizontal grid
points, the position of the pycnocline, its depth and strength. What happens if you
increase solely the number of vertical points? Implement the discretization of another
pressure gradient expression of (20.42) in bcpgr.m and compare.

20-6. Topography is generally filtered for use in models, by application of a few iterations
on a Laplacian-type diffusion. In view of the hydrostatic consistency constraint, which
adapted filter technique would you advocate?Hint: Remember that a Laplacian filter
applied to a functionf minimizes the norm of the gradients

∫ [
(∂f/∂x)2 + (∂f/∂y)2

]
dS

over the domainS.



Henry Melson Stommel
1920 – 1992

At an early age, Henry Melson Stommel considered a career in astronomy but turned to
oceanography as a way to make a peaceful living during World War II. Having been denied
admission to graduate school at the Scripps Institution of Oceanography by H. U. Sverdrup,
then its director, Stommel never obtained a doctorate. Thisdid not deter him; having soon
realized that, in those years, oceanography was largely a descriptive science almost devoid
of physical principles, he set out to develop dynamic hypotheses and to test them against
observations. To him, we owe the first correct theory of the Gulf Stream (1948), theories
of the abyssal circulation (early 1960s), and a great numberof significant contributions on
virtually all aspects of physical oceanography.

Unassuming and avoiding the limelight, Stommel relied on a keen physical insight and
plain common sense to develop simple models that clarify theroles and implications of phys-
ical processes. He was generally wary of numerical models. Particularly inspiring to young
scientists, Stommel continuously radiated enthusiasm forhis chosen field, which, as he was
the first to acknowledge, is still in its infancy. (Photo by George Knapp)
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Chapter 21

Equatorial Dynamics

(October 18, 2006)SUMMARY : Because the Coriolis force vanishes along the equator,
tropical regions exhibit particular dynamics. After an overview of linear waves that exist only
along the equator, the chapter concludes with a brief presentation of the episodic transfer of
warm waters from the western to the eastern tropical Pacific Ocean, a phenomenon called El
Niño. The problem of its seasonal forecast then allows to introduce another type of predictive JMB from⇓
tools, based on empirical relationships. JMB to⇑

21.1 Equatorial beta plane

Along the equator (latitudeϕ = 0◦), the Coriolis parameterf = 2Ω sinϕ vanishes. Without a
Coriolis force, currents cannot be maintained in geostrophic balance, and we expect dramatic
dynamical differences between tropical and extratropicalregions. The first question is the
determination of the meridional extent of the tropical region where these special effects can
be expected.

It is most natural here to choose the equator as the origin of the meridional axis. The
beta-plane approximation to the Coriolis parameter (see Section9.4) then yields

f = β0y, (21.1)

wherey measures the meridional distance from the equator (positive northward) andβ0 =
2Ω/a = 2.28× 10−11 m−1 s−1 with Ω anda being, respectively, the earth’s angular rotation
rate and radius (Ω = 7.29 × 10−5 s−1, a = 6371 km). This representation of the Coriolis
parameter bears the name ofequatorial beta-planeapproximation.

Our previous considerations of midlatitude processes (seeChapter16, for example) point
to the important role played by the internal deformation radius,

R =

√
g′H

f
=

c

f
, (21.2)

597
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in governing the extent of dynamical structures. Here,g′ is a suitable reduced gravity char-
acterizing the stratification andH is a layer thickness. Asf varies withy, so doesR. If this
distance from a given meridional positiony includes the equator, equatorial dynamics must
supersede midlatitude dynamics. Thus, a criterion to determine the widthReq of the tropical
region is (Figure21-1)

y

y

R(y)

0
0

Equator
Req

Req

Figure 21-1 Definition of the equato-
rial radius of deformation.

Req = R at y = Req. (21.3)

Substituting (21.1) into (21.2), the criterion yields

Req =

√
c

β0
, (21.4)

which is called theequatorial radius of deformation. For the previously quoted value ofβ0

and for c = (g′H)1/2 = 1.4 m/s, typical of the tropical ocean (Philander, 1990, Chapter
3), we estimateReq = 248 km, or 2.23◦ of latitude. Because the stratification of the atmo-
sphere is much stronger than that of the ocean, the equatorial radius of deformation is several
times larger in the atmosphere. This implies that connections between tropical and temperate
latitudes are different in the atmosphere and oceans.

Sincec is a velocity (to be related shortly to a wave speed), we can define anequatorial
inertial timeTeq as the travel time to cover the distanceReq at speedc. Simple algebra yields

Teq =
1√
β0c

, (21.5)

which, for the previous values, is about 2 days.
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21.2 Linear wave theory

Because of the important role they play in the so-called El Niño phenomenon, the focus of
this section is on oceanic waves. The stratification of the equatorial ocean generally consists
of a distinct warm layer separated from the deeper waters by ashallow thermocline (Figure
21-2). Typical values are∆ρ/ρ0 = 0.002 and thermocline depthH = 100 m, leading to the
previously quoted value ofc = (g′H)1/2 = 1.4 m/s. This suggests the use of a one-layer
reduced-gravity model, which for the purpose of a wave theory is immediately linearized:

Figure 21-2 Temperature (in◦C) as a function of depth and longitude along the equator, as measured
in 1963 by Colinet al. (1971). Note the strong thermocline between 100 m and 200 m.

∂u

∂t
− β0yv = − g′ ∂h

∂x
(21.6a)

∂v

∂t
+ β0yu = − g′ ∂h

∂y
(21.6b)

∂h

∂t
+ H

(
∂u

∂x
+

∂v

∂y

)
= 0. (21.6c)

Hereu andv are, respectively, the zonal and meridional velocity components,g′ the reduced
gravityg∆ρ/ρ0 (= 0.02 m/s2), andh is the layer-thickness variation (measured positively forJMB from⇓
an increase in layer thickness ). JMB to⇑

The preceding set of equations admits a solution with zero meridional flow. Whenv = 0,
(21.6a) and (21.6c) then reduce to

∂u

∂t
= − g′

∂h

∂x
,

∂h

∂t
+ H

∂u

∂x
= 0,

having any function ofx± ct andy as its solution. The remaining equation, (21.6b), sets the
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meridional structure, which for a signal decaying away fromthe equator is given by

u = c F (x − ct)e−y
2/2R2

eq (21.7a)

v = 0 (21.7b)

h = HF (x − ct) e−y
2/2R2

eq , (21.7c)

whereF ( ·) is an arbitrary function of its argument andReq = (c/β0)
1/2 is the equatorial

radius of deformation introduced in the preceding section.This solution describes a wave
traveling eastward at speedc =

√
g′H , with maximum amplitude along the equator and

decaying symmetrically with latitude over a distance on theorder of the equatorial radius of
deformation. The analogy with the coastal Kelvin wave exposed in Section9.2 is immediate
(wave speed equal to gravitational wave speed, absence of transverse flow, and decay over
a deformation radius); for this reason, it is called theequatorial Kelvin wave. Credit for
the discovery of this wave, however, does not go to Lord Kelvin but to Wallace and Kousky
(1968).

The set of equations (21.6) admits additional wave solutions, more akin to inertia-gravity
(Poincaré) and planetary (Rossby) waves. To find these, we seek periodic solutions in time
and zonal direction:

u = U(y) cos(kx− ωt) (21.8)

v = V (y) sin(kx− ωt) (21.9)

h = A(y) cos(kx− ωt). (21.10)

Elimination of theU(y) andA(y) amplitude functions yields a single equation governing the
meridional structureV (y) of the meridional velocity:

d2V

dy2
+

(
ω2 − β2

0y
2

c2
− β0k

ω
− k2

)
V = 0. (21.11)

Because the expression between parentheses depends on the variabley, the solutions to this
equation are not sinusoidal. In fact, for values ofy sufficiently large, this coefficient becomes
negative, and we anticipate exponential decay at large distances from the equator. It can be
shown that solutions to (21.11) are of the type

V (y) = Hn

(
y

Req

)
e−y

2/2R2
eq , (21.12)

whereHn is a polynomial of degreen, and that these solutions decaying at large distancesJMB from⇓
from the equator, exist only ifJMB to⇑

ω2

c2
− k2 − β0k

ω
=

2n+ 1

R2
eq

. (21.13)

Thus the waves form a discrete set of modes (n = 0, 1, 2, ...). Equation (21.13) is the
dispersion relation providing frequenciesω as a function of wavenumberk for each mode.
As Figure21-3 shows, threeω roots exist for eachn ask varies. (Important note: In this
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context, the phase speedω/k of the wave is not necessarily equal toc, the speed of the
Kelvin wave encountered previously.)

The largest positive and negative roots forn ≥ 1 correspond to frequencies greater than
the inverse of the equatorial inertial time. The slight asymmetry in these curves is caused by JMB from⇓

JMB to⇑the beta term in (21.13). Without this term, the frequencies can be approximated by

ω ' ±
√

2n+ 1

T 2
eq

+ g′H k2 , n ≥ 1, (21.14)

which is analogous to (9.17), the dispersion relation of inertia-gravity waves. Thesewaves
are thus the low-latitude extensions of the extratropical inertia-gravity waves (Section9.3).

The third and much smaller roots forn ≥ 1 correspond to subinertial frequencies and thus
to tropical extensions of the mid-latitude planetary waves(Section9.4). At long wavelengths
(smallk values), these waves are nearly nondispersive and propagate westward at speeds

cn =
ωn
k
' −

β0R
2
eq

2n+ 1
, n ≥ 1, (21.15)

which are to be compared with (9.30). The casen = 0 is peculiar. Its frequencyω0 is the
root of JMB from⇓

(ω0 + ck)

(
ω0Teq −

1

ω0Teq
− kReq

)
= 0. (21.16)

The rootω0 = −ck can be shown to be a spurious solution introduced during the elimination
of U(y) from the governing equation. This elimination indeed assumedω0 + ck 6= 0, which
we therefore cannot accept as valid solution anymore. The remaining two roots are readily
calculated. JMB to⇑
As Figure21-3shows, this wave exhibits a mixed behavior between planetary and inertia-
gravity waves. Finally, the Kelvin-wave solution can formally be included in the set by taking JMB from⇓

JMB to⇑n = −1 (Figure21-3).
The polynomials of (21.12) are not arbitrary but must be the so-called Hermite polyno-

mials (Abramowitz and Stegun, 1972, Chapter 22). The first few polynomials of this set
areH0(ξ) = 1, H1(ξ) = 2ξ andH2(ξ) = 4ξ2 − 2. From the solutionV (y), the layer JMB from⇓
thickness can be retrieved by backward substitution. It is then seen that whenV is odd, the
layer-thickness anomalyA(y) is even iny and vice-versa. Waves of even order are anti- JMB to⇑
symmetric about the equator [h(−y) = −h(y)], whereas those of odd order are symmetric
[h(−y) = h(y)]. Thus, the mixed wave is antisymmetric and the Kelvin wave is symmetric.

When the equatorial ocean is perturbed (e.g., by changing winds), its adjustment toward
a new state is accomplished by wave propagation. At low frequencies (periods longer than
Teq, or about 2 days), inertia-gravity waves are not excited, and the ocean’s response consists
entirely of the Kelvin wave, the mixed wave, and some planetary waves (those of appropri-
ate frequencies). If, moreover, the perturbation is symmetric about the equator (and generally
there is a high degree of symmetry about the equator), the mixed wave and all planetary waves
of even order are ruled out. The Kelvin wave and odd planetarywaves of short wavelengths
(if any) carry energy eastward, whereas the odd planetary waves of long wavelengths carry
energy westward. Figure21-4displays the temporal dispersion of a bell-shaped thermocline
displacement imposed on a stretch of equatorial ocean. Clearly visible are the one-bulge
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Figure 21-3 Dispersion diagram for equatorially trapped waves.
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Figure 21-4 The dispersion of an perturbation generated by a ten days wind anomaly imposed on a
spot of a stretch of equatorial ocean. Clearly visible are the one-bulge Kelvin wave moving eastward
and the double-bulge planetary (Rossby) wave propagating westward at a lower pace.

Kelvin wave progressing eastward and the double-bulge lowest planetary wave (n = 1) prop-
agating westward. Although this case is obviously academic, it is believed that Kelvin waves
and low-order planetary waves, together with wind-driven currents, are prevalent in the equa-
torial ocean. JMB from⇓

JMB to⇑At this point, a number of interesting topics can be presented, such as the reflection of a
Kelvin wave upon encountering an eastern boundary, waves around islands, and the gener-
ation of equatorial currents by time-dependent winds. But,we shall leave these matters for
the more specialized literature (Gill, 1982; Philander, 1990; McPhaden and Ripa, 1990; and
references therein) and limit ourselves to the presentation of the El Niño phenomenon.

21.3 El Niño – Southern Oscillation (ENSO)

Every year, around the Christmas season, warm waters flow along the western coast of South
America from the equator to Peru and beyond. These waters, which are several degrees
warmer than usual and are much less saline, perturb the coastal ocean, suppressing — among
other things — the semi-permanent coastal upwelling of coldwaters. So noticeable is this
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Figure 21-5 Continuation of the wave propagation. Rossby waves are reflected and transformed into
Kelvin waves, while the Kelvin wave at the eastern boundary gives birth to a Rossby mode.

phenomenon that early fishermen called it El Niño, which in Spanish means “the child” or
more specifically the Christ Child, in relation to the Christmas season.

Regularly but not periodically (every 4 to 7 years), the amount of passing warm waters
is substantially greater than in normal years, and life in those regions is greatly perturbed,
for better and for worse. Anomalously abundant precipitations, caused by the warm ocean,
can in a few weeks turn the otherwise arid coastal region of Peru into a land of plenty. But,
suppression of coastal upwelling causes widespread destruction of plankton and fish. The
ecological and economic consequences are noticeable. In Peru, the fish harvest is much
reduced, sea birds (which prey on fish) die in large numbers, and, to compound the problem,
dead fish and birds rotting on the beach create unsanitary atmospheric conditions.

In the scientific community, the name El Niño is being restricted to such anomalous oc-
currences and, by extension, the name La Niña has been used to signify the opposite situation,
when temperatures are abnormally cold in the eastern tropical Pacific. Major El Niño events
of the twentieth century occurred in 1904–05, 1913–15, 1925–26, 1940–41, 1957–58, 1972–
73, 1982–83, 1986–88, 1991–95 1997–98 (the strongest of all), 2002-2003 and 2004-2005JMB from⇓
(WMO, 1999; NOAA-WWW 2006). Their cause remained obscure until Wyrtki (1973) dis-JMB to⇑
covered a strong correlation with changes in the central andwestern tropical Pacific Ocean,
thousands of kilometers away. It is now well established (Philander, 1990) that El Niño
events are caused by changes in the surface winds over the tropical Pacific, which episodi-
cally release and drive warm waters, previously piled up by trade winds in the western half
of the basin, eastward to the American continent and southward along the coast. The situa-
tion is quite complex, and it took oceanographers and meteorologists more than a decade to
understand the various oceanic and atmospheric factors.

Under normal conditions, winds over the tropical Pacific Ocean consist of the northeast
trade winds (northeasterlies) and the southeast trade winds (southeasterlies) that converge
over theintertropical convergence zone(ITCZ) and blow westward (Section19.3). Although
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it migrates meridionally in the course of the year, the ITCZ sits predominantly in the Northern
Hemisphere (around 5◦ to 10◦N). In addition to pushing and accumulating a great amount
of warm water in the western tropical Pacific, the trades alsogenerate equatorial upwelling
(Section15.4) over the eastern part of the basin. Thus, in a normal situation, the tropical
Pacific Ocean is characterized by a warm-water pool in the west and cold surface waters in
the east. This structure is evidenced by the westward deepening of the thermocline, as shown
in Figure21-2.

The origin of an anomalous, El Niño event is associated witha weakening of the trade
winds in the western Pacific or with the appearance of a warm sea-surface-temperature (SST)
anomaly in the central tropical Pacific. Although one may precede the other, they soon go
hand in hand. A slackening of the western trades relaxes the thermocline slope and releases
some of the warm waters; this relaxation takes the form of a downwelling Kelvin wave,
whose wake is thus a warm SST anomaly. On the other hand, a warmSST anomaly locally
heats the atmosphere, creating ascending motions that needto be compensated by horizontal
convergence. This horizontal convergence naturally callsfor eastward winds on its western
side, thus weakening or reversing the trade winds there (Gill, 1980). In sum, a relaxation of
the trade winds in the western Pacific creates a warm sea-surface anomaly, and vice versa.
Feedback occurs and the perturbation amplifies. On the eastern side of the anomaly, conver-
gence calls for a strengthening of the trades that, in turn, enhances equatorial upwelling. This
cooling interferes with the eastward progression of the downwelling Kelvin wave, and it is
not clear which should dominate. During an El Niño event, the anomaly does travel eastward
while amplifying. Once the warm water arrives at the American continent, it separates into a
weaker northward branch and a stronger southward branch, each becoming a coastal Kelvin
wave (downwelling). The subsequent events are as describedat the beginning of this section.

When an El Niño event occurs, its temporal development is strictly controlled by the
annual cycle. The warm waters arrive in Peru around December, and the seasonal variation
of the general atmospheric circulation calls for a northward return of the ITCZ and a re-
establishment of the southeast trade winds along the equator. The situation returns to normal.

This sequence of events is relatively well understood (Philander, 1990) and has been
successfully modeled (Caneet al., 1986). Today, models are routinely used to forecast the
next occurrence of an El Niño event and its intensity with a lead time of 9 to 12 months.
What remains less clear is the variability of the atmosphere-ocean system on the scales of
several years. A strong connection with theSouthern Oscillationhas been made clear, and
the broader phenomenon is called ENSO, for El Niño–Southern Oscillation (Rasmusson and
Carpenter, 1982). The Southern Oscillation is a quasi-periodic variation of the surface atmo-
spheric pressure and precipitation distributions over large portions of the globe (Troup, 1965;
Bromwichet al., 2000).

Much hinges on variations of the so-calledWalker circulation. This atmospheric circu-
lation (Walker, 1924) consists of westerly trade winds overthe tropical Pacific Ocean, low
pressure and rising air above the western basin and Indonesia (with associated heavy pre-
cipitation) and, at the eastern end of the basin, high pressure, sinking air and relatively dry
climate. The strength of this circulation is effectively measured by the sea-level pressure
difference∆pTD between Tahiti (18◦S, 149◦W) and Darwin (in northern Australia, at 12◦S,
131◦E). In practice, theSouthern Oscillation Index(SOI) is defined as (Troup, 1965):
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Figure 21-6 Time series of temperature anomalies over the central tropical Pacific Ocean and of the
Southern-Oscillation Index.There is a very strong correlation between higher-than-normal temperatures
(El Niño events) and negative index values, indicating that El Niño is part of a global climatic variation.

SOI = 10
monthly value of∆pTD − long-term average of∆pTD

standard deviation of∆pTD
, (21.17)

The nearly perfect negative corrolation between these two pressures indicates that both are
parts of a larger coherent system. The presence of a higher than normal pressure in Darwin
with simultaneous lower pressure in Tahiti (negativeSOI value) is intimately connected with
an El Niño occurrence (Figure21-6). In its broad lines, the scenario unfolds as follows. A
negative SOI value leads to a weakening of the Walker circulation, reduced strength of the
easterly trade winds, especially in the western Pacific. Thewestern warm water pool relaxes
and begins to spill as an equatorial Kelvin wave eastward toward the central basin, accompa-
nied by an equal eastward displacement of the low atmospheric pressure above it. Feeding the
low pressure from the west are reversed, westerly winds thataccelerate the eastward move-
ment of the warm water pool. And so, the situation progresseseastward in an amplifying
manner, until the warm water pool reaches the coast of Peru and an El Niño event occurs.
Because the atmospheric pressure is then higher than normalon the western side, drought
conditions occur over Indonesia and Australia, while SouthAmerica experiences stronger
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precipitation than normal. For a more complete descriptionof the many facets and ramifica-
tions of the event, the the interested reader is referred to specialized books (Philander, 1990;
Diaz and Markgraf, 2000; D’Aleo, 2002).

Benoit: Maybe peak about recharge oscillator of Jin 1997? Easy to present and under-
stand the full cycle

Figure 21-7 Discharge/recharge mechanism of Jin.Graphic to be redrawn

Jin FF. 1997a. An equatorial recharge paradigm for ENSO. I. Conceptual model. J.
Atmos. Sci. 54:811-29

Jin FF. 1997b. An equatorial recharge paradigm for ENSO. II.A stripped-down coupled
model. J. Atmos. Sci. 54:830-47

21.4 ENSO forecasting

Forecasting the El Niño-Southern Oscillation is of prime interest for society, because an im-
pressive number of daily life components are affected, ranging from changes in weather,
appearance of droughts or floodings to modifications in crops, fish catchments or population
health. Hence it is no surprise that reliable prediction of an El Niño or El Niña event can be
of great help preparing to the upcoming modifications. For the forecasting, monthly averaged
situations of the weather are of interest because the same month in El-Niõ years is quite dif-
ferent from El Niña years for regions under the influence of the ENSO. But since the forecast
has to span several month, if not seasons, coupled atmospheric ocean model are needed, be-
cause sea-surface temperature cannot be considered fixed anymore. This was recognized by
Zebiak and Cane (1987), who succeeded to build such a coupledmodel to forecast ENSO.
The relevance of the coupling can be nicely shown by the following hindcast experiments:
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the use of observed variations in SST during an ENSO event generally allows to model the
atmospheric part correctly. Similarly, using observed variations in atmospheric fluxes, the
hindcast of ocean variability reveals the oceanic component of ENSO. Hence to forecast,
both components are needed.

The ENSO forecast differs from the weather forecast becauseonly average situations
are predicted. While weather forecast is mostly constrained by the initial condition on the
atmosphere, seasonal forecast benefits from the ocean inertia and its predictability at large
scales over several month. Hence seasonal forecast will be constrained rather by initial con-
ditions on the ocean. Therefore observing the tropical ocean is a crucial component of any
ENSO forecast system, the most important data being provided by the Tropical Atmosphere
Ocean (TAO) moored observation arrays and by satellites measuring sea surface height and
temperature.

Seasonal forecast of ENSO is relatively successful becauseENSO is known to be the
largest single source of predictable internannual variability. Yet, even with a relatively strong
signal, models must be able to extract the information out ofthe overwhelming high fre-
quency signal of atmospheric variability. With the unavoidable model uncertainties, this is a
challenging task and one way to reduce uncertainties is to perform model intercomparisons
(e.g., Neelinget al., 1992; Mechosoet al., 1995). Such models are also used to identify
teleconnectionsi.e., correlations between distant region’s dynamics and the ENSO events. If
such teleconnections are identified, predictions of El Niño can be “extrapolated” to other re-
gions. The identification of such teleconnections is generally obtained by statistics on model
simulations and observations, leading to as much prediction models as teleconnections found.

Figure 21-8 Prediction on December
2005 of El Niño by several models,
including coupled ocean-atmosphere
primitive equation models and statisti-
cal models. The probablity of El Niño
in 2006 was considered low. Predic-
tions and observations are made for dif-
ferent sub-regions, NINO3.4 referring
to a central strip of the basin. (IRI, In-
ternational Research Institute for Cli-
mate and Society)

Statistics can also be used to replace the dynamic model’s forecasts by an empirical pre-
diction model of El Niño based on past observations of a set of well chosen parameters. This
can be done by explicitly searching for correlations and fitting curves of data on a given
parametric function such as linear regressions on theSOI. Instead ofa priori choosing the
functional relationship, self-learning approaches such as neural networks (e.g., Tanganget al.,
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1998 ) or genetic algorithms (e.g., Alvarezet al., 2001) select themself the “best” functions.
To do so, data are separated into two sets, a learning and a validation set. On the learning
set, the model is given input data called predictors (such astheSOI of the previous year)
and the known output value called predictand (such as the prediction ofSOI for the next 6
month). If enough input-output pairs are available, the network or genetic algorithm creates
a functional relationship that minimizes the error in the output for this given data set. The
danger of such approaches is that overfitting occurs: If the functional relationship contains
more adjustable parameters than independent data to be reconstructed, one can always find a
“perfect” fit. The latter will however work only on this specific data set. Hence the require-
ment for a validation data set on which the model must be tested after the learning phase. If
the performance in forecasting degrades significantly whenswitching from the learning set to
the validation set, the model is unreliable. However, when the validation is successful, such
models offer predictions at extremely small computation costs compared to primitive equa-
tion models. To justify their use in operational forecasts,dynamical models, generally much
more complex, must therefore show their superiority in prediction quality compared to such
empirical models. The simplest models, if they have some skill in prediction, are therefore
interesting to define base forecasts to which to compare morecomplicated versions. For the
time being, it seems that dynamical models have better capabilities in predicting early stages
of the El Niño phase, but once it is under its way, statistical models work very well. This
seems to indicate repeatable patterns of the process, with atriggering effect difficult to catch.

The search for empirical relationships can of course be guided by physical considerations.
For El Niño, the wave propagation and reflections on the western and eastern continental
boundaries provide a delayed feedback mechanism on the system. This can be translated into
a delayed oscillator model (Suarez and Schopf 1988) whose governing equations read

∂T

∂t
= aT (t) − aT 3(t) − bT (t− δ) (21.18)

whereT stands for a normalized temperature anomaly associated with El Niño. The term
aT models the positive feedback of the initial Kelvin wave withthe moving atmospheric
perturbation. The cubic terms is associated with a damping and keeps the solution bounded1.
Finally the last term−bT (t−δ) models the negative feedback by the initial westward Rossby
wave that is reflected as a Kelvin wave of opposite amplitude,responsible for the changed
sign. The delayδ is then readily interpreted in terms of the travel time. If the negative
feedback is very strong, needing a reflection with some kind of amplification, an opposite
event can be triggered and the way paved to swith from El Niñoto El Niña. Parameters of
this model can then be fitted to observations if a simple modelis sought (Exercise 21-7).

Analytical Problems

21-1. How long does an equatorial Kelvin wave take to cross the entire Pacific Ocean?

1T can always be scaled so that the cubic term appears with the same coefficient as the linear feedback.
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21-2. Generalize the equatorial-Kelvin-wave theory to the uniformly stratified ocean. As-
sume inviscid and non-hydrostatic motions. Discuss analogies with internal waves.

21-3. Show that equatorial upwelling (mentioned in Section15.4; see Figure15-6) must be
confined at low frequencies to a width on the order of the equatorial radius of deforma-
tion.

21-4. In the Indian Ocean, two current-meter moorings placed at the same longitude and
symmetrically about the equator (1.5◦ of latitude) record velocity oscillations with a
dominant period of 12 days. Furthermore, the zonal velocityat the northern mooring
leads by a quarter of a period the meridional velocities of both moorings and by half a
period the zonal velocity at the southern mooring. The stratification providesc = 1.2
m/s. What kind of wave is being observed? What is its zonal wavelength? Can a
comparison of the maximum zonal and meridional velocities provide a confirmation of
this wavelength?

21-5. Consider geostrophic adjustment in the tropical ocean. What would be the final steady
state following the release of buoyant waters with zero potential vorticity along the
equator of an infinitely deep and motionless ocean? For simplicity, assume zonal in-
variance and equatorial symmetry.JMB from⇓

21-6. What kind of initial conditions are needed for the delayed oscillator model (21.18)?

22-7. Search for information to check if the forecast provided in December 2005 of a low
probability for an El-Niño in 2006 was verified.

22-8. Show that the linearization of the governing equations for aKelvin wave are valid as
long as the functionF is small enough|F | � 1.JMB to⇑

Numerical Exercises

21-1. Design a numerical solver for the delayed oscillator equation (21.18). Simulate a so-
lution with a−1 = 50 days,δ = 400 days andb−1 = 90 days for different initial
conditions. Then change toa−1 =100 days andb−1 = 180 days.

21-2. Design a numerical version of the linear reduced-gravity model (21.6), to which a wind
stress is added. Use a finite-difference approach on the C-grid and a time-stepping of
your choice. Start with a situation at rest and then apply a zonal wind perturbation
acting during 30 days. Take a gaussian wind-stress whose amplitude is

τ = τ0e
−(x2+y2)/L2

(21.19)

and which is directed eastward. Takeτ0 = 0.1 N/m2 andL = 300 km. The reduced-
gravity model’s parameters are∆ρ/ρ0 = 0.002 and a thermocline depthH = 100 m.
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For a first simulation, use a closed domain inx = -3000 km andx = 10000 km as well
as iny = ± 2000 km. Simulate over 600 days.

21-3. For Exercise 21-2, the perturbation eventually propagatesalong the southern and north-
ern boundary when they are supposed to be closed. Which process is responsible for
this? Modify the southern and northern boundary conditionsby opening the domain
and applyv = ±√g′H h there. Choose a physically reasonable sign for each boundary
by searching for a physical interpretation of these boundary conditions.

21-4. Change the topology of the domain in Exercise 21-3 by adding land points in the lower
left corner and upper right corner to mimic the continents oneach side of the Pacific
and redo the simulations. Can you identify the modes that arenow present compared
to the symmetric case?

21-5. Search for a spatial discretization of the Coriolis term on the C-grid that does not create
mechanical work in the sense that when multiplying the evolution equation forui−1/2,j

by itself and adding a similar product forvi,j−1/2, the Coriolis force contributions can-
cel out. Hint: Analyze which products ofu andv appear, similar to the analysis of
the Arakawa Jacobien in Section16.6 and look how to average taking into account
variations ofy.

21-6. Using the SST anomalies and SOI from 1991 to 2005 retrieved with soi.m , perform a
linear regression over data windows and look how the extrapolation of these regressions
are able or unable to predict the SST or SOI for later moments.First use a data window
of 4 month and try to extrapolate for the next month. Plot the prediction error over
time when applying the method over all possible data windows. To decide wether your
prediction is useful, compare to the prediction error of thesimple guess of a persistent
anomaly. Then try to change you data window and lead time to improve the prediction
capabilities. Instead of a linear regression you also mighttry other polynomial fits.

21-7. Do the same as in Exercise 21-7, but try to calibrate the delayed oscillator model
(21.18) for the temperature anomaly. Use the calibrated model for the extrapolation
purposes. Use, if necessary, data windows over several years.
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Paola Malanotte Rizzoli
1946 –

Paola Malanotte Rizzoli obtained a doctorate in quantum mechanics and was well on her way
to a distinguished career in physics when a massive flood of Venice, where she worked at
the time, made her change her mind. She switched to physical oceanography and obtained a
second doctorate. Her contributions to this field have been significant and varied, spanning
the theory of long-lived geophysical structures, such as eddies and hurricanes, numerical
modeling of the Atlantic Ocean and Gulf Stream system, the Black Sea ecosystem, data
assimilation, and tropical-subtropical interactions.

Professor Rizzoli teaches at the Massachusetts Institute of Technology and lectures across
the world. She is known as a dynamic speaker and an inspiring scientist. In addition to her
teaching and research, she has served the oceanographic community in a number of capaci-
ties, at both national and international levels.

Never abandoning her love for Venice, Paola Rizzoli was instrumental in developing a
system of sea gates to protect the city from future floods and sea level rise. This protection
system is currently under construction. (Photo MIT archives)
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Chapter 22

Data Assimilation

SUMMARY: The chapter outlines methods that blend in some optimal way observations
with model computations in order to guide the latter and produce improved simulations of
geophysical motions. The methods invoke physical as well asstatistical reasoning and rely
on certain approximations that facilitate their implementation in operational forecast models.

22.1 Need for data assimilation

Personal experience teaches us that weather forecast is only reliable within a few days from
the moment when the forecast is made. The time up to which the prediction is performed
is calledlead timeand predictions beyond it are considered so imprecise that very simple
prediction methods, such as the use of climatological values or persistence of today’s weather,
work at least as well as more sophisticated weather forecastsystem. Before discussing the
reasons beyond the forecast errors increasing with lead time, we therefore already realize that
any forecast system will need reinitializations if predictions on a regular basis are needed.
Such a reinitialization must certainly take into account the recent observations to infer a
correct state of the system, an operation calledfield estimationin the forecast jargon. From
this better estimate, a forecast can be restarted on better grounds.

For weather forecasts, such field estimates aresequentialin the sense that they only use
already existing data,i.e., from the past up to the day on which the forecast starts. For
other applications, the best field estimate of a past situation is thought, in which case data
from later moments than the moment of interest can also be taken into account and a non-
sequential method used. A typical example in which all available data are used is the so-called
reanalysis, in which the best fields over a given period are reconstructed using data from the
whole period together with physical governing equations toprovide the best picture of reality
at any moment.

The melding of physical laws and observations, be it in sequential or non-sequential way,
is carried out through so-calleddata assimilation, which can be performed intermittently (for
example every day using the data from the last day) or continuously (using data whenever
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Figure 22-1 Trajectory in(x, z) space (left panel) showing the jumping of the solution between two
cycles. For two slightly different initial conditions, twosolutionsx(t) stay together for some time and
then diverge (right panel). Obtained usingchaos.m with σ = 10, r = 28 andb = 8/3.

they arrive).
Since data assimilation heavily exploits observational data, is should also be possible to

quantify the forecast errors once new data corresponding tothe forecast are delivered. The
forecast errors can then be used to assess the skill of the forecast system. Here it is customary
to compare the error of the forecast to the error of an elementary forecast. Rudimentary
forecasts are persistence (e.g., tomorrow the weather will be as today), climatology (e.g., next
week, the weather will be the average weather of the last twenty years) or random forecasts
(e.g., one of the two preceding forecasts methods with an added random noise of zero average
and prescribed variance). The Brior skill scoreS, based on an error measureεf of the forecast
system and the same error measureεb when using a basic forecast system, reads

S =
εf − εb
εp − εb = 1− εf

εb
, (22.1)

where we assume that for a perfect forecast system, the errorεp would be zero. If the forecasts
system’s skill is less then zero, it means the system is not better than the most basic forecast
system, though it might still have some useful information in the forecast. On the other
extreme, when the skill is close to one, the forecast system is much better than the baseline
versions. Note that such a skill score can also be used to quantify the improvement of a new
forecast system over an older version with errorεb.

Clearly the value of the skill will depend on the error normε (e.g., rms error, error on the
maximum temperature, error on the hours of sunshineetc.) but more importantly, the skill
varies with lead time. The further we try to forecast into thefuture, the more the skill has
a tendency to decrease and we naturally come back to the question why it is so difficult to
make accurate long range forecasts. The previous chapters might have biased our perception
of the geophysical fluids towards a system that is governed byequations whose solutions
are well behaved and whose state is at any moment uniquely defined when adequate initial
conditions and boundary conditions are prescribed. This isthe case in theory but we can
already accept the idea that with imperfect models and inaccurate conditions, errors can have
a tendency to accumulate during long forecasts and reduce skill with lead time. But the
situation is more dramatic than that. Even if we could control the errors below any arbitrary
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Figure 22-2 Logarithm of a forecast error using incorrect initial conditions as a function of lead time
(left panel). Skill score as a function of lead time for two different base forecasts (right panel).

value, which obviously we will never be able to do, some governing equations will lead to
solutions that diverge rapidly for even extremely small changes in the conditions. The famous
Lorenz equationsare an archetype of systems of equations that exhibit such a behavior and
read

dx

dt
= σ (y − x), (22.2a)

dy

dt
= r x − y − x z, (22.2b)

dz

dt
= x y − b z, (22.2c)

whereσ, r andb are parameters. The solution of these innocent looking equations governing
a low order truncation of atmospheric motions (Lorenz ????)are known to generate chaotic
trajectories such that two very close initial conditions will lead to completely different solu-
tions after some time which we call thepredictability limit (Figure22-1).

More generally, the accumulation of errors, even when starting with arbitrarily small
errors can result in a predictability limit in strongly nonlinear systems. This limit is estimated
to be one to two weeks for the global atmosphere and of the order of a month for mid-
latitude ocean eddies. It is then not surprising that forecast skill will decrease with lead time
approaching the predictability limit of the system (Figure22-2). An idea on this time can be
obtained by considering the autocorrelation of the solution

ρ(∆) =
1
T

∫ T
0 u(t+ ∆)u(t) dt√

1
T

∫ T
0 u(t)2 dt

√
1
T

∫ T
0 u(t+ ∆)2 dt

(22.3)

with T →∞. This function measures how well the solution at a given moment is on average
related to the solution at a previous moment. In this sense, the delay∆ for whichρ approaches
zero defines the delay after which the solution cannot be determined from the knowledge
of the past anymore and is “decorellated” with values further apart than∆. For a purely
random signal, the autocorrelation is zero for any∆ > 0, while for the solution of the Lorenz
equation, we might indeed expect a limit of predictability (Figure22-3). Note that the system
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Figure 22-3 Autocorrelation as a func-
tion of ∆ for the solutionx(t) of the
Lorenz equations.

can still be deterministic, each initial condition determining a unique trajectory, but the loss
of predictability means we are not able anymore to isolate this unique trajectory even with
the finest numerical surgery and measurement tools.

For geophysical fluids, solutions are not only controlled byinitial conditions but also
by boundary conditions, and the predictability limit will depend on the relative importance
of boundary conditions versus initial conditions. If boundary conditions are mostly forcing
the system, an enclosed shallow sea with strong winds for example, the predictions can be
performed for very long times and the skill is essentially constrained by the accuracy of
the forcings. Since those forcings and boundary conditionsare generally reasonable known,
skill remains reasonable for rather long periods. For systems essentially controlled by initial
conditions, the global atmosphere for example, initial conditions are generally constructed
with care and initial skill is very high. With increasing lead time, predictability limits are
reached and skill rapidly drops. Between those two extremes, the skill behavior will thus
depend on the relative importance of initial or boundary conditions on the predictability limit
(Figure22-4).

Lead time

High skill

No skill

Figure 22-4 Predictability for bound-
ary condition dependent systems (thin
line), initial condition dependent sys-
tems (medium line) and mixed situa-
tions (thick line).

Despite the inherent problem of limitations in predictability, we can increase forecast
skills by reducing uncertainties in the model and its initial and boundary conditions, so as
to push further away the limits of the forecast system. Some of the errors which we can try
to keep under control were already classified for the modeling part (see section4.8) and in
the course of the book we encountered various levels of modelsimplifications, as hydrostatic
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approximations, quasi-geostrophic approximations or homogeneous shallow water models
for all of which the discretization added further sources oferrors. For the initial and boundary
conditions based on observed fields, we can also distinguishseveral kind of errors. The
most obvious one is the instrumental error of generally known and relatively low standard
deviation. In Section1.8 we also encountered the representativity error, due to the fact that
the measurement (e.g., a temperature measurement in a big city) is not the state variable
we actually would like to observe (the temperature at a 100 kmscale). Synopticity errors
can be a concern when observations are binned into time slotsfor analysis and assimilation
(e.g., assembling into a single snapshot view of the ocean the datagathered during a cruise
monitoring a frontal wave propagation can lead to severe Doppler effects, Rixenet al. 2002).
In general any data treatment before assimilation, such as interpolation, must be taken into
account when assessing the errors associated with the “observation”. The distinction between
modeling and observational errors are not always clear and the discrete sampling induced by
the model grid can be considered both a model error (truncation of continuous operators) or
an observation error (we do not measure the scales the model is supposed to simulate). In
any case, we face the problem that some of the information, both from the model and the
observations, are incomplete and corrupted by errors. The objective of data assimilation is
the reduction of the influence of those errors by combining model and data information in the
best possible way.

22.2 Nudging

Among the first methods used to correct models trajectories by data is the nudging method
which starts from the governing equations of the state vector x

dx

dt
= Q(x, t).

Assuming the observations distributed exactly as the statevector (i.e., we observe on the same
grid as the numerical model), we group them into a vectory and the nudging methods adds
a linear correction term to the governing equation, proportional to the difference between
model results and observations:

dx

dt
= Q(x, t) + K (y − x) (22.4)

The additional term is the product of a matrix with the model-observation misfit. For the
nudging method, the matrix is diagonalK = diag(1/τi) and is constructed usingτi, the time
scale of the so-calledrelaxation. Since the difference between the model simulation and an
observation of the same variable is zero in the case there areno errors, the additional terms
only act when a correction is necessary and then pushes the solution towards the observation
y. If the time scaleτi is large compared to the time scales of the system, corrections are small
and often qualified as background relaxation. Such background relaxations very often use
climatolical values in place of “observations”. When no observations are present for some
components of the state vector, the corresponding relaxation time is simple set to infinity.
When observations are only available at certain moments, the relaxation time scale is kept
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very large far away from that moment and decreases when approaching the momentto at
which data is available. In this way, a smooth time-incorporation of data is achieved and an
example of time dependent weighting functions is

1

τ
= K exp[−(t− to)2/T 2] (22.5)

with T an appropriate time scale over which the observation can leave its footprint on the
relaxation. The time relaxation can also be made space dependent when physical reasons
allow to identify different dynamical regimes. A particular form of nudging is surface relax-
ation in ocean models, where the simulated sea surface is relaxed towards observed fields.
Such a relaxation is often maintained with a low intensity even when full atmospheric fluxes
are applied in order to avoid any drift (REFERENCE). Finally, when relaxation time is very
short and comparable to the time stepping, the nudging method basically replaces modeled
values by the corresponding observation, a process calleddirect insertionwhen done in a
single time step. Presently nudging is still popular near boundaries, where the relaxation can
be interpreted as boundary fluxes corrected by observations. In this case, the time-continous
nature of the corrections is beneficial by avoiding sudden shocks in the models.

22.3 Optimal interpolation

The previous method, though robust and quite useful in the past, is rather anad hocapproach
and we will now present a method which is based on sound statistical optimizations. In
particular relationships between different variables will be exploited enhance corrections.
We will use notations slightly different from the discretization notations used up to now.
Because sequential assimilation cycles perform an analysis not every time step of the model
(Figure22-5), we usexn if we want to refer to a particular cycle of the assimilation1. We
also should keep in mind that in practical applications, it is advantageous to use a state vector
defined by anomalies (i.e., departure from a reference state), normalized so that eachelement
of the state vector should be comparable to the others. The state vector then does not try to
compare velocity and temperature but normalized versions of them. But because it contains
variables of different types we are heading for so-calledmultivariateapproaches. Forecasts
will be referenced by index f and the analyzed parameters, after combining forecast and
observations by superscripta.

For the sake of illustration, we start with the very simple problem of having at our disposal
at a given moment two pieces of information about a temperature with unknown true state
T t. The information can originate from a measurement and/or a model and include errorsε.
For the two valuesT1 andT2 we therefore have

T1 = T t + ε1, 〈ε1〉 = 0, T2 = T t + ε2, 〈ε2〉 = 0 (22.6)

where we assume that on statistical average, denoted by〈 〉, errors vanish. In other words,
we suppose the values to be unbiased. We can estimate the unknown temperature by a linear

1It is thus notxn we used before to refer to the time-step index.
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combination of the two:

T = w1 T1 + w2 T2 = (w1 + w2)T
t + (w1ε1 + w2ε2) (22.7)

and on average this estimate will take the value

〈T 〉 = (w1 + w2)T
t, (22.8)

so that we obtain an unbiased estimate of the true state if we takew1 + w2 = 1. In this case,
we perform in fact a weighted average of the two available data, an intuitive approach. An
unbiased estimate, oranalysis, T a of the true state is therefore

T a = (1− w2)T1 + w2T2 = T1 + w2(T2 − T1) (22.9)

while in reality there is an error

T a − T t = (1− w2)ε1 + w2ε2, (22.10)

which is zero on average but whose variance is not zero:
〈
(T a − T t)2

〉
= (1− w2)

2
〈
ε21
〉

+ w2
2

〈
ε22
〉

+ 2(1− w2)w2 〈ε1ε2〉 (22.11)

The actual errorsε1 andε2 are not known, otherwise we would have access toT t immediately.
However, depending on the origin of the errors, we can specify the so-callederror variance〈
ε21
〉

or, equivalently, the standard deviation of the error
√
〈ε21〉 generally used to plot error-

bars. If the measurements or models leading toT1 andT2 are independent, we can reasonably
suppose that the errorsε1 andε2 are uncorrelated, which in statistical terms means〈ε1ε2〉 = 0.
Hence the error variance

〈
ε2
〉

of the analysis is

〈
ε2
〉

= (1 − w2)
2
〈
ε21
〉

+ w2
2

〈
ε22
〉
. (22.12)

Naturally, the best estimate is the one with the lowest expected error variance and we will use
w2 that minimizes the right-hand side:

w2 =

〈
ε21
〉

〈ε21〉+ 〈ε22〉
(22.13)

and obtain the minimal error variance that reads

〈
ε2
〉

=

〈
ε21
〉 〈
ε22
〉

〈ε21〉+ 〈ε22〉
=

(
1−

〈
ε21
〉

〈ε21〉+ 〈ε22〉

)
〈
ε21
〉
, (22.14)

while the estimate of the temperature itself reads

T a = T1 +

( 〈
ε21
〉

〈ε21〉+ 〈ε22〉

)
(T2 − T1) . (22.15)

We observe that the error variance on the combination ofT1 andT2 is smaller than both〈
ε21
〉

and
〈
ε22
〉
. Using information from two sources, even if one of the sources has a rela-

tively large error, therefore reduces on average the uncertainty. This is the basic idea behind
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data assimilation combining information with known error statistics from different sources
to reduce overall uncertainties. If optimizations as the minimization of (22.12) are used, the
process can be quite efficient in decreasing the analysis error.

We can reach the same solution by solving a minimization problem aiming to findT
that minimizes a weighted measure of the differences between the analysis and the available
information, with weights inversely proportional to the error variance of the information:

min
T
J =

(T − T1)
2

2 〈ε21〉
+

(T − T2)
2

2 〈ε22〉
. (22.16)

In other word, we do not care the analysis to depart from observations that are uncertain but
require the analysis to be closer to accurate observations.The minimum of (22.16) is reached
whenT takes the valueT a of (22.15).

today
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prediction for lead time
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Reinitilization combining observations and previous forecast

prediction
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prediction for lead time

Figure 22-5 Schematic representation of intermittent reinitialization through sequential data assimila-
tion on a daily basis.

The optimal reduction in error can be used to combine model forecasts and observations
in the so-calledoptimal interpolation2. Generally, there are much more model data than ob-
servations3 so that the size ofx is much larger than that of vectory containing observations.
The state vectorx will thus be considered the reference to be corrected. If we want to reini-
tialize the model at a given moment, we can construct the analysisxa as a linear combination

2Sometimes the termobjective analysisis used as a synonyme, though the latter is in principle just any mathe-
matical interpolation method opposed to the historical subjective drawing by hand of isolines.CHECK

3The European Centre for Medium-Range Weather Forecasts, ECMWF, usesM =3 107 state variables for its
operational ensemble T255 weather forecast model in 2006 and assimilatesP = 3 106 observations every cycle of
12 hours; the Mercator ocean model PSY3v1 operates withM =108 but “only” P = 0.25 106 data are assimilated
once a week in 2005.
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of the forecastxf and the observationsy:

xa = xf + K
(
y −Hxf

)
(22.17)

Here we used a linearobservation operatorH that allows to relate the simulated state vari-
ables to the observed ones in order to quantify the model-observation misfits. In the most
simple case,H is a matrix that interpolates the model forecast of a variable onto the position
on which the corresponding observation is found (e.g., the temperature forecast is interpolated
to the position in which a meteorological station measures temperature). In other situations,
the matrix can contain mathematical operations that relatesome forecasted fields to observed
parameters not directly forecasted (e.g.,. the gelbstoff measured by satellites are integrated
values of matter in the water column, while a dispersion model provides forecasts of the 3D
structure of matters so that the observation operatorH has to integrate, or sum up, the differ-
ent layers in each water column). If the relation between model variables and observations is
nonlinear, the last term, calledinnovationvector and notedd should be replaced by

d = y −H(xf) (22.18)

whereH is then a nonlinear function. Here we will only consider a matrix H and a lin-
ear relation between observed parameters and model parameters. We can also mention that
interpretation of observation errors depend on how the dataare prepared and the observa-
tion operator is constructed. Altimetric data can for example be assimilated along tracks and
the observational error is then a combination of instrumental, representativity (mix of spatial
scales) , synopticity (time slot binning) and finally interpolation errors when sammpling the
model at the track locations usingH. If, for convenience, the tracks are beforehand gridded
on the same mesh as the model grid, this interpolation, itself performed for example with
a spatial optimal interpolation version (Excercise 22-2),has an associated error covariance
which must be taken into account in prescribing the previousobservational error. Generally,
interpolation from the model to data location (throughH) introduces less errors when there
are more model grid points than observations, the most usualcase.

The matrixK of sizeM×P is called the Kalman gain matrix and must now be determined
so as to lead to the best analysis. The best analysis will depend on the error structures of the
forecast and observations since we have both an error on the forecast

ε = x− xt (22.19)

with respect to the true statext. Similarly there is an observational error

εo = y − yt. (22.20)

From such errors, even if we do not know their actual value, wecan define statistical averages.
Obviously, for unbiased models and observations the first order moment〈εo〉 is zero. We can
also define the error-covariance matrix

R =
〈
εoεo

T
〉

(22.21)

which has non-zero elements on the diagonal if observationshave some errors associated
with them. On the diagonal we find indeed the error variance ofeach observation. The
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off-diagonal terms measure how errors of two different observations are correlated. Such
correlations can for example arise when satellite observations of turbidity are less precise in
a river plume, in which case points close to the estuary will exhibit correlated errors. Note
that error covariances are symmetric and that for any vectorz, the quadratic formzTRz =〈(

zTεo
)2〉

is never negative so that the covariance matrixes are semi-positive defined. This

simply means that the error on the model variables as well as variables diagnosed from the
model state have positive error variances. If errors are really random and span the whole state
vector space, the covariance matrix are strictly positive.

The analysis step (22.17) can be expressed as

xt + εa = xt + εf + K
(
εo −Hεf

)
+ K

(
yt −Hxt

)
︸ ︷︷ ︸

=0

(22.22)

The last term is zero because for a perfect model, the forecast diagnosed through the obser-
vation operatorH, also called observed partHx of the state vector, must correspond to the
observed true field. Hence the error of the analysis reads

εa = εf + K
(
εo −Hεf

)
(22.23)

We can then construct the error covariance
〈
εaεaT

〉
of the analysis by multiplying (22.23) by

its transposed and take the statistical average or expectation
〈
εaεa

T

〉
=

〈
εfεf

T
〉

+ K
〈
(εo −Hεf )εf

T
〉

+
〈
εf (εoT − εf

T

HT)
〉

KT

+ K
〈
(εo −Hεf )(εoT − εf

T

HT)
〉

KT (22.24)

defining covariance matrixes
P =

〈
εεT
〉

(22.25)

with Pf andPa forecasted and analyzed version of the error covariance,i.e., whereε is the
error of the forecast and the analysis, we can expand the expressions and assume that ob-
servational errors and model errors are not correlated,

〈
εoεT

〉
= 0. Such a decorrelation of

observational error and modeling error is justified by the very different origin of the informa-
tion. The error-covariance matrix after analysis can then be written as

Pa = Pf −KHPf − PfHTKT + K
(
R + HPfHT

)
KT

= Pf − PfHTA−1HPf +
(
PfHT − KA

)
A−1

(
HPf − AKT

)
(22.26)

where we define matrix

A = HPfHT + R (22.27)

which is symmetric and we suppose can be inverted4.

4BecauseP andR are semi-positive defined matrixes chances are not bad. In addition, when observations and
state variables are covering a spatial domain, the covariances between distant points are generally small compared
to pairs of points that are closer, so that the matrixes will have a tendency to be diagonally dominant.
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If state variables are properly scaled (to be able to compareerrors in temperature with
errors in velocity5), the overall errorεa of the analysis or the forecast field can be taken as
the expected norm of the error vector:

εa =
〈
εa

T
εa
〉
. (22.28)

This is however nothing else than the trace of the covariancematrix
〈
εaεaT

〉
and a global

measure of the analysis error is thus

εa = trace (Pa) . (22.29)

Since the matrixK, which is anM × P matrix, is yet unspecified, a clever choice would
be to determine the matrixK that minimizes the global error. We could take the trace of
(22.26) and explicitly derive the trace with respect to all components ofK in order to find the
stationary value of the global error. Because (22.26) is a quadratic form in terms ofK and
becauseA−1 is positive defined if it exists, the extremum is then a minimum. Alternatively,
we can think about the error as being a functionεa(K) of the gain matrixK and search an
optimalK for which

εa(K + L)− εa(K) = 0 (22.30)

for any small departure matrixL. We require thus

trace
(
−L
(
HPf − AKT

)
−
(
PfHT −KA

)
LT

)
= 0, (22.31)

where we neglected quadratic terms inL. The two terms are the transposed of each other and
since the trace of the matrix and its transposed are identical, we must request

trace
((

PfHT −KA
)

LT

)
= 0.

SinceL is arbitrary, the optimal solution with minimum error is obtained when

K = PfHTA−1 = PfHT

(
HPfHT + R

)−1

(22.32)

and we see that in order to find the optimal solution, matrixA must indeed be invertible.
The Kalman gain, which combines linearly model forecasts with data is then the analogue of
(22.13). The error covariance of the analysis is obtained by injecting (22.32) into (22.26)

Pa = (I−KH)Pf =

(
I− PfHT

(
HPfHT + R

)−1

H

)
Pf (22.33)

which is the analogue of (22.14). Note that both the Kalman gain matrix and the error covari-
ance after the analysis do not depend on thevalueof the observations or the forecasted state
vector but only their statistical error covariances. The only field that depends on the actual
values is of course the state vector itself:

xa = xf + PfHT

(
HPfHT + R

)−1 (
y −Hxf

)
. (22.34)

5It is interesting to note that the optimal analysis itself isindependent of the chosen norm as long as no simplifi-
cations are introduced into the procedure (e.g., Kalnay??).
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The use of (22.32) in (22.17) to combine the forecast and observation with prescribed error
covariancePf andR is known asoptimal interpolation(OI).

When those covariances are given, an alternative derivation of optimal interpolation can
be presented by a variational approach called3D-Var, in which we try to find the state vector
that minimizes the error measureJ given by

J(x) =
1

2
(x− xf )

T

Pf
−1

(x− xf ) +
1

2
(Hx− y)TR−1(Hx− y) (22.35)

in other words, we search for the state vector close to the model forecast and the observation,
penalizing less the more accurate information, in close analogy with (22.16). Solving this
minimization problem, a variational problem, hence the name 3D-Var if the physical problem
is three-dimensional, leads to the same analyzed field as in (22.34), the demonstration of
which is left as an exercise (22-3). It can also be shown that the error covariance matrix
(22.33) can be retrieved by calculating the Hessian matrix,i.e., the second derivatives ofJ
with respect to the state vector components at the minimum ofJ .

Optimal interpolation can also be introduced in terms of themaximum likelihood estima-
tor of the true field,i.e., the field which has the highest probability to match reality, which is
also given by (22.34) if probability density functions(pdf) of the errors are Gaussian.

22.4 Kalman filtering

A distinct feature of the optimal interpolation is the fact that except through the forecast-
error covariance matrix, the dynamical model properties are never used in the analysis step.
In reality, the error covariance is depending on the historyof the flow and a local initial
error in tracer values is for example transported in preferential directions (along the varying
flow) or amplified by unstable modes. We therefore now take into account the fact that
between assimilation cyclen andn + 1 the dynamical model advances the state vector in
time according to

xn+1 = M(xn) + fn + ηn (22.36)

whereηn takes into account errors introduced by the model andfn includes the external
forcings. M is the model or machinery that allows to step forward in time the state vector
between assimilation cycles and includes thus any inversion for implicit models and several
time steps when intermittent assimilation is performed. Assuming the simulation cycle be-
tween the two analysis was started with the analysis of the previous assimilation and assuming
a linearized model we have

x
f
n+1 = Mxan + fn + ηn (22.37)

where we use now a matrixM instead of the nonlinear operatorM of (22.36). Such a matrix
is actually never formed except for didactical purposes butallows to formalize the method
more elegantly. The true state evolves without modeling errors and obeys

xtn+1 = Mxtn + fn (22.38)

so that the forecast errorεf = xf − xt satisfies

ε
f
n+1 = M εan + ηn. (22.39)
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Multiplying this equation by its transposed to the right andusing the statistical average we get
the so-called Lyapunov equation that allow to advance in time the error-covariance matrix:

P
f
n+1 = MPanM

T + Qn = M(MPan)
T

+ Qn (22.40)

in function of the model-error covariance matrix

Qn =
〈
ηnη

T

n

〉
. (22.41)

We assumed as usual errors of different origins to be uncorrelated. Since the forcingf disap-
pears from the error evolution, we will not keep it during later developments. Note that the
error-covariance matrix can be calculated by using the model evolution on each columnc of
Pa as shown by the operationsMc involved. To start the calculation of the error evolution
we need to know the initial value ofP which is related to the error on initial conditions:

P0 =
〈
(x0 − xt0)(x0 − xt0)

T
〉
. (22.42)

Now we have a method to calculate the evolution of the error-covariance in time and the
Kalman filter assimilation is summarized in Figure22-6, including an extension towards
a nonlinear model with linearized error propagation (Extended Kalman Filter, EKF). The
analysis step itself is unchanged compared to optimal interpolation, only the error-covariance
is updated.

Two extremes are noteworthy: In the case the time between twoassimilations is very short
compared to the time scale of evolution of the process being modeled, the state-variable as
well as the error fields are almost unchanged and the model canbe considered as persistence
(M ∼ I). In this case

P
f
n+1 ∼ Pan + Qn, (22.43)

in other words, the errors of the forecast are the errors of the previous analysis, without any
advection or other modification, augmented by the model error introduced by the simulation
between the assimilations. The last error will be relatively small for a well constructed model
because the time integration is short compared to the time scales of interest.

On the other extreme, when assimilation takes place only after very long periods, nonlin-
ear models may have reached their limit of predictability. In this case, model forecasts are
basically random and the forecast is a pure modeling error. Mathematically this amounts to
stateM ∼ 0 and hence

P
f
n+1 ∼ Qn, (22.44)

meaning that the error field has no trace anymore of the previous error fields (coherent with
the trepassing of the limit of predictability) but is purelydue to the simulation itself. Obvi-
ously,Qn is in this case much larger than in the other extreme case (22.43) because of the
long time integration and error explosions inherent with the predictability limit of the nonlin-
ear system. If the system is almost random after such a too long integration,Qn will be close
to a diagonal matrix, the errors in different locations being not related.

To illustrate the structure of the Kalman filtering in the general case, we first note that for
the analysis step the error covariance matrix only appears in the combinationPfHT

PfHT =
〈
εfεf

T
〉

HT =
〈(

xf − xt
) (

Hxf −Hxt
)T〉

(22.45)
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Figure 22-6 Extended Kalman Filter assimilation scheme with changing observation network (chang-
ing H), nonlinear model forecasts (M) and model linearization between assimilation cycles for the
error forecast.)
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which is the covariance between the observed quantities andall others. Because it is the
matrix that finally multiplies a vector of the size of the data, it allows to propagate information
from the data locations into the model grid. We also have

A = HPfHT + R =
〈(

Hxf −Hxt
) (

Hxf −Hxt
)T〉

+ R

=
〈(

Hxf − y
) (

Hxf − y
)T〉

(22.46)

which is easily interpreted in terms of error variance of theforecast in the observed part,
combined with the corresponding observational errors, reminiscent of

〈
ε21
〉
+
〈
ε22
〉

in (22.13).
Is also shows thatA−1 exists depending on the statistics on the innovation vectorHxf − y.
Should a component of this innvovation vector always be zero, and henceA be singular, it
means the corresponding model part never needs a correctionand should be excluded from
the analysis procedure. Also note that the Kalman gain matrix is indeed giving weights to the
observations the more precise they are and then transmits this signal to other locations.

In particular for the assimilation of a single observation on thekth component of the state
vectorx:

• PfHT is aM × 1 matrix whose components areP fik , i = 1, ...,M and is thus re-
sponsible for transferring the innovation learned from observation in locationk to the
other components of the state vector. The covariance matrixappears thus as the matrix
allowing to correct fields using remote signals. The structure of the covariance depends
on the problem at hand (Figure22-7).

•
(
HPfHT + R

)−1

reduces to a scalar value(P fkk + ε20)
−1 whereε is the variance of

the observational error andP fkk the forecast error covariance at the same location.

The error covariance matrix allows thus the propagation of information from the data lo-
cation into other parts and on other state variables taking into account the relative error of
observations and models. Observation of temperature profiles might well serve to change
wind velocity fields in remote locations or sea surface height measurements by altimetry may
well be used to correct density fields in deeper layers. Therefore satellite data are very valu-
able in ocean forecasts because of the difficulty to maintainfixed observing station in the sea
or to perform regular cruises to sample the ocean interior, contrary to the atmosphere, with
is large network of observing systems and profile sounding with ballons. For the ocean it is
then critical to transmit those surface data to correct density fields and currents in the interior
of the ocean.

Because of our optimisation of errors, using linear combinations and the hypotheses of
zero bias, the full Kalman filter is called aBest Linear Unbiased Estimation(BLUE) of the
true state. Therefore the other linear methods presented upto now must be suboptimal. It is
interesting to note that the Kalman filter approach indeed encompasses the other assimilation
methods. If we prescribea priori the forecast error covariance in the Kalman filter instead
of calculating it with the model, we downgrade the Kalman filter to an optimal interpolation.
If the prescribed error covariance and observational errorcovariance matrix are furthermore
diagonal, it is easy to verify, by introducing a time discretization on (22.4), that we retrieve
the nudging scheme in which assimilation is performed during each time-step. Finally, when
the nudging time scale is decreased towards zero, the directinsertion method is recover. In
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Figure 22-7 Error covariance matrix (left panel) at the end of the simulation and advected signal
(right panel) with wrong velocity and upwind diffusion. Data point are provided ini = 40 every time
step. The assimilation (full curve) corrects some of the model errors (dotted curve for model without
assimilation). The covariance matrix is highest on the diagonal and points downwind of the data point
have a lower error variance because of the observations withlow errors permanently reducing errors.
.m for details on implementation.

all cases, the term filter method is appropriate because onlypast data are used to infer the
local field estimate.

22.5 Inverse methods

The Kalman filter operation depends only on past informationwhich is sensible for opera-
tional purposes. In addition it does not need the assumptionthe dynamic model to be perfect.
The reinitialization cycle optimized with the Kalman filterhas however a major drawback in
terms of model simulation now analyzed over long time periods: the simulated trajectories
are not continuous6 anymore, but exhibit finite jumps at each assimilation instant (Figure
22-8). In addition, if such jumps are dynamically unbalanced because of inadequate covari-
ance models, unphysical shocks can occur in the model. For some applications, it would be
desirable to obtain a state estimation which inherits the continuity properties of the physical
system (Figure22-9).

Since we are concerned by obtaining a continuous model trajectory, we will assume the
dynamical model itself to be perfect and only allow errors due to incorrect forcing, initial
conditions and possibly incorrect model parameters such asthe value of a constant eddy vis-
cosity. Those errors are thus considered responsible for model trajectories not corresponding
to reality. The idea we will now follow is to optimize those parameters so that the model
trajectory is as close as possible to the observations over along time period. The state at any
moment is then influenced by data prior to this moment but alsobeyond because all data are
taken into account to construct the optimal trajectory. Such a method working with data over
an interval is called asmootherand useful for reanalysis of past observations.

Mathematically our goal is the minimization of trajectory-data misfit over a time-interval
with N data-setsyn. Here we will search for an optimal initial conditionx0. The name

6in the limit of considering the real model time steps sufficiently small.
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Figure 22-8 The Kalman filter approach leads to a model trajectory that isinterrupted at each assimi-
lation cycle but reduces the error during the reinitialization.

inverse modelis readily understood in opposition to the standard model which starts from
initial conditions and calculates the model evolution in time. Here we try to infer initial
conditions from observations of the actual solution by minimizing a so calledcost function:

J =
N−1∑

n=0

1

2
(Hnxn − yn)

T
R−1
n (Hnxn − yn) + Jb (22.47)

We added a termJb that might be useful if we want to avoid the initial conditionx0 to part
too much from a background fieldxb0

Jb =
1

2
(x0 − xb0)

T

P−1
0 (x0 − xb0) (22.48)

Such a background statexb0 on the initial condition can be provided for example from previ-
ous forecasts or climatology. In addition to the minimization of the cost functionJ , we need
to enforce the constraint that the solutionx is a model trajectory and therefore satisfies

xn+1 = M(xn) (22.49)

For simplicity, we use again the linearized version

xn+1 = Mn xn (22.50)

that our trajectoryxn, n = 0, ..., N−1 must satisfy. An elegant way to ensure this constraint
is adding so-called Lagrange multipliersλn to the unknowns of the problem and form the



632 CHAPTER 22. DATA ASSIMILATION

t

Observation

6x
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Control of initial conditions by measuring distance
between observaions and model trajectory

Error covarianceP0

Figure 22-9 The adjoint approach selects the model trajectory that fits best the observations over a
given time interval. The initial conditions are drawn with aprobability density function centered around
a background statexb

0.

following expression

J =

N−1∑

n=0

1

2
(Hnxn − yn)

T
R−1
n (Hnxn − yn)

+
N−1∑

n=0

λT

n (xn+1 −Mn xn)

+
1

2
(x0 − xb0)

T

P−1
0 (x0 − xb0) (22.51)

The minimum of the original cost function (22.47) with the constraints (22.50) is obtained
when (22.51) is stationary,i.e., derivatives with respect to Lagrange multipliers and control
parameters are zero. This forms another variational problem, called4D-Var. Note that we
took the initial observations into account in the cost function but not at the final simulation
resultxN , which can thus be regarded as the forecast based on a trajectory that is close to the
N previous observation sets

The stationarity condition of (22.51) with respect to changes in Lagrange multipliersλ

directly provides the model constraint (22.50) for n = 0..., N − 1.
Variation with respect to the initial statex0 leads to

∇x0J = P−1
0 (x0 − xb0) + HT

0R−1
0 (H0x0 − y0)−MT

0 λ0 (22.52)

which must be zero for the optimal solution.
Variations of (22.51) with respect to any intermediate statexm must also be zero. Realiz-

ing thatxm appears in the sum forn = m andn = m− 1, we obtain the following condition
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in which we rechristenedm back ton:

HT

nR
−1
n (Hnxn − yn)−MT

nλn + λn−1 = 0 (22.53)

for n = 1, ..., N − 1. Finally, variation with respect to final statexN directly provides
λN−1 = 0.

The different conditions can be recasted into the followingalgorithm. We start with an
estimatex0 of the initial condition and then perform the following operations

xn+1 = Mn xn, n = 0, ..., N − 1 (22.54a)

λN−1 = 0 (22.54b)

λn−1 = MT

nλn −HT

nR
−1
n (Hnxn − yn), n = N − 1, ..., 1 (22.54c)

We note that model-data misfits are basically driving the values of the Lagrange multipliers.
All stationary conditions on (22.51) are now satisfied except that∇x0J given by (22.52) is
not yet zero. The recurrence (22.54c) on the Lagrange multiplier can formally be extended
to n = 0 so thatλ−1 takes the value of−∇x0J if no background field is used (P−1

0 = 0).
But because we have now access to a value ofJ and its gradient with respect to the vari-
ables on which we optimize our solution, the initial condition, we can use any mathematical
minimization tool that searches for such minima using gradients. The steepest descent or the
more efficientconjugate gradientmethod (REFERENCE) are iterative methods which create
a succession of states (here forx0) that decrease the value of the cost functionJ depending
on the gradient of the function. We therefore have now a relatively simple way to calculate
those gradients by performing a forward integration of the model, called direct model, and
a backward integration to evaluate the Lagrange multipliers and finally the gradients (Figure
22-10). The apparently simple recipe hides several practical problems. The equation for the
Lagrange multipliers is very similar to the direct model equations with the innocent looking
difference that instead of matrixM its transposed appears and instead of applyingM, we
apply its adjoint toλn to create the time series. Therefore we speak about theadjoint model
when referring to the backward integration for the Lagrangemultipliers. In practise, since
a numerical model never explicitly creates the matrixM, it means that a programming of
an adjoint model is necessary, whose action onλ is equivalent to applying the transposed
model matrix. Another practical problem for time-varying models is the need to store or
permanently recreate model results over the full simulation interval because of the backward
integration. For more details on implementation aspects werefer to REFERENCE, including
methods ofpreconditionningensuring faster convergence of the minimization process.

To present the method, we worked on a discrete model version even if our purpose was to
construct continuous trajectories. In fine, a discrete solution is anyway thought and the adjoint
method we developed is the adjoint of the discrete direct model, itself continuous in the sense
that there are no jumps at the assimilation points. We could have worked with continuous
time derivatives instead, but then we need to discretize theassociated continuous adjoint
model, which will generally not be the adjoint of the discrete direct model, reminiscent of
Figure2-15. The method is readily extended to optimizations of parameter values such as
lateral viscosity and boundary conditions. Parameters to be optimized can for example be
introduced as an addition state variable into the state vector, with an evolution equation of
persistence. In all cases it must however be kept in mind thatany inversion is only valid
if the direct model itself is able to simulate correct trajectories. In other words, when a
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x0 J

Figure 22-10 The forward integration starts from an initial guess on the control parameters and then
provides the state variable over the simulation window. Misfits between observations and model trajec-
tories are stored and error norms in cost functionJ defined by (22.35) accumulated. Then the adjoint
model is integrated backward in time, forced by the misfits. When arriving inn = 0 the gradient (22.52)
can be calculated. If it is not zero, the optimum is not reached and an improved guess on the control
parameters can be calculated by minimization tools using the cost function valueJ and its gradient with
respect to the control parameters.

grossly inadequate model is used with an inverse model to calibrate parameters allowing a
reasonable trajectory, parameters obtained by such an inversion have no real physical meaning
anymore but are justad hocvalues. It might be therefore adequate to relax the hypothesis of
a dynamically correct model and allow for errors as in the Kalman filter.

t

Observation

6x

Initial condition

Control of initial conditions

modified model trajectoryData influence

unmodified model trajectory

Figure 22-11 Generalized inverse methods allow both to optimize initialconditions and allow the
model to depart from a model trajectory to be closer to observations.

Allowing the model solution to part from a model trajectory is achieved by replacing the
strong constraint (22.50) by a so-calledweak constraint, penalizing only too strong depar-
tures from (22.50), with penalisation strongest for models which are trustworthy. We can
therefore adapt the cost function of the inverse model to form a generalized inverse model by
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minimizing

J =

N−1∑

n=0

1

2
(Hnxn − yn)

T
R−1
n (Hnxn − yn)

+

N−1∑

n=0

1

2
(xn+1 −Mn xn)

T
Q−1
n (xn+1 −Mn xn)

+
1

2
(x0 − xb0)

T

P−1
0 (x0 − xb0) (22.55)

whereQ is the error-covariance of the model. Derivation with respect to the initial condition
provides

∇x0J = P−1
0 (x0 − xb0) + HT

0R−1
0 (H0x0 − y0)−MT

0Q−1
0 (x1 −M0 x0) (22.56)

while derivation with respect to intermediate states (n = 1, .., N − 1) lead to conditions

HT

nR
−1
n (Hnxn − yn) −

MT

nQ
−1
n (xn+1 −Mn xn) + Q−1

n−1 (xn −Mn−1 xn−1) = 0 (22.57)

and derivation with respect to the final state providesxN = MN−1 xN−1. This system of
equations can be written in a more familiar way

xn = Mn−1 xn−1 + Qn−1λn−1, n = 1, ..., N (22.58a)

λN−1 = 0 (22.58b)

λn−1 = MT

nλn −HT

nR
−1
n (Hnxn − yn) n = N − 1, ..., 1 (22.58c)

with the need for gradient (22.56) to be zero. These equations are very similar to those of the
adjoint method (22.54) with the additional term involvingQ in the direct model allowing the
propagation of model errors. Though similar, the practicalsolution is more complicated than
for the adjoint method and can be obtained with the so-calledrepresenter method(Bennett
1992). The generalized inverse method exhibits thus a continuous solution, which is not so-
lution of the direct model but whose distance to observations and a real trajectory is minimal
(Figure22-11).

The variational approaches are attractive since they allowefficient model calibrations,
but error-covariances on observations and the model need tobe prescribeda priori. More
importantly, except for the value of the cost function, the analysis is not yet accompanied by
error estimates of the final analysis, as those found for the Kalman filter (22.33). It is possible
to obtain such estimates also for the variational methods using the second derivative of the
cost function with respect to the control parameters to formthe Hessian matrix. Intuitively,
if the cost function is decreasing sharply and has a deep well, the optimum is much better
constrained than for a flat cost function (Figure22-12). The Hessian matrix allows then the
calculation of the error covariance, a property demonstrated in REFERENCE.

Another way to obtain smooth trajectories with error estimates is to generalize the Kalman
filter to include not only past values but also future ones. The so-calledKalman smootherdoes
so and can be shown to provide identical results to the generalized inverse approach over the
whole simulation window for linear systems.
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J
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Figure 22-12 When the Hessian ma-
trix of J is large, the minimum is well
constrained and errors on the final state
small (left panel). Errors on the opti-
mal solution will be larger if the cost
function has a wide range over which
the initial condition can vary without
penalizing the value ofJ (right panel).

Similarly it can be shown that the standard 4D-Var method andKalman filter are equiv-
alent for a perfect model with identical data over a given time interval and initial error co-
variance in the sense that they lead to the same final analysisfor linear models and linear
observation operators.

Though equivalences are demonstrated in some cases, the methods loose their connec-
tions when the underlying hypotheses such as linear models and unbiased information are
violated. The methods will then provide different solutions. Also the practical implementa-
tions are quite different an can lead to very different algorithmic performances with different
levels of additional simplifications.

22.6 Operational models

Practical implementations of the described data assimilation methods are a concern if we look
at typical numbers of operations to be performed.

The nudging method barely adds a linear term to existing equations and the overhead cost
associated with the assimilation is generally negligible.

For optimal interpolation in its original form, we need at least to invert a matrix whose size
is proportional to the number of observations, assuming thecovariance matrixP or betterHP

can be calculated easily. Since matrixH is generally mostly composed by zeros, we neglect
costs associated with multiplications byH since the operation consist in extracting some
model parameters from the state vector rather than a real matrix multiplication. Nevertheless,
for a full matrixHPHT + R, the cost of its inversion is roughlyP 3. In addition, we need to
storeHP of sizeM×P . This needs already a major effort in computer resources ifP is large.
If we would like to calculate the error covariance after analysis, the matrix multiplications
needPM2 operations. If only the diagonal of the covariance matrix,i.e., the local error
variances are needed, the number of operations reduces toPM .

Things get of course more demanding if we update the error-covariance in time according
to the Kalman filter theory. Even if we do not create the matrixM allowing the model
transitions, the multiplication of this matrix with a vector is equivalent to a model integration.
Hence, if the matrixM multiplies another matrix of sizeM ×M , we can estimate the cost
to be equivalentM model integrations, which is therefore the cost to update the forecast
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error covariance and must be compared to the cost of a single model integration when no
assimilation is included.

For the original 3D-Var method, things are not better a because we needM3 operations
to inverse covariance matrixes unless they are provided as inverse already. In this case we
needM2 operations to calculate each cost function,M operations to calculate its gradient
andK iterations to find the minimum. To reach the minimum,K = M iterations are needed
in theory but good approximations can be found forK being a fraction ofM .

For 4D-Var, similar estimates apply with the need to performa direct model integration
and its adjoint integration for each evaluation of the gradient needed during the minimization.
ForK iterationsKM model integrations are performed and each evaluation of thecost func-
tion requiresM2 operations unless the error covariances have special forms, as a diagonal
one.

In view of the numbersM andP in use for operational models, we clearly see a need
for simplifications and yet another reason to keep pressure on computing resources. Indeed,
for the sizes of statevectors and observation arrays currently in use, original Kalman filters or
3D-Var are out of question if covariance matrixes are not of aspecial form.

Reducing the complexity of the assimilation methods to affordable version retaining the
advantages is where the “art” of modeling comes to help by identifying unnecessary com-
ponents or dominant processes to be retained. Also the type and quantity of observation is
controlling the design of the simplifications. In the ocean,observations for operational pur-
poses are mostly surface data from satellites (sea level anomaly with respect to an average,
possibly dynamical position, sea surface temperature, colour, and soon salinity and sea ice.)
or coastal data, with Argo floats (e.g., Poulain) complementing the information with deep
profiles. In the atmosphere (TO BE COMPLETED)

The modified assimilation methods generally take into the type of data incorporated. For
the ocean, one approach being to perform assimilation in twosteps, one incorporating only
surface information and the other profile data, with specificsimplifications brought to the
covariances.

Such a reduction of complexity can be justified in most cases because the system evolution
include a series of physically damped modes. For these part of the evolution corrections are
not needed because they fade away. Such damped modes occur because of attractors as
geostrophic equilibrium. On the other side unstable modes must certainly be followed by the
assimilation process. Another justification for the appropriatness of reducing ambitions, is
the size of the state vector. The very large number of numerical state variables arises because
we request the numerical grid or method to resolve correctlythe scales of interest, hence
∆x � L and∆z � H . But this immediately prooves that we use much more calculation
points than the real degrees of freedom of the system we actually want to model. Therefore
we can try to reduce the dimensions of the data assimilation problem.

One of the most popular approaches to simplify the calculation is the use of areduced
rankcovariance matrix

P ∼ SST (22.59)

whereS is of sizeM×K,K generally being much smaller thanM . It is easily demonstrated
that the rank7 of SST is at mostK, hence the name reduced rank. Note that we do not need
to storeP anymore because if we store the much smaller matrixS, we can at any moment

7i.e., the number of linearly independent columns.
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perform matrix multiplications involvingP by a successive matrix multiplication withS and
its transposed. In this way a multiplication ofP with a square matrix of identical size, instead
of requiringM3 operations, requires only2KM2 operations.

But we also gain in terms of matrixes to be inverted. The effect of a reduced rank can
be exemplified most easily if we assume a diagonal matrixR for uncorrelated observational
errors with the same error varianceµ2. Defining matrixU = HS of dimensionP ×K with
K � P , we have

PHT

(
HSSTHT + R

)−1

= SUT

(
UUT + µ2I

)−1

= S
(
UTU + µ2I

)−1

UT (22.60)

using a special case of the probably most useful matrix identity in data assimilation, the
Sherman-Morisson formula (Exercise 22-8). The last operation transformed the matrix to be
inverted from aP ×P matrix into a much smallerK ×K one. This is where a major gain in
computing as obtained.

The gain in terms of computation is of course at the expense ofsome optimality of the
analysis. This is clearly seen from the analysis step expressed in terms ofS

xa = xf + Sα, α =
(
UTU + µ2I

)−1

UT
(
y −Hxf

)
. (22.61)

whereα is aK×1 vector. We notice that corrections onxf are always a linear combinations
of the columns ofS. Error corrections are therefore only possible in the spacespanned by
columns ofS and other directions are thusde factoconsidered without errors. If there are
errors in reality, they will pass unnoticed as such by the reduced rank approach and interpreted
as real signal. A substantial reduction in calculations is however obtained and it can be shown
that error covariance updates can benefit from similar reductions in complexity. The essential
problem is to assess a relevant reduced formSST.

In an ensemble forecast approach, the model is used to createa series of simulations,
each being a slightly perturbed version of the others, with perturbations introduced via initial
conditions, forcings, parameter values and even topographic perturbations. We then have
an ensemble of model results from which statistical parameters can be estimated using the
ensemble membersx(j). The average of the ensemble can for example be used as the best
estimate for a forecast:

x̄ =
1

K

K∑

j=1

x(j) (22.62)

If we accept this as the best estimation of the true state, deviations from this state can be used
to estimate the error covariance matrix

P =
1

K − 1

K∑

j=1

(
x(j) − x̄

)(
x(j) − x̄

)T

(22.63)

The denominatorK − 1 arises because theK deviations from the mean are not independent
anymore and the number of degrees of freedom is reduced toK−1. This is the same approach
we use when estimating variances from samples. The columns of S are thus directly given by
the ensemble members, shifted to have a zero mean and scaled by 1/

√
K − 1. All we have

to do is to perform an ensemble of model simulations and perform statistical calculations
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on their solutions. In practice, the convergence of variance estimations fromK samplings
converges only as1/

√
K and we therefore see the need to use a large ensemble or to create

ensemble with optimal distributions of its members (Evensen ????). Combining ensemble
approaches and reduced rank approximations lead to a seriesof assimilation variants with
different implementations (Pham, Barth, Brasseur, Lhermusiaux, etc)

The ensemble approach can even be extended to include not only simulation results of a
single model with perturbed setups, but also different models, aimed at modelling the same
properties (superensemble approach) or even using different physical parameterizations and
governing equations (hyperensemble approach). Such combinations can drastically reduce
errors, in particular biases (REFERENCE).

Other simplifications are based on the reduction of the size of the state vector on which
assimilation works. A possibility is to propagate error covariances with coarser grids or
simplified models (to forecastP a quasi-geostrophic model could be used while the state
variables are forecasted using primitive equations, Fukumori????). Particular dynamic bal-
ances also can directly be taken into account through covariances. But if only one component
of such a balance is observed, for example sea surface heightin a geostrophically balanced
system, velocity does not need to be included in the assimilation step but once a correction
of sea surface height and density is found, corrections on velocity can be calculated by using
geostrophy on the pressure corrections.

Each time an assimilation method is complementing a model, specific adaptations are
therefore implemented, depending on the dynamical regimes, the number and type of avail-
able data, the computing resourcesetc. Another aspect requiring attention in operational
models is a smooth data flow. In view of the large number of dataingested by the systems,
it is out of question to verify manually all data or apply transformations on them because
some standards are not followed. Also, even with a strong standardization, transmission er-
rors or instrumental disfunctionning can happen and automated quality controls must verify
the likelihood that a given observation is coherent with statistical distributions.

Often forecasts are provided on a large scale and dispatchedto regional forecast centers
wheredownscalingof the forecasts to the regional scales must be done. This canbe achieved
by forecasters with knowledge of the regional dynamics, using both knowledge of the local
system, statistical tools and possibly regional models to provide accurate forecasts at scales
not resolved by the glocal models. In particular rain and cloud related properties require
adequate downscaling in weather forecasts.

Operational model are already in use for some applications for quite some time, with
weather forecasts based on numerical models initiated in the post-war period and are now
widespread with two major centers providing global forecasts (ECMWF, NCEP). Operational
tidal models, hurricane predictions and tsunami warning systems in the Pacific are also well
established, incorporating data form observational networks in dedicated institutes. Since a
few years ocean circulation forecasts are emerging (Mersea, Hycom, Hops...), well before the
public demand for tsunami predictions at global scale appeared in December 2004.

A common aspect of operational models is that data assimilation was initially exploited
to reduce errors. But it is fair to request that operational model should not only include fore-
casts but also associated errors or confidence, which assimilation now allows to do. From
a scientific point of view, we might argue that the forecast corrections do not provide new
insight into physical processes. In reality the analysis ofassimilation cycles can help under-
standing error sources and verify that the model is statistically coherent with observations.
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Also verifying the innovations and error estimates are compatible with the statistical models
in use allows to identify problem. For example, on average, innovations should be zero, oth-
erwise a bias is probably present in the system and should be corrected. In this sense forecast
verifications (Joliffe) can teach us things about the dynamics, model errors and observations
and can help to identify the key model or observing system ingredients to improve.

M. Ghil and P. Malanotte-Rizzoli,11 ‘Data assimilation in meteorology and oceanog-
raphy’, Ad. Geophys., 33, 141 – 266 (1991). A.F. Bennett, Inverse Methods in Physical
Oceanography, Cambridge University Press, 1992, 346.

To cite in chapter, Bennet, ghil, rizzoli, robinson, verron, evensen, barth, brasseur, rixen,
Carton Kalnay etc Daley 1991, Hollingworth

Pinardi (Navarra) ocean forecasting
Kalnay, E. 2003:Atmospheric Modeling, Data Assimilation and Predictability, Cam-

bridge University Press, 341 p.
Fukumori smoothing
(for general kalman theory) Gelb A., 1974 :Applied optimal estimation, MIT Press,

374 p.
If speak about EOF, show a nice example (El nino or a decadal oscillation)

Analytical Problems

22-1. Analyze the exact solution of the following equations

du

dt
= f̃ v − u− uo(t)

τ
(22.64)

dv

dt
= −f̃u − v − vo(t)

τ
(22.65)

with uo(t) = cos(ft), v0 = − sin(ft) and a relaxation timeτ = 1/(αf̃). These equa-
tions are modeling a nudging term applied to follow an inertial oscillation of frequency
f while the “model” has a tendency to create an inertial oscillation with frequencỹf .
Analyze how the nudging corrects an error on the initial condition, distinguishing the
effect of an error on amplitude and phase. Then investigate how a difference between
f̃ andf affects the solution.

22-2. Estimation of error variances for various fields on a graph. To which variability the
errors could be compared?

22-3. Prove that the minimization of (22.35) leads to the same analysis as the optimal inter-
polation. What is the value ofJ at the optimum?

22-4. Describe and write out an optimal interpolation method to interpolate in space knowing
the spatial covariance of the true field and data errors in given locations.
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22-5. Weather forecast is limited to one or two weeks after which forecast skill is nil. Can
you justify why climate models, using also the governing equations of geophysical fluid
dynamics, can be used to predict tens of years?Hint: Think about the signification of
state variables and parameterizations.

22-6. Bottom friction is generally parameterized by a quadratic lawτb = ρ0Cdu
2. Show that

even for an unbiased estimate ofu, the bottomstress itself is biased. What is the error
variance?

22-7. Prove

LT

(
LLT + µ2I

)−1

=
(
LTL + µ2I

)−1

LT (22.66)

Are there conditions to be satisfied?

22-8. Demonstrate the Sherman-Morrison formula

(
A + UVT

)−1

= A−1 − A−1U
(
I + VTA−1U

)−1

VTA−1 (22.67)

22-9. Assuming the the full state vectorx is observed with zero observational errors, how
behaves the Kalman gain matrix?

22-10. Derive the equation that steady state forecast-error covariance assuming the error-
covariance matrixP reaches a stationnary value must satisfy. When do you expect
the use of this error covariance obtained from this so-called Ricatti equation to be
interesting?

22-11. Why did we distinguish the concept of most likelyhood estimators and the minimum
expected error estimators? Can you see the reason for doing so for a system with the
schematic probability density function of Figure22-13? How would you make the link
with the trajectories on Figure22-1of the Lorenz equations?

Probability

x

Figure 22-13 A non-gaussian proba-
bility density function with two states
of high probability.

22-12. Can you see a reason to keepεp different from zero in the definition (22.1) of the
skill-score?Hint: Think about what a perfect model is able to predict.

22-13. When do you think the autocorraletion provides usefull information on the predictabil-
ity limit discussed on Figure22-4?
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22-14. The Lyapunov equation (22.40) can also be used to recover classical results in error
estimations: Suppose you use a state equationρ(T, S) and your measurements onT
andS are plagued by errors with known error varianceσ2

T andσ2
S . Calculate the

extected error-variance onρ and show that it can be recasted into the form (22.40).
Can you interpreteQ in this case?

22-15. Introduce lowering method of Haines?

Numerical Exercises

22-1. Implement a nudging and solve numerically the analytical problem 22-1. When you
decreaseτ , what specific action to you need to take in the numerical timestepping?
Investigate what happens when you add noise to the “observations” u0 and v0 and
decrease the sampling rate of the ”pseudo-data”.

22-2. Implementation of OI in a gravity wave problem. Prescribe covariance as ... Which
length scale would you suggest if your assimilation cycle isevery ?? hour.

22-3. Kalman filter on advection problem to show error propagation? Model error=wrong
velocity and numerical diffusion? with observation in a given point at every moment.

22-4. Use the Kalman filter ofkalmangw.m on the gravity wave problem. Investigate the
effect of changing the model and observational noise level.

22-5. Develop an adjoint method for advection problem 22-3. Optimize initial condition.
UseC = 0.2 andC = 1 to see the effect of model errors,C = 1 giving the perfect
dynamics model. What is the effect of reducing the number of observations and dis-
regarding the background initial conditions?Hint: Think about underdetermined and
overdetermined problems.

22-6. A more complicated assimilation experiment ? Identification of source of tracers in
diffusion problem? Show that unconstrained minimization problems can lead to un-
physical results (negative concentrations).

22-7. Estimate the memory needed if we would like to storeP for today’s weather forecast
systems.

22-8. Lorenz and ensemble (depending on where, short or long predictability)
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three continents. He speaks six languages fluently. (Photo by Philippe Brùere, Compagnie
des Guides, Chamonix−Mont Blanc)



Eugenia Kalnay
–

PhD under Charney (See biography end of Chapter ???)
The Reanalysis paper of 1996 is the most cited paper in all geosciences in the last decades.
Eugenia Kalnay was awarded a Ph.D in Meteorology from the Massachusetts Institute of

Technology in 1971. Following a position as Associate Professor in the same department,
she became Chief of the Global Modeling and Simulation Branch at the NASA Goddard
Space Flight Center (1983-1987). From 1987 to 1997 she was Director of the Environmental
Modeling Center (US National Weather Service) and in 1998 was awarded the Robert E.
Lowry endowed chair at the University of Oklahoma. In 1999 she became the Chair of the
Department of Meteorology at the University of Maryland. Professor Kalnay is a member of
the US National Academy of Engineering, is the recipient of two gold medals from the US
Department of Commerce and the NASA Medal for Exceptional Scientific Achievement, and
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has received the Jule Charney Award from the American Meteorological Society. The author
of more than 100 peer reviewed papers on numerical weather prediction, data assimilation
and predictability, Professor Kalnay is a key figure in this field and has pioneered many of
the essential techniques.

From 1979 to 1986 Eugenia Kalnay worked at, and later directed, the Global Modeling
and Simulation Branch, at NASA/GSFC. She developed the accurate and efficient NASA
Fourth Order Global Model which for more than 15 years was thecore of many data assim-
ilation and forecasting experiments, as well as stratospheric and climate simulations, and is
still being used for climate experiments. From 1987 to 1997,Dr. Kalnay was the Direc-
tor of the Environmental Modeling Center (EMC, ex Development Division) of the National
Centers for Environmental Prediction (NCEP, ex NMC), National Weather Service (NWS).
During this decade there were major improvements in the NWS models’ forecast skill. Many
successful projects such as ensemble forecasting, 3-d and 4-d variational data assimilation,
advanced quality control, coastal ocean forecasting, GCIPresearch with the Eta model, sea-
sonal and interannual dynamical predictions, were startedor carried out during those years.
She directed the NCEP/NCAR 50- year Reanalysis project and with Zoltan Toth developed
the ensemble forecasting method implemented in 1992 at NCEP. Current research interests
of Dr. Kalnay are in predictability and ensemble forecasting, numerical weather prediction
and data assimilation. With Dr. Ming Cai she is studying the Lyapunov vectors of the cou-
pled ocean-atmosphere system. With her collaborators Dr. Zhao-Xia Pu and Dr. Seon Ki
Park, she introduced the method of backward integration of atmospheric models and several
novel applications such as Inverse 3D-VAR, and targeted observations. Dr. Zoltan Toth and
Dr. Kalnay introduced the breeding method for ensemble forecasting. She is also the author
(with Ross Hoffman and Wesley Ebisuzaki) of other widely used ensemble methods known
as Lagged Averaged Forecasting (LAF) and Scaled LAF. She hasalso published papers on at-
mospheric dynamics and convection, numerical methods, andthe atmosphere of Venus. Her
book

Her textbook ... Data Assimilatin ...
(Photo)



Appendix A: Elements of Fluid
Mechanics

A.1 Budgets

Start with a derivation of the 3D compressible continuity equation.
Then, derive momentum equations (3.2)-(3.4), paying closeattention to how the pressure

force is proportional to the pressure gradient rather than to the pressure itself.

A.2 Equations in spherical coordinates

The preceding equations assume a Cartesian system of coordinates and thus hold only if the
dimension of the domain under consideration is much shorterthan the earth’s radius. Should
the domain dimensions be comparable to the size of the planet, thex–, y– andz–axes need
to be replaced by spherical coordinates, and curvature terms enter all equations. Equations
(3.1) through (3.5) become:

∂

∂t
(ρ cosϕ) +

∂

∂λ

(ρu
r

)
+

∂

∂ϕ

(ρv cosϕ

r

)
+

∂

∂r
(ρw cosϕ) = 0

ρ

(
du

dt
− uv tanϕ

r
+

uw

r
+ f∗w − fv

)
= − 1

r cosϕ

∂p

∂λ
+ Fλ

ρ

(
dv

dt
+

u2 tanϕ

r
+

vw

r
+ fu

)
= − 1

r

∂p

∂ϕ
+ Fϕ

ρ

(
dw

dt
− u2 + v2

r
− f∗u

)
= − ∂p

∂r
− ρg + Fr

whereϕ is the latitude,λ the longitude andr the distance from the center of the earth (or
planet or star). The componentsFλ, Fϕ, andFr of the frictional force have complicated
expressions and need not be reproduced here. The material derivative becomes

d

dt
=

∂

∂t
+

u

r cosϕ

∂

∂λ
+

v

r

∂

∂ϕ
+ w

∂

∂r
.

For a detailed development of these equations, the reader isreferred to Chapter 4 of the book
by Gill (1982).
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Appendix B: Wave Kinematics

(October 18, 2006)SUMMARY : Because numerous geophysical flow phenomena can be
interpreted as waves, some understanding of basic wave properties is required in the study
of geophysical fluid dynamics. The concepts of wavenumber, frequency, dispersion relation,
phase speed and group velocity are introduced and given physical interpretations.

B.1 Wavenumber and wavelength

For simplicity of presentation and easier graphical representation, we will consider here a
two-dimensional plane wave, namely, a physical signal occupying the (x, y) plane, evolv-
ing with time t and with straight crest lines. The prototypical wave form isthe sinusoidal
function, and so we assume that a physical variable of the system, denoted bya and being
pressure, a velocity component or whatever, evolves according to

a = A cos(kxx + kyy − ωt + φ). (B.1)

The coefficientA is the waveamplitude(−A ≤ a ≤ +A), whereas the argument

α = kxx + kyy − ωt + φ (B.2)

is called thephase. The latter consists of terms that vary with each independent variable
and a constantφ, called the reference phase. The coefficientskx, ky , andω of x, y, andt,
respectively, bear the names ofwavenumber inx, wavenumber iny andangular frequency,
most often abbreviated tofrequency. They indicate how rapidly the wave undulates in space
and how fast it oscillates in time.

Equivalent expressions for the wave signal are

a = A1 cos(kxx + kyy − ωt) + A2 sin(kxx + kyy − ωt), (B.3)

whereA1 = A cosφ andA2 = −A sinφ, and

a = <
[
Ac ei(kxx+kyy−ωt)

]
, (B.4)
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Figure B-1. Instantaneous phase lines of a plane two-dimensional wave signal. The lines are
straight and parallel. The distances from crest to nearest crest along thex– andy–axes areλx
andλy , respectively, whereas the wavelengthλ is the shortest diagonal distance from crest
line to nearest crest line.

where the notation<[ ] means “the real part of” andAc = A1 − iA2 = A eiφ is a complex
amplitude coefficient. The choice of mathematical representation is generally dictated by
the problem at hand. Formulation (B.3) is helpful in the discussion of problems exhibiting
coexisting signals that are either in perfect phase or in quadrature, whereas formulation (B.4)
is preferred when a given dynamical system is subjected to a wave analysis. Here, we will
use formulation (B.1).

A wavecrestis defined as the line in the (x, y) plane and at timet along which the signal
is maximum (a = +A); similarly, a trough is a line along which the signal is minimum
(a = −A). These lines and, in general, all lines along which the signal has a constant value
at an instant in time are calledphase lines. In a plane wave, as the one considered here, all
crests, troughs and other phase lines are straight lines. Figure B-1 depicts a few phase lines
in the case of positive wavenumberskx andky.

Because of the oscillatory behavior of the sinusoidal function, crest lines recur at constant
intervals, thus giving the wavy aspect to the signal. The distance over which the signal repeats
itself in thex–direction is the distance over which the phase portionkxx increases by2π, that
is,

λx =
2π

kx
. (B.5)
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Similarly, the distance over which the signal repeats itself in they–direction is

λy =
2π

ky
. (B.6)

The quantitiesλx andλy are called the wavelengths in thex– andy–directions. They are the
wavelengths seen by an observer who would detect the signal only through slits aligned with
thex andy axes. The actualwavelength, λ, of the wave is the shortest distance from the crest
to nearest crest (Figure B-1) and is, therefore, smaller than eitherλx andλy. Elementary
geometric considerations provide

1

λ2
=

1

λ2
x

+
1

λ2
y

=
k2
x + k2

y

4π2

or

λ =
2π

k
, (B.7)

wherek, called thewavenumber,is defined as

k =
√
k2
x + k2

y . (B.8)

Note that sinceλ2 is not the sum ofλ2
x andλ2

y, the pair (λx, λy) does not make a vector.
On the other hand, the pair (kx, ky) can be used to define thewavenumber vector

k = kxi + kyj, (B.9)

wherei and j are the unit vectors aligned with the axes (Figure B-1). In this fashion, the
wavenumberk is the magnitude of the wavenumber vectork.

By definition, phase lines at any given time correspond to lines of constant values of the
expressionkxx + kyy = k · r, wherer = xi + yj is the vector position. Geometrically, this
means that a phase line is the locus of points whose vectors from the origin share the same
projection onto the wavenumber vector. These points form a straight line perpendicular tok,
and therefore the wavenumber vector points perpendicularly to all phase lines (Figure B-1),
that is, in the direction of the undulation.

B.2 Frequency, phase speed, and dispersion

Let us now turn our attention to the temporal evolution of thewave signal. At a fixed position
(x andy given), an observer sees an oscillatory signal. The interval of time between two
consecutive instants at which the signal is maximum is the time taken for the portionωt of
the phase to increase by2π. It is called theperiod, which is

T =
2π

ω
. (B.10)

Let us now follow a particular crest line (a = A) from a certain timet1 to a later time
t2 and note the time interval∆t = t2 − t1. During this time interval, the wave crest has
progressed from one position to another (Figure B-2). The intersection with thex–axis has
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Figure B-2. Progress of a wave crest from timet1 to time t2. The ratio of the distance
traveled,∆s, to the time interval∆t = t2 − t1 is the phase speed.

translated over the distance∆x = ωt2/kx−ωt1/kx = ω∆t/kx in time∆t. This defines the
propagation speed of the wave along thex–direction:

cx =
∆x

∆t
=

ω

kx
. (B.11)

Similarly, the propagation speed along they–direction is the distance∆y = ωt2/ky−ωt1/ky
divided by the time interval∆t, or

cy =
∆y

∆t
=

ω

ky
. (B.12)

But, these speeds are only speeds in particular directions.The true propagation speed of
the wave is the distance∆s, measured perpendicularly to the crest line (Figure B-2), covered
by this crest line during the time interval∆t. Again, elementary geometric considerations
provide

1

∆s2
=

1

∆x2
+

1

∆y2
,

from which we deduce

∆s =
ω∆t

k
,
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wherek is the wavenumber defined in (B.8). The propagation speed of the crest line is thus

c =
∆s

∆t
=

ω

k
. (B.13)

Because all phase lines propagate at the same speed (so that the wave preserves its sinusoidal
form over time), the quantityc is called thephase speed. Note that becausec2 is not equal to
c2x + c2y (in fact,c is less than bothcx andcy!), the pair (cx, cy) does not constitute a physical
vector. The direction of phase propagation, as discussed before, is parallel to the wavenumber
vectork.

In general, the expression (B.1) of the wave signal appears as the solution to a particular
dynamical system. Therefore, it must somehow be constrained by the physics of the problem,
and not all its parameters can be varied independently. Let us suppose that the system under
consideration is initially unchanging in time (state of rest or steady flow) and that at timet =
0, it is perturbed spatially according to a sinusoidal distribution of wavenumberskx andky in
thex– andy–directions, respectively, and of amplitudeA for the variablea. Intuition leads
us to anticipate that subsequent to this perturbation, the system will react in a time-dependent
fashion. If this reaction takes the form of a wave, it will have a frequencyω determined
by the system. Therefore, the frequency can be viewed as dependent upon the wavenumber
componentskx andky and the amplitudeA. In most instances, the system’s response is a
wave because the set of equations representing the physics is linear, and when this is the
case, the mathematical analysis yields a frequency that is independent of the amplitude of the
perturbation. Therefore,ω is typically a function ofkx andky only.

If the frequency is a function of the wavenumber components,so is the phase speed:

c =
ω(kx, ky)√
k2
x + k2

y

= c(kx, ky).

Physically, this implies that the various waves of a composite signal will all travel at different
speeds, causing a distortion of the signal over time. In particular, a localized burst of activ-
ity, which by virtue of the Fourier-decomposition theorem contains waves of many different
wavelengths, will be progressively less localized as time goes on. This phenomenon is called
dispersion, and the mathematical function that relates the frequencyω to the wavenumber
componentskx andky bears the name ofdispersion relation.

The dispersion relation can be represented, in two dimensions, as a set of curves in the (kx,
ky) plane along whichω is a constant. Figure B-3 provides an example. At one dimension
(kx = k, ky = 0) or at two dimensions when the physical system is isotropic (ω function of
k only), a singleω-versus-k curve suffices to represent the dispersion relation.

In some special physical systems, the dispersion relation reduces to a single proportion-
ality between frequencyω and wavenumberk. The phase speed is then the same for all
wavenumbers, all waves travel in perfect accord, and the total signal retains its shape as time
evolves. Such a wave is called anondispersivewave.

B.3 Group velocity and energy propagation

In general, a wave pattern consists of more than a single wave. A series of waves are super-
imposed, leading to constructive and destructive interference. In areas where the waves are
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Figure B-3. Graphic representation of the dispersion relationω = 2kx/(k
2
x + k2

y + 1) by
curves of constantω values in the (kx, ky) wavenumber plane.

interfering constructively, the wave amplitude is greaterand the energy level is higher than in
areas where the waves interfere destructively. Therefore,energy distribution is a property of
a set of waves rather than of a single wave. (It can be said thata single wave has a uniform
energy distribution.) Energy propagation by a set of waves depends on how interference pat-
terns move about and is generally not the average speed of thewaves present. To illustrate the
principles and determine the speed at which energy propagates, let us restrict our attention to
two one-dimensional waves and, more precisely, to two wavesof equal amplitude and nearly
equal wavenumbers:

a = A cos(k1x − ω1t) + A cos(k2x − ω2t), (B.14)

where the wavenumbersk1 andk2 are close to their averagek = (k1 + k2)/2, and the
difference∆k = k1 − k2 is much smaller (|∆k| � |k|). Because both waves obey the single
dispersion relation of the dynamical system,ω = ω(k), the two frequenciesω1 = ω(k1) and
ω2 = ω(k2) are close to their averageω = (ω1 + ω2)/2, which is much larger than their
difference∆ω = ω1−ω2 (|∆ω| � |ω|). In expression (B.14), the two reference phases were
set to zero, which can always be done under suitable choices of space and time origins.

A trigonometric manipulation transforms expression (B.14) into

a = 2A cos

(
∆k

2
x − ∆ω

2
t

)
cos(kx − ωt), (B.15)

which now appears as the product of two waves. The second cosine function represents
an average wave, of wavenumber and frequency between those of the two individual waves
comprising the signal. The first cosine function, on the other hand, involves a much smaller
wavenumber (i.e. much longer wavelength) and a much lower frequency. Over the cycle of
the shorter (k, ω) wave, the longer wave appears almost unchanging. In other words, the (k,



655

a

λ′

λcg

c

x

Figure B-4. The interference pattern of two one-dimensional waves withclose wavenumbers.
While the wave crests and troughs propagate at the speedc = ω/k, the envelope (dashed line)
propagates at the group velocitycg = dω/dk.

ω) wave appears modulated; its amplitude,2A cos[(∆kx − ∆ωt)/2], is slowly varying in
space and time, as seen in Figure B-4.

Although the wave signal exhibits a wavelength from crest totrough to the next crest
equal toλ = 2π/k, the envelope has a much longer wavelength,λ′ = 1

2 [2π/(∆k/2)] =
2π/∆k. The wave pattern is a succession of wave bursts, each of length λ′. Within each
burst, the wave propagates at the phase speedc = ω/k, while the burst travels at the speed
c′ = ∆ω/∆k.

Considering an infinitesimal wavenumber difference, we areled to define

cg =
dω

dk
. (B.16)

Because this is the propagation speed of a burst, or group of similar waves, it is called the
group velocity.Energy is associated with each group, and so the group velocity is also the
velocity at which energy is carried by the waves.

The preceding wave description relies on the existence of two waves of identical ampli-
tudes. When two waves do not have equal amplitude, sayA1 andA2, destructive interference
is nowhere complete (the weak wave cannot completely cancelthe strong wave), and there is
no clear pinch-off between wave bursts. Rather, the modulating envelope undulates between
the valuesA1 +A2 and|A1 −A2| on the positive side and−(A1 +A2) and−|A1 −A2| on
the negative side. It remains, however, that regions of constructive interference, and thus of
higher energy level, propagate at the group velocity.

The theory can easily be extended to multidimensional waves. At two dimensions, for
example, we define the group velocities in thex– andy–directions, respectively, as
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cgx =
∂ω

∂kx
, cgy =

∂ω

∂ky
, (B.17)

given the dispersion relationω(kx, ky). Because these expressions are the components of
the gradient of the functionω in the (kx, ky) wavenumber space, they can be interpreted as
the components of a physical vector depicting the group velocity

cg = ∇k ω, (B.18)

where∇k stands for the gradient operator with respect to the variableskx andky . On the
two-dimensional diagram (Figure B-3), this vector group velocity points perpendicularly to
theω curves, toward the higher values ofω. Aligning thekx– andky–axes with thex– and
y–axes of the plane provides the direction of energy propagation in space.

Generalization to the three-dimensional space is immediate. An example is the internal
wave discussed extensively in Chapter 13.

Analytical Problems

B-1. In waters deeper than half the wavelength, surface gravity waves obey the dispersion
relationω =

√
gk, whereg is the gravitational acceleration (g = 9.81 m/s2). For these

waves, show that the wavelength is proportional to the square of the period. At which
speed does a 10 m-long wave travel?

B-2. Show that the group velocity of deep-water waves (see Problem B-1) is always less than
the phase speed.

B-3. A former sea captain recounts a stormy night in the middle of the North Atlantic when
he observed waves with wavelengths of a few meters passing his 51-m-long ship in less
than 3 s. Should you believe him?

B-4. Suppose that you are in the middle of the ocean and off in the distance you see a storm.
A little while later, you observe the passage of surface gravity waves of wavelength 5
m. Two hours later, you still observe gravity waves, but now their wavelength is 2 m.
How far away was the storm?

B-5. Find the frequencyω of a Kelvin wave of wavenumberk (Section 9.2). Is the Kelvin
wave dispersive?

B-6. Show that for inertia-gravity waves [ω2 = f2 + gH(k2
x + k2

y); Section 9.3], the group
velocity is always less than the phase speed. In which limit does the group velocity
approach the phase speed?

B-7. Demonstrate that when the frequencyω is a function of the ratiokx/ky, the energy
propagates perpendicularly to the phase.
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B-8. Given the dispersion relation of internal waves in a vertical plane (see Section 13.2),

ω = N
kx√

k2
x + k2

z

,

whereN is a constant,kx is the horizontal wavenumber andkz is the vertical wavenum-
ber, show that phase and energy always propagate in the same horizontal direction but
in opposite vertical directions.

Numerical Exercises

B-1. Using animated graphics, display a time sequence (t = 0 to 10π by steps ofπ/4) of the
double wave

a (x, t) = A1 cos(k1x − ω1t) + A2 cos(k2x − ω2t)

with A1 = A2 = 1, k1 = 1.9,k2 = 2.1,ω1 = 2.1,ω2 = 1.9, and forx ranging from 0
to 100. A suggested step inx is 0.25. Notice how the short waves [of wavelength =
4π/(k1 +k2) = π] travel toward increasingx at the speedc = (ω1 +ω2)/(k1 +k2) =
+1, while the wave envelope [of wavelength =2π/(k2 − k1) = 10π] travels in the
opposite direction at speedcg = (ω1 − ω2)/(k1 − k2) = −1. This unequivocally
demonstrates the nonintuitive fact that the energy propagation may well propagate in
the direction opposite to the advancing crests and troughs.In other words, it is not
impossible for energy to be transported up-wave.

Variations of this exercise can include uneven amplitudes (e.g., A1 = 1 andA2 = 0.5)
and modified values for the wavenumbers and frequencies.

B-2. Using animated graphics, use the same function as in exercise B-1 withk1 = 0.35,k2 =
0.5,ω1 = 0.5, andω2 = 0.35 the other values unchanged. Show the evolution ofa and
then ofa2/2. Can you explain the apparently shorter waves?

B-3. Given a dispersion relation

ω =
k

(k2 + 1)

analyze now the signal composed of two waves

a (x, t) = A1 cos(k1x − ω(k1)t) + A2 cos(k2x − ω(k2)t),

whereω is calculated using the dispersion relation. As before, show the evolution for
A1 = A2 = 1 in the following situations

• k1 = k2 = 0.5,
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• k1 = k2 = 2

• k1 = 1.95,k2 = 2.05

• k1 = 0.45,k2 = 0.55

Can you explain the behaviour?Hint: Plot the dispersion relation.

B-4. Redo exercise B-1 withk1 = 1,A1 = 1,A2 = 0 andω1 = 1. Then change the step inx
to π/4 andπ/2. Finally when using a step of4π/3, what do you observe?



Appendix C: Recapitulation of
Numerical schemes

(October 18, 2006)SUMMARY : Certain numerical schemes of general use are regrouped
here in order to facilitate implementations of simple models.

C.1 The tridiagonal system solver

An efficient tridiagonal system solver, calledThomas algorithm, can be constructed as a
special case of the generalLU decomposition (e.g., Riley et al. 1997). We begin by assuming
that there exists a decomposition for which the lower (L) and upper (U) matrices possess the
same bandwidth of 2: 0BBBBBBB@a1 c1 0 0 · · · 0

b2 a2 c2 0 · · · 0
0 b3 a3 c3 · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · bm−1 am−1 cm−1

0 0 · · · 0 bm am

1CCCCCCCA =0BBBBBBB@ 1 0 0 0 · · · 0
β2 1 0 0 · · · 0
0 β3 1 0 · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · βm−1 1 0
0 0 · · · 0 βm 1

1CCCCCCCA0BBBBBBB@α1 γ1 0 0 · · · 0
0 α2 γ2 0 · · · 0
0 0 α3 γ3 · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · 0 αm−1 γm−1

0 0 · · · 0 0 αm

1CCCCCCCA (22.68)

where the first array is the original tridiagonal matrix to bedecomposed (i.e., elementsa1 etc.
are known), the second array isL with one line of non-zero elements below the diagonal, and
the last array isU with one line of non-zero elements above the diagonal.

Performing the product of matrices, we identify elements (k, k− 1), (k, k) and (k, k+ 1)
of the product as
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bk = βkαk−1 (22.69)

ak = βkγk−1 + αk (22.70)

ck = γk. (22.71)

These relations can be solved for the components ofL andU by observing thatγk = ck, the
first row demandsa1 = α1 and subsequent rows provideαk andβk recursively from

βk =
bk
αk−1

, αk = ak − βkck−1, k = 2, ...,m (22.72)

provided that noαk is zero (otherwise the matrix is singular and cannot be decomposed).
Note that there is noβ1.

The tridiagonal matrixA has now been decomposed as the product of a lower and upper
triangular matrices. The solution ofAx = LUx = f is then obtained by first solvingLy = f




1 0 0 0 · · · 0
β2 1 0 0 · · · 0
0 β3 1 0 · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · βm−1 1 0
0 0 · · · 0 βm 1







y1
y2
y3
...

ym−1

ym




=




f1
f2
f3
...

fm−1

fm




(22.73)

by proceeding from the first row downward and then solvingUx = y




α1 γ1 0 0 · · · 0
0 α2 γ2 0 · · · 0
0 0 α3 γ3 · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · 0 αm−1 γm−1

0 0 · · · 0 0 αm







x1

x2

x3

...
xm−1

xm




=




y1
y2
y3
...

ym−1

ym




, (22.74)

by proceeding from the bottom row upward. The solution is

y1 = f1, yk = fk − βkyk−1, k = 2, ...,m (22.75)

xm =
ym
αm

, xk =
yk − γkxk+1

αk
, k = m− 1, ..., 1. (22.76)

In practice, theα values are stored in a vectora, theβ values in a vectorb, theγ values
in a vectorc, and they and f values can share the same vectorf as thefk value is no
longer needed once theyk value has been computed. With the additional vectorx of the
solution, only5 vectors are required, and the solution is obtained with onlythree loops over
m. This demands approximately5m floating-point operations instead ofm3 that a brutal
matrix inversion would have required. The algorithm is implemented in MATLAB  file
thomas.m .
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Table 22.1 STANDARD FINITE DIFFERENCE OPERATORS FOR UNIFORM GRIDS

FORWARD DIFFERENCEO(∆t)

un un+1 un+2 un+3 un+4

∆t ∂u∂t -1 1

∆t2 ∂
2u
∂t2 1 -2 1

∆t3 ∂
3u
∂t3 -1 3 -3 1

∆t4 ∂
4u
∂t4 1 -4 6 -4 1

FORWARD DIFFERENCEO(∆t2)

un un+1 un+2 un+3 un+4 un+5

2 ∆t ∂u∂t -3 4 -1

∆t2 ∂
2u
∂t2 2 -5 4 -1

2 ∆t3 ∂
3u
∂t3 -5 18 -24 14 -3

∆t4 ∂
4u
∂t4 3 -14 26 -24 11 -2

BACKWARD DIFFERENCEO(∆t)

un−4 un−3 un−2 un−1 un

∆t ∂u∂t -1 1

∆t2 ∂
2u
∂t2 1 -2 1

∆t3 ∂
3u
∂t3 -1 3 -3 1

∆t4 ∂
4u
∂t4 1 -4 6 -4 1

BACKWARD DIFFERENCEO(∆t2)

un−5 un−4 un−3 un−2 un−1 un

2 ∆t ∂u∂t 1 -4 3

∆t2 ∂
2u
∂t2 -1 4 -5 2

2 ∆t3 ∂
3u
∂t3 3 -14 24 -18 5

∆t4 ∂
4u
∂t4 -2 11 -24 26 -14 3

CENTRAL DIFFERENCEO(∆t2)

un−2 un−1 un un+1 un+2

2∆t ∂u∂t -1 0 1

∆t2 ∂
2u
∂t2 1 -2 1

2∆t3 ∂
3u
∂t3 -1 2 0 2 1

∆t4 ∂
4u
∂t4 1 -4 6 -4 1

CENTRAL DIFFERENCEO(∆t4)

un−3 un−2 un−1 un un+1 un+2 un+3

12∆t ∂u∂t 1 -8 0 8 -1

12∆t2 ∂
2u
∂t2 -1 16 -30 16 -1

8 ∆t3 ∂
3u
∂t3 1 -8 13 0 -13 8 -1

6 ∆t4 ∂
4u
∂t4 -1 12 -39 56 -39 12 -1

C.2 1D finite difference schemes of various orders
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C.3 Time stepping algorithms
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Table 22.2 STANDARD TIME STEPPING METHODS FORdu/dt = Q(t, u)

EULER METHODS
Scheme Order

Explicit ũn+1 = ũn + ∆tQn ∆t

Implicit ũn+1 = ũn + ∆tQn+1 ∆t

Trapezoidal ũn+1 = ũn + ∆t
2

(
Qn +Qn+1

)
∆t2

General ũn+1 = ũn + ∆t
(
(1− α)Qn + αQn+1

)
∆t

MULTI -STAGE METHODS
Scheme Order

Runge-
Kutta

ũn+1/2 = ũn + ∆t
2 Q(tn, ũn)

ũn+1 = ũn + ∆tQ(tn+1/2, ũn+1/2) ∆t2

Runge-
Kutta

ũ
n+1/2
a = ũn + ∆t

2 Q(tn, ũn)

ũ
n+1/2
b = ũn + ∆t

2 Q(tn+1/2, ũ
n+1/2
a )

ũ? = ũn + ∆t Q(tn+1/2, ũ
n+1/2
b )

ũn+1 = ũn + ∆t

(
1
6Q(tn, ũn) + 2

6Q(tn+1/2, ũ
n+1/2
a )

+ 2
6Q(tn+1/2, ũ

n+1/2
b ) + 1

6Q(tn+1, ũ?)

)
∆t4

MULTI -STEP METHODS
Scheme Truncation order

Leapfrog ũn+1 = ũn−1 + 2∆tQn ∆t2

Adams-
Bashforth ũn+1 = ũn + ∆t

2

(
−Qn−1 + 3Qn

)
∆t2

Adams-
Moulton ũn+1 = ũn + ∆t

12

(
−Qn−1 + 8Qn + 5Qn+1

)
∆t3

Adams-
Bashforth ũn+1 = ũn + ∆t

12

(
5Qn−2 − 16Qn−1 + 23Qn+1

)
∆t3

PREDICTOR-CORRECTOR METHODS
Scheme Order

Heun

ũ? = ũn + ∆tQ(tn, ũn)

ũn+1 = ũn + ∆t
2

(
Q(tn, ũn) +Q(tn+1, ũ?)

)
∆t2

Leapfrog-
Trapezoidal

ũ? = ũn−1 + 2∆tQn

ũn+1 = ũn + ∆t
2

(
Qn + 5Q(tn+1, ũ?)

)
∆t2

ABM

ũ? = ũn + ∆t
2

(
−Qn−1 + 3Qn

)

ũn+1 = ũn + ∆t
12

(
−Qn−1 + 8Qn + 5Q(tn+1, ũ?)

)
∆t3
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C.4 Partial derivatives finite differences

On a regular gridx = i∆x + x0, y = j∆y + y0, the following expressions are of second
order

• JacobianJ(a, b) = ∂a
∂x

∂b
∂y − ∂b

∂x
∂a
∂y

J++
i,j =

(ai+1,j − ai−1,j )(bi,j+1 − bi,j−1) − (bi+1,j − bi−1,j)(ai,j+1 − ai,j−1)

4∆x∆y

J+×
i,j =

[ai+1,j(bi+1,j+1 − bi+1,j−1) − ai−1,j (bi−1,j+1 − bi−1,j−1)]

4∆x∆y

−
[ai,j+1(bi+1,j+1 − bi−1,j+1) − ai,j−1(bi+1,j−1 − bi−1,j−1)]

4∆x∆y

J×+
i,j =

[bi,j+1(ai+1,j+1 − ai−1,j+1) − bi,j−1(ai+1,j−1 − ai−1,j−1)]

4∆x∆y

−
[bi+1,j(ai+1,j+1 − ai+1,j−1) − bi−1,j(ai−1,j+1 − ai−1,j−1)]

4∆x∆y

• Cross derivatives

∂2u

∂x∂y

∣∣∣∣
i+1/2,j+1/2

∼ ui+1,j+1 − ui+1,j + ui,j − ui,j+1

∆x∆y

∂2u

∂x∂y

∣∣∣∣
i,j

∼ ui+1,j+1 − ui+1,j−1 + ui−1,j−1 − ui−1,j+1

4∆x∆y

• Laplacian

∂2u

∂x2
+
∂2u

∂y2

∣∣∣∣
i,j

∼ ui+1,j + ui−1,j − 2ui,j
∆x2

+
ui,j+1 + ui,j−1 − 2ui,j

∆y2

C.5 DFT and FFT

xL0

6u

xN−1

Figure 22-14 Perdiodic signal sampled withN evenly space pointsx0 to xN−1.

In a periodic domain in whichx varies between0 andL, a complex functionu(x) can be
expanded in Fourier modes according to
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u(x) =

+∞∑

n=−∞

an e
i n 2πx

L (22.77)

using orthogonality properties of the fourier modes

1

L

∫ L

0

ei (n−m) 2πx
L dx = δnm (22.78)

the complex coefficientsan are obtained are readily obtained by multiplying (22.77) by
e−i m 2πx

L and integrating

am =
1

L

∫ L

0

u(x) e−i m 2πx
L dx (22.79)

Note that we could have usedan = bn/Lwherebn would then be calulated using the integral
without the normalization1/L.

Discrete Fourier Transform (DFT) simply truncates8 the infinite series to a finite serie

ũ(x) =

N−1∑

n=0

an e
i n 2πx

L (22.80)

and usesu(x) at a series of sampling points (the discrete values on a numerical grid for
example) to determine the coefficientsan. The points are regularely spacedxj = j∆x ,
j = 0, ..., N − 1. Because of periodicity usingxN would amount to usex0 and is therefore
not retained in the sampling. Complex coefficients can be evaluated as

an =
1

N

N−1∑

j=0

u(xj) e
−i n

2πxj
L

=
1

N

N−1∑

j=0

uj e
−i nj 2π

N (22.81)

where we writeu(xj) = uj to highlight the fact that we only use information at the discrete
points. Obviously this is a dicrete version of the integral (22.79). The interesting point is
thatam are exact in the sense that if we evaluateũ(xj) with those coefficients, we obtain the
values at the grid pointsu(xj).

The proof of this not trivial results can be obtained by verifying the if we use coefficients

8The truncation from 0 toN − 1 is somehow arbitrary and sometimes the presentation with a series from−N/2
to N/2 is preferred.
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(22.81) in (22.80) at the grid points, we obtaiñu(xj) = u(xj) We obtain successively

ũ(xj) =

N−1∑

n=0

an e
i n

2πxj
L (22.82)

=

N−1∑

n=0

1

N

N−1∑

m=0

um e
−i nm 2π

N ei nj
2π
N

=
1

N

N−1∑

m=0

um

[
N−1∑

n=0

ei (j−m)n 2π
N

]

=
1

N

N−1∑

m=0

um

[
N−1∑

n=0

ρn

]
(22.83)

where

ρ = ei (j−m) 2π
N (22.84)

For j 6= m, ρ 6= 1 and the geometric sum takes the value

N−1∑

n=0

ρn =
1− ρN
1− ρ = 0 (22.85)

becausej −m is an integer so thatρN = 1.

Whenj = m the sum is simplyN and we arrive at̃u(xj) = u(xj), the desired result.
Transformation (22.81) is called the direct transform and (22.82) the inverse transform. As
for the Fourier series, scaling can vary and the factor1/N is commonly applied in the inverse
transform rather the direct. Note that the inverse and direct transform are almost identical
transformations, except for this scaling and more importantly the sign of the exponential.

Now (22.80) can be used for anyx in the domain and because the functionũ(x) takes the
valuesu(xj) on the discrete points, we now have an interpolation function that can be used
to calculate the value of the function at any desired location usingN discrete values. Also
(22.80) can be used to evaluate derivatives:

dũ

dx
=

N−1∑

n=0

i knan e
i knx kn =

2πn

L
(22.86)

and all we have to do to calculate derivatives is to create Fourier coefficientsbn = i knan for
the series on the derivative:

u(x)
sampling
−−−−−−−−→ u(xj)

DFT(uj)
−−−−−−−−→ an

derivation
−−−−−−−−−→ bn = i knan

IDFT(bn)
−−−−−−−−−→

dũ

dx

∣∣∣∣
xj
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For a real signalu there is a redundancy in the coefficientsan: From

aN−m =
1

N

N−1∑

j=0

uj e
−i (N−m)j 2π

N

=
1

N

N−1∑

j=0

uj e
+i mj 2π

N

= a∗n. (22.87)

Also the wave number associated withN − m in the serie (22.80) is equivalent to the one
associated withm. In reality, the shortest signal resolved by the series corresponds ton =
N/2 with wavenumberk = Nπ/L or wavelength2∆x. Hence coefficienta0 contains the
information on the average value,a1 on the wavelengthL and so on down toaN/2 which
contains the complex amplitude of the shortest signal. We see why some presentations of
the DFT define the series between−N/2 andN/2. The information content is however the
same.

nN − 10

an

N/2

A
ve

ra
g

e
va

lu
e

Fundamental mode

2∆x mode Figure 22-15 Coefficientsan contain
the amplitudes of the different modes.
With the summation chosen from0 to
N − 1, aN/2 contains the amplitude of
the shortest signal.

For real functionsu, the DFT contains this some redundant information and some algo-
rithms exploit this property. Cosine transforms CFT and sine transforms SFT perform in a
similar way using only cosine or sine functions. Particularly usefull if the solution of a prob-
lem is known to satisfy homogenous boundary conditions. ForNeuman conditions inx = 0
andx = L, CFT is the method of choice while for Dirichlet conditions,the development of
the solution in terms of sine functions allows to satisfy these boundary conditions easily.

The problem with the transformation presented up to now is that a straightforward imple-
mentation as a sum of factors needs on a data array of lengthN for each coefficientan the
calculation ofN terms. ThereforeN2 operations in total are necessary for each transform.
This is prohibitively expensive when used in large size problems and Cooley and Tukey intro-
duced in 1965 which is probably among the most celebrated numerical algorithm, reducing
the cost of the DFT toN log2N operations. Interestingly enough, the original idea of the
method, now called Fast Fourier Transform, goes back to Gauss in 1805, long before the
advent of calculators able to exploit it.

The Fast Fourier Transform is a practical calculation of thediscrete Fourier transform and
starts with the observation that we can write the transform by separating even and odd terms
in j:
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Nan =

N−1∑

j = 0
j even

uj e
−i nj 2π

N +

N−1∑

j = 0

j odd

uj e
−i nj 2π

N

=

N/2−1∑

m=0

u2m e
−i nm 2π

(N/2) + e−i n 2π
N

N/2−1∑

m=0

u2m+1 e
−i nm 2π

(N/2) (22.88)

and for simplicity we assumeN to be a power of two, which is also the case in which the
method performs best. Each of the two sums involved is nothing else than a discrete transform
working onN/2 data points. But those can in turn again be broken up in two smaller pieces
and so on, a technique calleddivide and conquer. WhenN is a power of two, this recursive
division is possible until all series contain only a single term. Such a single data point can
transformed in a single operation and the recurrence can be followed back to retrieve the
transform of the original series. To estimate the costC(N) for transformation ofN data, we
see that it is the cost of two transformations of sizeN/2 and the multiplication bye−i n 2π

N

for each of theN coefficientsan. Hence

C(N) = 2C (N/2) +N (22.89)

For a single point one operation so that we can deduce

C(N) ∼ N log2N (22.90)

There is thus a substantial gain compared to brute force approach, which is particularely
interesting in spectral methods (Section ) where direct andinverse transforms are intensively
used.

Interpolation into regular (finer) grid:xk = k/ML, k = 0, ...,M − 1 from original data
in xj = j/NL, j = 0, ..., N−1 can now also be performed very efficiently. Simply assuming
that shorter signal than those initially capture by theN points have zero amplitude. Means
adding zeros in the middle of the arrayan and scale. Procedure calledpadding. Care must
be taken to add the zeros in correct places, depending on the conventions used in the FFT
routines (scaleN in direct or inverse transformation and arrangement of coefficientsan as a
function ofn or ordered according to their corresponding real wavenumber (from−pi/L to
π/L))

u(xj)
FFT(uj)
−−−−−−−→ an

Padding
−−−−−−−→ bn = an + zeros

IFFT(bn)
−−−−−−−−→ ũ(xk)

Analytical Problems

C-1. Find the truncation errors of the two Adams-Bashforth schemes by a Taylor expansion.
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C-2. Which of the two second-order approximations of the cross-derivative has a lower trun-
cation error?

C-3. Try to establish a finite-difference approximation of a Jacobian at a corner pointi +
1/2, j + 1/2, using only values from the nearest grid points.

Numerical Exercises

C-1. Compare the behaviour of the second-order Adams-Bashforths method with the Leapfrog-
Trapezoidal method on the calculation of an inertial oscillation.

C-2. Discretize a functionu(x, y) = sin(2pix/L) cos(2piy/L) on a regular grid in(x, y).
Calculate the numerical Jacobian between

• ũ andũ,

• ũ andũ2,

• ũ andũ3,

and interprete your result.

C-3. Perform a FFT onf(x) = sin(2πx/L) betweenx = 0 andx = L, by sampling with 10,
20 or 40 point. Using the spectral coefficients from the FFT, plot the series expansion
using a very fine resolution (200 points) and verify that you recover the initial function.
Then repeat with the functionf(x) = x. What do you observe?

C-4. Redo Excercise C-3. using the padding technique instead of abrute force series evalu-
ation to plot the expansion.
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Madec G., P. Delecluse, M. Imbard, C. Lévy, 1998:OPA 8.1 Ocean General Circulation
Model reference manual. Note du Pôle de mod́elisation, Institut Pierre-Simon Laplace,
N11, 91, pp

Madsen, O. S., 1977: A realistic model of the wind-induced Ekman boundary layer.J. Phys.
Oceanogr., 7, 248–255.

Manabe, S., 1969: Climate and the ocean circulation. II. Theatmospheric circulation and
the effect of heat transfer by ocean currents.Mon. Wea. Rev., 97, 775–805.

Manabe, S., J. Smagorinsky, and R. F. Strickler, 1965: Simulated climatology of a general
circulation model with a hydrologic cycle.Mon. Wea. Rev., 93, 769–798.

Manabe, S., R. J. Stouffer, M. J. Spelman, and K. Bryan, 1991:Transient responses of
a coupled ocean-atmosphere model to gradual changes of atmospheric CO2. Part I:
Annual mean response.J. Climate, 4, 785–818.
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Rixen, M., J.-M. Beckers, and J. T. Allen, 2001: Diagnosis ofvertical velocities with the
QG-Omega equation: a relocation method to obtain pseudo-synoptic data sets.Deep-
Sea Res., 48, 1347–1373.

Robinson, A. R., 1965: A three-dimensional model of inertial currents in a variable-density
ocean.J. Fluid Mech., 21, 211–223.

Robinson, A. R., ed., 1983:Eddies in Marine Science. Springer-Verlag, 609 pp.

Robinson, A. R., and J. C. McWilliams, 1974: The baroclinic instability of the open ocean.
J. Phys. Oceanogr., 4, 281–294.

Robinson, A. R., M. A. Spall, and N. Pinardi, 1988: Gulf Stream simulations and the
dynamics of ring and meander processes.J. Phys. Oceanogr., 18, 1811–1853.

Robinson, A. R., and B. Taft, 1972: A numerical experiment for the path of the Kuroshio.
J. Mar. Res., 30, 65–101.

Robinson, I., 2004:Measuring the Oceans from Space. The Principles and Methodsof
Satellite Oceanography, Springer-Praxis, 670 pp.

Roll, H. U., 1965:Physics of the Marine Atmosphere. Academic Press, 426 pp.



687

Rossby, C. G., 1937: On the mutual adjustment of pressure andvelocity distributions in
certain simple current systems. I.J. Mar. Res., 1, 15–28.

Rossby, C. G., 1938: On the mutual adjustment of pressure andvelocity distributions in
certain simple current systems. II.J. Mar. Res., 2, 239–263.

Rossby, C. G., 1940: Planetary flow patterns in the atmosphere. Quart. J. R. Met. Soc., 66,
Suppl., 68–87.

Roussenov, V., R. G. Williams, and W. Roether, 2001: Comparing the overflow of dense
water in isopycnic and cartesian models with tracer observations in the eastern Mediter-
ranean.Deep-Sea Res., 48, 1255–1277.

Saddoughi, S. G., and S. V. Veeravalli, 1994: Local isotropyin turbulent boundary layers at
high Reynolds number.J. Fluid Mech., 268, 333–372.

Saffman, P. G., 1968: Lectures on homogeneous turbulence. In Topics in Nonlinear Physics,
N. J. Zabusky, ed., Springer Verlag, 485–614.

Salmon, R., 1982: Geostrophic turbulence. InTopics in Ocean Physics, Proc. Int. School
of Phys. Enrico Fermi LXXX, A. R. Osborne & P. Malanotte-Rizzoli, eds., pp. 30–78,
North-Holland Elsevier Sci. Publ.

Schmitz, W. J., Jr., 1980: Weakly depth-dependent segmentsof the North Atlantic circula-
tion. J. Mar. Res., 38, 111–133.

Shapiro, L. J., 1992: Hurricane vortex motion and evolutionin a three-layer model.J.
Atmos. Sci., 49, 140–153.

Smagorinsky, J. 1963: General circulation experiments with the primitive equations. I. The
basic experiment,Mon. Wea. Rev., 91, 99–164.

Song, T., 1998: A general pressure gradient formulation forocean models. Part I: scheme
design and diagnostic analysis.Mon. Wea. Rev., 126, 3213–3230.

Sorbjan, Z., 1989:Structure of the Atmospheric Boundary Layer. Prentice Hall, Englewood
Cliffs, New Jersey, 317 pp.

Spagnol S., E. Wolanski, E. Deleersnijder, R. Brinkman, F. McAllister, B. Cushman-Roisin
and E. Hanert, 2002: An error frequently made in the evaluation of advective transport
in two-dimensional Lagrangian models of advection-diffusion in coral reef waters,Ma-
rine Ecology Progress Series, 235, 299–302.

Spiegel, E. A., and G. Veronis, 1960: On the Boussinesq approximation for a compressible
fluid. Astrophys. J., 131, 442–447.

Stacey, M. W., S. Pond, and P. H. LeBlond, 1986: A wind-forcedEkman spiral as a good
statistical fit to low-frequency currents in coastal strait. Science, 233, 470–472.

Stern, A. C., R. W. Boubel, D. B. Turner, and D. L. Fox, 1984:Fundamentals of Air
Pollution. Academic Press, 530 pp.



688 APPENDIX C: RECAPITULATION OF NUMERICAL SCHEMES

Stigebrandt, A., 1985: A model for the seasonal pycnocline in rotating systems with appli-
cation to the Baltic Proper.J. Phys. Oceanogr., 15, 1392–1404.

Stoer, J., and R. Bulirsh, 2002:Introduction to Numerical Analysis, 3rd ed., Texts in Applied
Mathematics,12, 744 pp.

Stommel, H. M., 1948: The westward intensification of wind-driven ocean currents.Trans.
Am. Geophys. Union, 29, 202–206.

Stommel, H. M., 1965:The Gulf Stream: A Physical and Dynamical Description, 2nd ed.,
University of California Press, Berkeley, 248 pp.

Stommel, H. M., 1979: Determination of water mass properties of water pumped down
from the Ekman layer to the geostrophic flow below.Proc. Nat. Acad. Sci. USA, 76,
3051–3055.

Stommel, H. M., and D. W. Moore, 1989:An Introduction to the Coriolis Force. Columbia
University Press, Irvington, New York, 297 pp.

Stommel, H. M., and F. Schott, 1977: The beta spiral and the determination of the absolute
velocity field from hydrographic data.Deep-Sea Res., 24, 325–329.

Stommel, H., and G. Veronis, 1980: Barotropic response to cooling. J. Geophys. Res., 85,
6661–6666.

Strang, G., 1968: On the construction and comparison of difference schemes,SIAM J. Num.
Anal., 5, 506–517.

Stull, R. B., 1988:Boundary-Layer Meteorology, Kluwer Academic Publishers, 666 pp.

Stull, R. B., 1991: Static stability – An update.Bull. Am. Met. Soc., 72, 1521–1529
(Corrigendum:Bull. Am. Met. Soc., 72, 1883).

Stull, R. B., 1993: Review of nonlocal mixing in turbulent atmospheres: Transilient turbu-
lence theory.Boundary-Layer Meteorol., 62, 21–96.

Sturm , T. W., 2001:Open Channel Hydraulics. McGraw-Hill, 493 pp.

Suarez, M., and P. Schopf, 1988: A Delayed Action Oscillatorfor ENSO.J. Atmos. Sci.,
45, 3283–3287.

Sutyrin, G. G., 1989: The structure of a monopole barocliniceddy. Oceanology, 29(2),
139–144 (English translation).

Sverdrup, H. U., 1947: Wind-driven currents in a baroclinicocean, with application to the
equatorial currents of the eastern Pacific.Proc. Nat. Acad. Sci. U.S.A., 33, 318–326.

Sweby, P. K., 1984: High resolution schemes using flux-limiters for hyperbolic conservation
laws.SIAM J. Num. Anal., 21, 995–1011.

Tangang, F. T., B. Tang, A. H. Monahan, and W. W. Hsieh, 1998: Forecasting ENSO events:
a neural network - extended EOF approach.J. Climate, 11, 29–41.



689

Taylor, G. I., 1923: Experiments on the motion of solid bodies in rotating fluids.Proc. R.
Soc. London A, 104, 213–218.

Taylor, G. I., 1931: Effect of variation in density on the stability of superposed streams of
fluid. Proc. R. Soc. London A, 132, 499–523.

Tennekes, H., and J. L. Lumley, 1972:A First Course in Turbulence. The MIT Press,
Cambridge, Massachusetts, 300 pp.

Thompson, J. F., Z. U. A. Warsi, and C. W. Mastin, 1985:Numerical Grid Generation:
Foundations and Applications, North Holland, 483 pp.

Thomson, W. (Lord Kelvin), 1879: On gravitational oscillations of rotating water.Proc.
R. Soc. Edinburgh, 10, 92–100. (Reprinted inPhil. Mag., 10, 109–116, 1880;Math.
Phys. Pap., 4, 141–148, 1910.)

Thuburn, J., 1996: Multidimensional flux-limited advection schemes.J. Comp. Phys., 123,
74–83.

Turner, J. S., 1973:Buoyancy Effects in Fluids, Cambridge University Press, 367 pp.

Umlauf, L., and H. Burchard, 2003: A generic length-scale equation for geophysical turbu-
lence models.J. Mar. Res., 61, 235–265.

Umlauf, L., and H. Burchard, 2005: Second-order turbulenceclosure models for geophysi-
cal boundary layers. A review of recent work.Cont. Shelf Res., 25, 795–827.
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H , Vertical length scale,24
K, Decay rate,148
L, Horizontal length scale,24
L, Length scale,3
Lβ, Critical meander scale,514
Q, Source term,57
R, Rossby radius of deformation,250
S, Source,148
T , Time scale,24
∆t, Time step,51
Ω, rotation rate,37
α, Implicit level of a numerical scheme,53
δij , Kronecker symbol (0 ifi 6= j , 1

otherwise,238
ε, Dissipation,396
η, Sea surface height,101
λ, Longitude,47
c̃, Numerical approximation of tracer

concentrationc, 127
ũ, Generic numerical field of physical field

u, 57
ũ, Numerical approximation ofu, 51
I, unit vector in absoluteX direction,37
J, unit vector in absoluteY direction,37
Ω, Vector rotation,40
i, unit vector in localx direction,37
j, unit vector in localy direction,37
k, unit vector in localz direction,37
r, position vector,37
O(a), Order of magnitude ofa, 3
q, Flux,79
Pm,n, Legendre function,556
Ym,n, Spherical harmonic function,556
k, Kinetic turbulent energy,396
‰, Parts per thousand,71
K, Von Karman constant,218

U, Transport inx–direction,195
V, Transport inv–direction,195
νE , Eddy viscosity in vertical,91
ψ, Streamfunction,168
arg(%), Argument of a complex number%,

i.e.,angle with the real axis,132
τx, Wind stress in directionx., 104
τy, Wind stress in directiony., 104
τxb , x component of bottom stress,236
×, Vector product,40
×, Vectorial product,40
ϕ, Latitude,47
%, Amplification factor,132
ζ, Relative vorticity,192, 194
c, Tracer concentration,125
f , Coriolis parameter,49
f∗, Reciprocal Coriolis parameter,49
psu, Practical Salinity Unit,71
q, Potential vorticity,194
q, specific humidity,72
t, time,37
tn, value oft at discrete momentt = n∆t,

51
u, Any physical variable,57
x, local coordinate west-east,37
y, local coordinate south-north,37
z, local coordinate upwards,37
Ek, Ekman number,98
Pe, Peclet number,151
Re, Reynolds number,98
Ri, Richardson number,99
RoT , Temporal Rossby number,98
Ro, Rossby number,98
A, Eddy viscosity in horizontal,91
Sv, 1 Sv= 106 m3/s,84
1D, 79

691
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Advection,79, 85
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Algorithm,20
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Ambient vorticity,see alsoPlanetary
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Anticyclones,see alsoWeather patterns,3,
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Arithmetic operations,17, 18
Atlantic Ocean,see alsoGulf stream,25, 84
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Available potential energy,see alsoPotential

energy

B
Backward difference,26
Backward scheme,57
Baltic Sea,50
Beam-Warming,seeAdvection scheme
Bickley jet,311
Bjerknes, V.,74, 87
Bottom topography,seeTopographic

variations
Boundary conditions,56
Boundary layers,see alsoEkman layer;

Western,86
Bounds on wave speeds and growth rates,

seeSemicircle theorem
Boussinesq approximation,69, 74, 77, 78,
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Boussinesq, J.,86
Brunt–Väisälä frequency,seeStratification

frequency
Bullet train,63
Buoyancy force,seeGravitational force,see

alsoGravitational force,76

C
Cannonball,63

Cartesian coordinates,70
Centrifugal force,5, 40–64, 70
Centripetal acceleration,seeCentrifugal

force
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Characteristic,155
characteristic lines,266
Coastal upwelling,seeUpwelling,13, 14
Compressibility,73, 75, 77
Computers,17, 18, 20, 21, 23, 25
Conduction,72, 74
Conjugate gradient,205
Conservative formulation,78
Consistent,52
Continuity equation,69, 73–76, 83
Convergence,26, 32, 33, 53–56, 69
convergence,54
Coriolis force,37, 40, 42, 46, 47, 64
Coriolis parameter,see alsoReciprocal

Coriolis parameter,42, 43, 49, 70
Curvature,69–70
Cutoff frequency,31
Cyclones,see alsoWeather patterns,13, 18,
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D
Dead waters,7, 7
Deformation radius,seeRadius of

deformation
Density equation,77
Density variations,see alsoStratification
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Discretization,23
Divergence,seeConvergence/divergence,

69, 73, 77–79
Donor cell,seeAdvection scheme
Double diffusion,77
Downwelling,seeUpwelling
Drag force,64
Dynamic pressure,77, 84

E
Earth’s radius,70
Eddies,see alsoVortices,13, 14, 25, 77
Eddy diffusivity,77
Eddy viscosity,see alsoViscosity
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Ekman drift,see alsoEkman transport
Ekman transport,see alsoEkman drift
Elliptic equation,196
Energy budget,72
Energy equation,73, 74, 76–78, 83
Equation of state,71, 74, 77–78, 85
equation of state,71
Equipotential,41
Euler method,51
Explicit scheme,52
External radius of deformation,seeRadius

of deformation

F
Finite differences,21
Finite-volume,79
First law,seeThermodynamics,72
First-order accurate,52
FLOPS,25
Forecasting,18
Forward difference,26
Forward scheme,57
Fourier law,72
France,67, 68, 86
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26–33, 44–46, 53, 66
Friction velocity,see alsoTurbulent friction

velocity
Fronts,87

G
Garrett–Munk spectrum,see alsoMunk, W.
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Geoid,41
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Gill, A. E., 50
Gill, A.E., 71
Global conservation,83
Governing equations,72, 74, 75, 81
Gravitational force,see alsoBuoyancy

force,6, 14, 40–42, 70
Gulf Stream,3, 13, 16

H
Heat budget,81
Heat capacity,72
Heat diffusivity,74

Helmholtz, H. L. F. von,87
Heun method,59
Hindcasting,18
Hockey field,63
Hydrostatic balance,84
Hydrostatic pressure,76

I
Implicit scheme,52
Incompressibility,71
Inertial framework,37, 40
Inertial oscillation,43, 43, 50–52
Inertial oscillations,37, 53–54, 56, 58,

65–66
Inertial period,43, 57
Internal energy,72
Internal radius of deformation,seeRadius of

deformation
isopycnal surface,335

J
Jupiter,63, 75

K
Kelvin, Lord,87
Kinematic viscosity,76
Kinetic energy,52, 53
Kirchhoff vortex,311

L
Lagrangian derivative,seeAdvection
Laplace, P. S.,67
Laplace, P.S.,72
Latent heat,72
Latitude,47, 50, 65, 70, 85
Lax, P.,54–56
Lax-Wendroff,seeAdvection scheme
Lead time,4
Leapfrog method,60
Lee waves,seeMountain waves
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deformation,
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Local conservation,81

M
Mass conservation,see alsoContinuity

equation,69, 77, 78
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Multi-step methods,59

N
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Numerical models,51
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Pressure,41, 50, 70–73, 75–78, 84
Pressure force,70, 72, 73

Primitive equations,21

R
Reciprocal Coriolis parameter,49, 70
Red-black,204
reduced gravity,339
Relative acceleration,46, 49
Relative velocity,38–40, 75
Reynolds, O.,86
Rigid-lid approximation,195
Robinson, A. R.,41
Rossby number,see alsoTemporal Rossby

number
Rossby radius of deformation,seeRadius of

deformation
Rossby waves,see alsoPlanetary waves
Rotating frame,46
Rotating frame of reference,37, 38, 40, 46
Rotating plane,42, 43, 50, 64
Rotating table,44, 46, 68
Rotation rate,37, 40, 46, 64
Rotation vector,47
Runge-Kutta methods,59

S
Salt diffusion,74, 77
Salt fingers,77
Scales,77, 80, 87
Seawater,71, 72, 74, 75, 77, 85
Shear,70
Ship drag,seeDead waters
skill, 609
Solar radiation,seeRadiation,14, 72
Specific humidity,71
Spherical coordinates,70, 85
Spherical geometry,69
Squeezing,seeVertical stretching/squeezing
Staggered grid,198
Steepest descent,205
Stommel, H. M.,40, 41
Stratification,75
Stratification effects,13
Stress,see alsoWind stress,70, 76
Stretching,seeVertical stretching/squeezing
Sun,75
Surface displacement,see alsoFree surface
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T
Taylor curtains,7
Taylor, G. I.,51, 53, 56
Taylor, G.I.,82
Temperature,71–75, 77–85
Temperature of the earth measurements,see

alsoAbsolute temperature
Test,1

subtest,1
subsubtest,1
subsubtest mais tres tres tres tres tres

tres long,1
Test, very long need to break very long need

to break,1
Thermal conductivity,72
Thermal expansion,71
Thermodynamics,72
Thermohaline circulation,see alsoAbyssal

circulation
Thomson, Sir William,seeKelvin, Lord
Tides,67
Time scale,53
Time step,23
Topographic waves,see alsoMountain

waves
Trade winds,567
Transform method,534
Transport,195
Trapezoidal scheme,57
Troposphere,75
Truncation error,24
Turbulence,see alsoGeostrophic turbulence,

77, 86
TVD, seeAdvection scheme
Two-point methods,58

U
Unimportance of centrifugal force,40
Upwind,seeAdvection scheme

V
Vector rotation,seeRotation vector
Veronis, G.,77
Vertical displacement,41
Viscosity,76
Volume conservation,78, 85

Volume transport streamfunction,200
Vortices,see alsoAnticyclones; Cyclones,3
Vorticity, see alsoPotential vorticity,16, 17,

87

W
Walsh Cottage,34
Walsh cottage,see alsoWoods Hole

Oceanographic Institution
Waves,75
Weather forecasting,87
Weather patterns,13, 14, 17, 75
Western boundary current,see alsoGulf

Stream, Kuroshio
Wind stress,14
Woods Hole Oceanographic Institution,34
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The CD-ROM contains MATLAB  scripts.
Some precalculated movies (in Quicktime format).
No optimization in terms of efficient programming was done, and clear identification of

numerical schemes preferred.

An OCTAVE clonehttp://octave.sourceforge.net .
To switch between a Matlab or Octave version, editmatoct.m for defining which type

of graphics to use.

http://octave.sourceforge.net
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